Recent Progress of Self-Powered Optoelectronic Devices Based on 2D Materials
Abstract
:1. Introduction
2. Figures of Merit in Optoelectronic Devices
3. Mechanisms of Self–Powered Optoelectronic Devices
3.1. Interface–Junction Effect
3.1.1. P–N Junction
3.1.2. Schottky Junction
3.2. Bulk Photovoltaic Effect (BPVE)
3.3. Photothermoelectric Effect (PET)
4. Comparisons and Perspectives
5. Summary
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Khatua, P.K.; Ramachandaramurthy, V.K.; Kasinathan, P.; Yong, J.Y.; Pasupuleti, J.; Rajagopalan, A. Application and Assessment of Internet of Things toward the Sustainability of Energy Systems: Challenges and Issues. Sustain. Cities Soc. 2020, 53, 101957. [Google Scholar] [CrossRef]
- Salam, A. Internet of Things for Sustainable Community Development: Wireless Communications, Sensing, and Systems; Springer International Publishing: Cham, Switzerland, 2020; ISBN 978-3-030-35290-5. [Google Scholar]
- Sun, Y.; Wu, Q.; Shi, G. Graphene Based New Energy Materials. Energy Environ. Sci. 2011, 4, 1113. [Google Scholar] [CrossRef]
- Feng, J.; Wang, Y.; Xu, Y.; Sun, Y.; Tang, Y.; Yan, X. Ion Regulation of Ionic Liquid Electrolytes for Supercapacitors. Energy Environ. Sci. 2021, 14, 2859–2882. [Google Scholar] [CrossRef]
- Jayakody, D.N.K.; Thompson, J.; Chatzinotas, S.; Durrani, S. (Eds.) Wireless Information and Power Transfer: A New Paradigm for Green Communications; Springer International Publishing: Cham, Switzerland, 2018; ISBN 978-3-319-56668-9. [Google Scholar]
- Hatch, S.M.; Briscoe, J.; Dunn, S. A Self-Powered ZnO-Nanorod/CuSCN UV Photodetector Exhibiting Rapid Response. Adv. Mater. 2013, 25, 867–871. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Guo, W.; Qi, J.; Zhao, J.; Zhang, Y. Self-Powered Ultraviolet Photodetector Based on a Single Sb-Doped ZnO Nanobelt. Appl. Phys. Lett. 2010, 97, 223113. [Google Scholar] [CrossRef]
- Xie, Y.; Wei, L.; Wei, G.; Li, Q.; Wang, D.; Chen, Y.; Yan, S.; Liu, G.; Mei, L.; Jiao, J. A Self-Powered UV Photodetector Based on TiO2 Nanorod Arrays. Nanoscale Res. Lett. 2013, 8, 188. [Google Scholar] [CrossRef] [PubMed]
- Hou, X.; Wang, X.; Liu, B.; Wang, Q.; Wang, Z.; Chen, D.; Shen, G. SnO2 @TiO2 Heterojunction Nanostructures for Lithium-Ion Batteries and Self-Powered UV Photodetectors with Improved Performances. ChemElectroChem 2014, 1, 108–115. [Google Scholar] [CrossRef]
- Hu, J.; Zhang, Y.; Sun, M.; Piedra, D.; Chowdhury, N.; Palacios, T. Materials and Processing Issues in Vertical GaN Power Electronics. Mater. Sci. Semicon. Proc. 2018, 78, 75–84. [Google Scholar] [CrossRef]
- Flack, T.J.; Pushpakaran, B.N.; Bayne, S.B. GaN Technology for Power Electronic Applications: A Review. J. Electron. Mater. 2016, 45, 2673–2682. [Google Scholar] [CrossRef]
- Li, P.; Zhang, Z.; Shen, W.; Hu, C.; Shen, W.; Zhang, D. A Self-Powered 2D-Material Sensor Unit Driven by a SnSe Piezoelectric Nanogenerator. J. Mater. Chem. A 2021, 9, 4716–4723. [Google Scholar] [CrossRef]
- Li, P.; Zhang, Z. Self-Powered 2D Material-Based pH Sensor and Photodetector Driven by Monolayer MoSe2 Piezoelectric Nanogenerator. ACS Appl. Mater. Interfaces 2020, 12, 58132–58139. [Google Scholar] [CrossRef]
- Wu, E.; Wu, D.; Jia, C.; Wang, Y.; Yuan, H.; Zeng, L.; Xu, T.; Shi, Z.; Tian, Y.; Li, X. In Situ Fabrication of 2D WS2 /Si Type-II Heterojunction for Self-Powered Broadband Photodetector with Response up to Mid-Infrared. ACS Photonics 2019, 6, 565–572. [Google Scholar] [CrossRef]
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric Field Effect in Atomically Thin Carbon Films. Science 2004, 306, 666–669. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Yu, Y.; Ye, G.J.; Ge, Q.; Ou, X.; Wu, H.; Feng, D.; Chen, X.H.; Zhang, Y. Black Phosphorus Field-Effect Transistors. Nat. Nanotechnol. 2014, 9, 372–377. [Google Scholar] [CrossRef] [PubMed]
- Lu, S.B.; Miao, L.L.; Guo, Z.N.; Qi, X.; Zhao, C.J.; Zhang, H.; Wen, S.C.; Tang, D.Y.; Fan, D.Y. Broadband Nonlinear Optical Response in Multi-Layer Black Phosphorus: An Emerging Infrared and Mid-Infrared Optical Material. Opt. Express 2015, 23, 11183. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Feng, Y.P.; Shen, Z.X. Structural and Electronic Properties of h -BN. Phys. Rev. B 2003, 68, 104102. [Google Scholar] [CrossRef]
- Wang, S.; Wang, X.; Warner, J.H. All Chemical Vapor Deposition Growth of MoS2: H-BN Vertical van Der Waals Heterostructures. ACS Nano 2015, 9, 5246–5254. [Google Scholar] [CrossRef]
- Mukundan, A.; Feng, S.-W.; Weng, Y.-H.; Tsao, Y.-M.; Artemkina, S.B.; Fedorov, V.E.; Lin, Y.-S.; Huang, Y.-C.; Wang, H.-C. Optical and Material Characteristics of MoS2/Cu2O Sensor for Detection of Lung Cancer Cell Types in Hydroplegia. Int. J. Mol. Sci. 2022, 23, 4745. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.; Yan, H.; Brus, L.E.; Heinz, T.F.; Hone, J.; Ryu, S. Anomalous Lattice Vibrations of Single- and Few-Layer MoS2. ACS Nano 2010, 4, 2695–2700. [Google Scholar] [CrossRef]
- Splendiani, A.; Sun, L.; Zhang, Y.; Li, T.; Kim, J.; Chim, C.-Y.; Galli, G.; Wang, F. Emerging Photoluminescence in Monolayer MoS2. Nano Lett. 2010, 10, 1271–1275. [Google Scholar] [CrossRef]
- Chen, Z.; Biscaras, J.; Shukla, A. Optimal Light Harvesting in 2D Semiconductor Heterostructures. 2d Mater. 2017, 4, 025115. [Google Scholar] [CrossRef]
- Lai, C.-L.; Karmakar, R.; Tsao, Y.-M.; Lu, S.-C.; Mukundan, A.; Liu, P.-H.; Wang, H.-C. Fabrication of MoS2 Nanoparticle Dispersions Using Ultrasonic Methods: Synthesis Techniques and Optical Characterization. Opt. Mater. Express 2024, 14, 2003–2016. [Google Scholar] [CrossRef]
- Mukundan, A.; Tsao, Y.-M.; Artemkina, S.B.; Fedorov, V.E.; Wang, H.-C. Growth Mechanism of Periodic-Structured MoS2 by Transmission Electron Microscopy. Nanomaterials 2021, 12, 135. [Google Scholar] [CrossRef]
- Lai, C.-L.; Karmakar, R.; Mukundan, A.; Chen, W.-C.; Wu, I.-C.; Fedorov, V.E.; Feng, S.-W.; Choomjinda, U.; Huang, S.-F.; Wang, H.-C. Lung Cancer Cells Detection by a Photoelectrochemical MoS2 Biosensing Chip. Biomed. Opt. Express 2024, 15, 753. [Google Scholar] [CrossRef]
- Ernandes, C.; Khalil, L.; Almabrouk, H.; Pierucci, D.; Zheng, B.; Avila, J.; Dudin, P.; Chaste, J.; Oehler, F.; Pala, M.; et al. Indirect to Direct Band Gap Crossover in Two-Dimensional WS2(1−x)Se2x Alloys. NPJ 2d Mater. Appl. 2021, 5, 7. [Google Scholar] [CrossRef]
- Li, Y.; Ding, T.; Sang, D.K.; Wu, M.; Li, J.; Wang, C.; Liu, F.; Zhang, H.; Xie, H. Evolutional Carrier Mobility and Power Factor of Two-Dimensional Tin Telluride Due to Quantum Size Effects. J. Mater. Chem. C 2020, 8, 4181–4191. [Google Scholar] [CrossRef]
- Novoselov, K.S.; Mishchenko, A.; Carvalho, A.; Castro Neto, A.H. 2D Materials and van Der Waals Heterostructures. Science 2016, 353, aac9439. [Google Scholar] [CrossRef]
- Kim, Y.; Lee, S.; Song, J.; Ko, K.Y.; Woo, W.J.; Lee, S.W.; Park, M.; Lee, H.; Lee, Z.; Choi, H.; et al. 2D Transition Metal Dichalcogenide Heterostructures for P-and n-Type Photovoltaic Self-Powered Gas Sensor. Adv. Funct. Mater. 2020, 30, 2003360. [Google Scholar] [CrossRef]
- Liu, Y.; Cai, Y.; Zhang, G.; Zhang, Y.; Ang, K. Al-Doped Black Phosphorus p–n Homojunction Diode for High Performance Photovoltaic. Adv. Funct. Mater. 2017, 27, 1604638. [Google Scholar] [CrossRef]
- Yan, F.; Zhao, L.; Patanè, A.; Hu, P.; Wei, X.; Luo, W.; Zhang, D.; Lv, Q.; Feng, Q.; Shen, C.; et al. Fast, Multicolor Photodetection with Graphene-Contacted p-GaSe/ n-InSe van Der Waals Heterostructures. Nanotechnology 2017, 28, 27LT01. [Google Scholar] [CrossRef]
- Zheng, W.; Zheng, B.; Yan, C.; Liu, Y.; Sun, X.; Qi, Z.; Yang, T.; Jiang, Y.; Huang, W.; Fan, P.; et al. Direct Vapor Growth of 2D Vertical Heterostructures with Tunable Band Alignments and Interfacial Charge Transfer Behaviors. Adv. Sci. 2019, 6, 1802204. [Google Scholar] [CrossRef] [PubMed]
- Jariwala, D.; Marks, T.J.; Hersam, M.C. Mixed-Dimensional van Der Waals Heterostructures. Nat. Mater. 2017, 16, 170–181. [Google Scholar] [CrossRef] [PubMed]
- Guo, T.; Song, X.; Wei, P.; Li, J.; Gao, Y.; Cheng, Z.; Zhou, W.; Gu, Y.; Chen, X.; Zeng, H.; et al. High-Gain MoS2/Ta2 NiSe5 Heterojunction Photodetectors with Charge Transfer and Suppressing Dark Current. ACS Appl. Mater. Interfaces 2022, 14, 56384–56394. [Google Scholar] [CrossRef] [PubMed]
- Wu, F.; Tian, H.; Yan, Z.; Ren, J.; Hirtz, T.; Gou, G.; Shen, Y.; Yang, Y.; Ren, T.-L. Gate-Tunable Negative Differential Resistance Behaviors in a hBN-Encapsulated BP-MoS2 Heterojunction. ACS Appl. Mater. Interfaces 2021, 13, 26161–26169. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Biscaras, J.; Shukla, A. A High Performance Graphene/Few-Layer InSe Photo-Detector. Nanoscale 2015, 7, 5981–5986. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z. A High Performance Self-Driven Photodetector Based on a Graphene/InSe/MoS2 Vertical Heterostructure. J. Mater. Chem. C 2018, 6, 12407–12412. [Google Scholar] [CrossRef]
- Lu, X.; Jiang, P.; Bao, X. Phonon-Enhanced Photothermoelectric Effect in SrTiO3 Ultra-Broadband Photodetector. Nat. Commun. 2019, 10, 138. [Google Scholar] [CrossRef] [PubMed]
- Buscema, M.; Island, J.O.; Groenendijk, D.J.; Blanter, S.I.; Steele, G.A.; Van Der Zant, H.S.J.; Castellanos-Gomez, A. Photocurrent Generation with Two-Dimensional van Der Waals Semiconductors. Chem. Soc. Rev. 2015, 44, 3691–3718. [Google Scholar] [CrossRef] [PubMed]
- Yadav, A.; Vashishtha, P.; Goswami, L.; Kumari, P.; Khan, A.; Yadav, R.; Sharma, A.; Prajapat, P.; Gupta, G. Plasmonics Stimulated Enhanced Performance MoS2/WO3 Heterojunction Based Broadband Self-Powered Photodetector. ACS Appl. Opt. Mater. 2024, 2, 784–794. [Google Scholar] [CrossRef]
- Yao, J.D.; Shao, J.M.; Li, S.W.; Bao, D.H.; Yang, G.W. Polarization Dependent Photocurrent in the Bi2Te3 Topological Insulator Film for Multifunctional Photodetection. Sci. Rep. 2015, 5, 14184. [Google Scholar] [CrossRef] [PubMed]
- Xu, K. Silicon electro-optic micro-modulator fabricated in standard CMOS technology as components for all silicon monolithic integrated optoelectronic systems. J. Micromech. Microeng. 2021, 31, 054001. [Google Scholar] [CrossRef]
- Huangfu, G.; Xiao, H.; Guan, L.; Zhong, H.; Hu, C.; Shi, Z.; Guo, Y. Visible or Near-Infrared Light Self-Powered Photodetectors Based on Transparent Ferroelectric Ceramics. ACS Appl. Mater. Interfaces 2020, 12, 33950–33959. [Google Scholar] [CrossRef]
- Deng, Y.; Luo, Z.; Conrad, N.J.; Liu, H.; Gong, Y.; Najmaei, S.; Ajayan, P.M.; Lou, J.; Xu, X.; Ye, P.D. Black Phosphorus–Monolayer MoS2 van Der Waals Heterojunction p–n Diode. ACS Nano 2014, 8, 8292–8299. [Google Scholar] [CrossRef]
- Dai, M.; Wu, Q.; Wang, C.; Liu, X.; Zhang, X.; Cai, Z.; Lin, L.; Gu, X.; Ostrikov, K.; Nan, H.; et al. High Performance Self-Driven Photodetectors Based on MoS2 Schottky Barrier Diode. Adv. Opt. Mater. 2024, 12, 2301900. [Google Scholar] [CrossRef]
- Long, M.; Wang, P.; Fang, H.; Hu, W. Progress, Challenges, and Opportunities for 2D Material Based Photodetectors. Adv. Funct. Mater. 2019, 29, 1803807. [Google Scholar] [CrossRef]
- Hu, C.; Wang, X.; Song, B. High-Performance Position-Sensitive Detector Based on the Lateral Photoelectrical Effect of Two-Dimensional Materials. Light. Sci. Appl. 2020, 9, 88. [Google Scholar] [CrossRef]
- Wang, L.; Huang, L.; Tan, W.C.; Feng, X.; Chen, L.; Ang, K. Pronounced Photovoltaic Effect in Electrically Tunable Lateral Black-Phosphorus Heterojunction Diode. Adv. Elect. Mater. 2018, 4, 1700442. [Google Scholar] [CrossRef]
- Jin, Y.; Keum, D.H.; An, S.; Kim, J.; Lee, H.S.; Lee, Y.H. A Van Der Waals Homojunction: Ideal p–n Diode Behavior in MoSe2. Adv. Mater. 2015, 27, 5534–5540. [Google Scholar] [CrossRef]
- Zhou, C.; Raju, S.; Li, B.; Chan, M.; Chai, Y.; Yang, C.Y. Self-Driven Metal–Semiconductor–Metal WSe2 Photodetector with Asymmetric Contact Geometries. Adv. Funct. Mater. 2018, 28, 1802954. [Google Scholar] [CrossRef]
- Butler, K.T.; Frost, J.M.; Walsh, A. Ferroelectric Materials for Solar Energy Conversion: Photoferroics Revisited. Energy Environ. Sci. 2015, 8, 838–848. [Google Scholar] [CrossRef]
- Akamatsu, T.; Ideue, T.; Zhou, L.; Dong, Y.; Kitamura, S.; Yoshii, M.; Yang, D.; Onga, M.; Nakagawa, Y.; Watanabe, K.; et al. A van Der Waals Interface That Creates In-Plane Polarization and a Spontaneous Photovoltaic Effect. Science 2021, 372, 68–72. [Google Scholar] [CrossRef]
- Song, T.; Anderson, E.; Tu, M.W.-Y.; Seyler, K.; Taniguchi, T.; Watanabe, K.; McGuire, M.A.; Li, X.; Cao, T.; Xiao, D.; et al. Spin Photovoltaic Effect in Magnetic van Der Waals Heterostructures. Sci. Adv. 2021, 7, eabg8094. [Google Scholar] [CrossRef]
- Jiang, J.; Chen, Z.; Hu, Y.; Xiang, Y.; Zhang, L.; Wang, Y.; Wang, G.-C.; Shi, J. Flexo-Photovoltaic Effect in MoS2. Nat. Nanotechnol. 2021, 16, 894–901. [Google Scholar] [CrossRef]
- Park, J.; Ahn, Y.H.; Ruiz-Vargas, C. Imaging of Photocurrent Generation and Collection in Single-Layer Graphene. Nano Lett. 2009, 9, 1742–1746. [Google Scholar] [CrossRef]
- Yu, W.J.; Vu, Q.A.; Oh, H.; Nam, H.G.; Zhou, H.; Cha, S.; Kim, J.-Y.; Carvalho, A.; Jeong, M.; Choi, H.; et al. Unusually Efficient Photocurrent Extraction in Monolayer van Der Waals Heterostructure by Tunnelling through Discretized Barriers. Nat. Commun. 2016, 7, 13278. [Google Scholar] [CrossRef] [PubMed]
- Yuan, H.; Liu, X.; Afshinmanesh, F.; Li, W.; Xu, G.; Sun, J.; Lian, B.; Curto, A.G.; Ye, G.; Hikita, Y.; et al. Polarization-Sensitive Broadband Photodetector Using a Black Phosphorus Vertical p–n Junction. Nat. Nanotechnol. 2015, 10, 707–713. [Google Scholar] [CrossRef]
- Adams, M.J.; Verosky, M.; Zebarjadi, M.; Heremans, J.P. High Switching Ratio Variable-Temperature Solid-State Thermal Switch Based on Thermoelectric Effects. Int. J. Heat Mass Transf. 2019, 134, 114–118. [Google Scholar] [CrossRef]
- Dhanabalan, S.C.; Ponraj, J.S.; Zhang, H.; Bao, Q. Present Perspectives of Broadband Photodetectors Based on Nanobelts, Nanoribbons, Nanosheets and the Emerging 2D Materials. Nanoscale 2016, 8, 6410–6434. [Google Scholar] [PubMed]
- Qi, B.; Wang, J. Open-Circuit Voltage in Organic Solar Cells. J. Mater. Chem. 2012, 22, 24315. [Google Scholar] [CrossRef]
- He, Z.; Zhong, C.; Huang, X.; Wong, W.; Wu, H.; Chen, L.; Su, S.; Cao, Y. Simultaneous Enhancement of Open-Circuit Voltage, Short-Circuit Current Density, and Fill Factor in Polymer Solar Cells. Adv. Mater. 2011, 23, 4636–4643. [Google Scholar] [CrossRef]
- Jao, M.-H.; Liao, H.-C.; Su, W.-F. Achieving a High Fill Factor for Organic Solar Cells. J. Mater. Chem. A 2016, 4, 5784–5801. [Google Scholar]
- Ting, C.-C.; Chao, W.-S. Measuring Temperature Dependence of Photoelectric Conversion Efficiency with Dye-Sensitized Solar Cells. Measurement 2010, 43, 1623–1627. [Google Scholar] [CrossRef]
- Lin, K.; Xing, J.; Quan, L.N.; De Arquer, F.P.G.; Gong, X.; Lu, J.; Xie, L.; Zhao, W.; Zhang, D.; Yan, C.; et al. Perovskite Light-Emitting Diodes with External Quantum Efficiency Exceeding 20 percent. Nature 2018, 562, 245–248. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.J.; Ma, Z.Q.; Tang, X.; Feng, C.B.; Zhao, W.G.; Shi, P.P. Internal Quantum Efficiency for Solar Cells. Sol. Energy 2008, 82, 106–110. [Google Scholar] [CrossRef]
- Bullock, J.; Amani, M.; Cho, J.; Chen, Y.-Z.; Ahn, G.H.; Adinolfi, V.; Shrestha, V.R.; Gao, Y.; Crozier, K.B.; Chueh, Y.-L.; et al. Polarization-Resolved Black Phosphorus/Molybdenum Disulfide Mid-Wave Infrared Photodiodes with High Detectivity at Room Temperature. Nat. Photon. 2018, 12, 601–607. [Google Scholar] [CrossRef]
- Duan, X.; Wang, C.; Shaw, J.C.; Cheng, R.; Chen, Y.; Li, H.; Wu, X.; Tang, Y.; Zhang, Q.; Pan, A.; et al. Lateral Epitaxial Growth of Two-Dimensional Layered Semiconductor Heterojunctions. Nat. Nanotechnol. 2014, 9, 1024–1030. [Google Scholar] [CrossRef]
- Huang, C.; Wu, S.; Sanchez, A.M.; Peters, J.J.P.; Beanland, R.; Ross, J.S.; Rivera, P.; Yao, W.; Cobden, D.H.; Xu, X. Lateral Heterojunctions within Monolayer MoSe2–WSe2 Semiconductors. Nat. Mater. 2014, 13, 1096–1101. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Pu, J.; Huang, J.; Miyauchi, Y.; Matsuda, K.; Takenobu, T.; Li, L. Self-Aligned and Scalable Growth of Monolayer WSe2 –MoS2 Lateral Heterojunctions. Adv. Funct. Mater. 2018, 28, 1706860. [Google Scholar] [CrossRef]
- Xue, Y.; Zhang, Y.; Liu, Y.; Liu, H.; Song, J.; Sophia, J.; Liu, J.; Xu, Z.; Xu, Q.; Wang, Z.; et al. Scalable Production of a Few-Layer MoS 2 /WS 2 Vertical Heterojunction Array and Its Application for Photodetectors. ACS Nano 2016, 10, 573–580. [Google Scholar] [CrossRef]
- Yang, T.; Zheng, B.; Wang, Z.; Xu, T.; Pan, C.; Zou, J.; Zhang, X.; Qi, Z.; Liu, H.; Feng, Y.; et al. Van Der Waals Epitaxial Growth and Optoelectronics of Large-Scale WSe2/SnS2 Vertical Bilayer p–n Junctions. Nat. Commun. 2017, 8, 1906. [Google Scholar] [PubMed]
- Kufer, D.; Nikitskiy, I.; Lasanta, T.; Navickaite, G.; Koppens, F.H.L.; Konstantatos, G. Hybrid 2D–0D MoS2–PbS Quantum Dot Photodetectors. Adv. Mater. 2015, 27, 176–180. [Google Scholar] [CrossRef] [PubMed]
- Mouafo, L.D.N.; Godel, F.; Melinte, G.; Hajjar-Garreau, S.; Majjad, H.; Dlubak, B.; Ersen, O.; Doudin, B.; Simon, L.; Seneor, P.; et al. Anisotropic Magneto-Coulomb Properties of 2D–0D Heterostructure Single Electron Device. Adv. Mater. 2018, 30, 1802478. [Google Scholar] [CrossRef]
- Liu, Q.; Lu, H.; Shi, Z.; Wu, F.; Guo, J.; Deng, K.; Li, L. 2D ZnIn2S4 Nanosheet/1D TiO2 Nanorod Heterostructure Arrays for Improved Photoelectrochemical Water Splitting. ACS Appl. Mater. Interfaces 2014, 6, 17200–17207. [Google Scholar] [CrossRef] [PubMed]
- Ren, X.; Singh, A.K.; Fang, L.; Kanatzidis, M.G.; Tavazza, F.; Davydov, A.V.; Lauhon, L.J. Atom Probe Tomography Analysis of Ag Doping in 2D Layered Material (PbSe)5 (Bi2Se3)3. Nano Lett. 2016, 16, 6064–6069. [Google Scholar] [CrossRef] [PubMed]
- Ji, D.; Wen, Q.; Cao, L.; Kang, Q.; Lin, S.; Zhang, X.; Jiang, L.; Guo, W. Electrokinetically Controlled Asymmetric Ion Transport through 1D/2D Nanofluidic Heterojunctions. Adv. Mater. Technol. 2019, 4, 1800742. [Google Scholar] [CrossRef]
- Cho, S.-Y.; Koh, H.-J.; Yoo, H.-W.; Kim, J.-S.; Jung, H.-T. Tunable Volatile-Organic-Compound Sensor by Using Au Nanoparticle Incorporation on MoS2. ACS Sens. 2017, 2, 183–189. [Google Scholar] [CrossRef] [PubMed]
- Cheng, R.; Li, D.; Zhou, H.; Wang, C.; Yin, A.; Jiang, S.; Liu, Y.; Chen, Y.; Huang, Y.; Duan, X. Electroluminescence and Photocurrent Generation from Atomically Sharp WSe2 /MoS2 Heterojunction p–n Diodes. Nano Lett. 2014, 14, 5590–5597. [Google Scholar] [CrossRef]
- Choi, M.S.; Qu, D.; Lee, D.; Liu, X.; Watanabe, K.; Taniguchi, T.; Yoo, W.J. Lateral MoS2 p–n Junction Formed by Chemical Doping for Use in High-Performance Optoelectronics. ACS Nano 2014, 8, 9332–9340. [Google Scholar] [CrossRef]
- Yu, X.; Zhang, S.; Zeng, H.; Wang, Q.J. Lateral Black Phosphorene P–N Junctions Formed via Chemical Doping for High Performance near-Infrared Photodetector. Nano Energy 2016, 25, 34–41. [Google Scholar] [CrossRef]
- Li, M.-Y.; Shi, Y.; Cheng, C.-C.; Lu, L.-S.; Lin, Y.-C.; Tang, H.-L.; Tsai, M.-L.; Chu, C.-W.; Wei, K.-H.; He, J.-H.; et al. Epitaxial Growth of a Monolayer WSe2-MoS2 Lateral p-n Junction with an Atomically Sharp Interface. Science 2015, 349, 524–528. [Google Scholar] [CrossRef]
- Wu, F.; Zhu, Z.-Q.; Tian, H.; Xing, C.-Y.; Ren, T.; Yan, Z.; Liu, Y.; Xu, Y. Vertical WSe2/BP/MoS2 Heterostructures with Tunneling Behaviors and Photodetection. Appl. Phys. Lett. 2022, 121, 113508. [Google Scholar] [CrossRef]
- Furchi, M.M.; Pospischil, A.; Libisch, F.; Burgdörfer, J.; Mueller, T. Photovoltaic Effect in an Electrically Tunable van Der Waals Heterojunction. Nano Lett. 2014, 14, 4785–4791. [Google Scholar] [CrossRef] [PubMed]
- Buscema, M.; Steele, G.A.; Van Der Zant, H.S.J.; Castellanos-Gomez, A. The Effect of the Substrate on the Raman and Photoluminescence Emission of Single-Layer MoS2. Nano Res. 2014, 7, 561–571. [Google Scholar] [CrossRef]
- Hong, T.; Chamlagain, B.; Wang, T.; Chuang, H.-J.; Zhou, Z.; Xu, Y.-Q. Anisotropic Photocurrent Response at Black Phosphorus–MoS2 p–n Heterojunctions. Nanoscale 2015, 7, 18537–18541. [Google Scholar] [CrossRef]
- Pezeshki, A.; Shokouh, S.H.H.; Nazari, T.; Oh, K.; Im, S. Electric and Photovoltaic Behavior of a Few-Layer α-MoTe2 /MoS2 Dichalcogenide Heterojunction. Adv. Mater. 2016, 28, 3216–3222. [Google Scholar] [CrossRef]
- Zhong, J.; Wu, B.; Madoune, Y.; Wang, Y.; Liu, Z.; Liu, Y. PdSe2/MoSe2 Vertical Heterojunction for Self-Powered Photodetector with High Performance. Nano Res. 2022, 15, 2489–2496. [Google Scholar] [CrossRef]
- Li, H.-M.; Lee, D.; Qu, D.; Liu, X.; Ryu, J.; Seabaugh, A.; Yoo, W.J. Ultimate Thin Vertical p–n Junction Composed of Two-Dimensional Layered Molybdenum Disulfide. Nat. Commun. 2015, 6, 6564. [Google Scholar] [CrossRef] [PubMed]
- Xie, C.; Zeng, L.; Zhang, Z.; Tsang, Y.-H.; Luo, L.; Lee, J.-H. High-Performance Broadband Heterojunction Photodetectors Based on Multilayered PtSe2 Directly Grown on a Si Substrate. Nanoscale 2018, 10, 15285–15293. [Google Scholar]
- Lin, S.; Li, X.; Zhang, S.; Wang, P.; Xu, Z.; Zhong, H.; Wu, Z.; Chen, H. Graphene/CdTe Heterostructure Solar Cell and Its Enhancement with Photo-Induced Doping. Appl. Phys. Lett. 2015, 107, 191106. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, Y.; Lu, Y.; Xu, W.; Mu, H.; Chen, C.; Qiao, H.; Song, J.; Li, S.; Sun, B.; et al. Hybrid Graphene–Perovskite Phototransistors with Ultrahigh Responsivity and Gain. Adv. Opt. Mater. 2015, 3, 1389–1396. [Google Scholar]
- Ye, Y.; Dai, Y.; Dai, L.; Shi, Z.; Liu, N.; Wang, F.; Fu, L.; Peng, R.; Wen, X.; Chen, Z.; et al. High-Performance Single CdS Nanowire (Nanobelt) Schottky Junction Solar Cells with Au/Graphene Schottky Electrodes. ACS Appl. Mater. Interfaces 2010, 2, 3406–3410. [Google Scholar] [PubMed]
- Zhang, L.; Fan, L.; Li, Z.; Shi, E.; Li, X.; Li, H.; Ji, C.; Jia, Y.; Wei, J.; Wang, K.; et al. Graphene-CdSe Nanobelt Solar Cells with Tunable Configurations. Nano Res. 2011, 4, 891–900. [Google Scholar] [CrossRef]
- Gan, X.; Shiue, R.-J.; Gao, Y.; Meric, I.; Heinz, T.F.; Shepard, K.; Hone, J.; Assefa, S.; Englund, D. Chip-Integrated Ultrafast Graphene Photodetector with High Responsivity. Nat. Photon. 2013, 7, 883–887. [Google Scholar] [CrossRef]
- Furchi, M.; Urich, A.; Pospischil, A.; Lilley, G.; Unterrainer, K.; Detz, H.; Klang, P.; Andrews, A.M.; Schrenk, W.; Strasser, G.; et al. Microcavity-Integrated Graphene Photodetector. Nano Lett. 2012, 12, 2773–2777. [Google Scholar] [CrossRef] [PubMed]
- Tang, L.; Kocabas, S.E.; Latif, S.; Okyay, A.K.; Ly-Gagnon, D.-S.; Saraswat, K.C.; Miller, D.A.B. Nanometre-Scale Germanium Photodetector Enhanced by a near-Infrared Dipole Antenna. Nat. Photon. 2008, 2, 226–229. [Google Scholar] [CrossRef]
- Qasim, M.; Sulaman, M.; Bukhtiar, A.; Deng, B.; Jalal, A.; Sandali, Y.; Shah, N.H.; Li, C.; Dastgeer, G.; Bin, H. High-Performance Self-Powered Broadband Schottky Junction Photodetector Based on Graphene-Silicon van Der Waals Heterostructure. Energy Technol. 2023, 11, 2300492. [Google Scholar] [CrossRef]
- Eastman, D.E. Photoelectric Work Functions of Transition, Rare-Earth, and Noble Metals. Phys. Rev. B 1970, 2, 1–2. [Google Scholar] [CrossRef]
- Lince, J.R.; Carré, D.J.; Fleischauer, P.D. Schottky-Barrier Formation on a Covalent Semiconductor without Fermi-Level Pinning: The Metal- MoS2 (0001) Interface. Phys. Rev. B 1987, 36, 1647–1656. [Google Scholar] [CrossRef] [PubMed]
- Fontana, M.; Deppe, T.; Boyd, A.K.; Rinzan, M.; Liu, A.Y.; Paranjape, M.; Barbara, P. Electron-Hole Transport and Photovoltaic Effect in Gated MoS2 Schottky Junctions. Sci. Rep. 2013, 3, 1634. [Google Scholar]
- Dai, M.; Chen, H.; Feng, R.; Feng, W.; Hu, Y.; Yang, H.; Liu, G.; Chen, X.; Zhang, J.; Xu, C.-Y.; et al. A Dual-Band Multilayer InSe Self-Powered Photodetector with High Performance Induced by Surface Plasmon Resonance and Asymmetric Schottky Junction. ACS Nano 2018, 12, 8739–8747. [Google Scholar] [CrossRef]
- Gong, F.; Fang, H.; Wang, P.; Su, M.; Li, Q.; Ho, J.C.; Chen, X.; Lu, W.; Liao, L.; Wang, J.; et al. Visible to Near-Infrared Photodetectors Based on MoS2 Vertical Schottky Junctions. Nanotechnology 2017, 28, 484002. [Google Scholar] [CrossRef] [PubMed]
- Luo, M.; Wu, F.; Long, M.; Chen, X. WSe2 /Au Vertical Schottky Junction Photodetector with Low Dark Current and Fast Photoresponse. Nanotechnology 2018, 29, 444001. [Google Scholar] [CrossRef]
- Periyanagounder, D.; Gnanasekar, P.; Varadhan, P.; He, J.-H.; Kulandaivel, J. High Performance, Self-Powered Photodetectors Based on a Graphene/Silicon Schottky Junction Diode. J. Mater. Chem. C 2018, 6, 9545–9551. [Google Scholar] [CrossRef]
- Luo, Y.; Yan, X.; Zhang, J.; Li, B.; Wu, Y.; Lu, Q.; Jin, C.; Zhang, X.; Ren, X. A Graphene/Single GaAs Nanowire Schottky Junction Photovoltaic Device. Nanoscale 2018, 10, 9212–9217. [Google Scholar] [CrossRef]
- Xiang, D.; Han, C.; Hu, Z.; Lei, B.; Liu, Y.; Wang, L.; Hu, W.P.; Chen, W. Surface Transfer Doping-Induced, High-Performance Graphene/Silicon Schottky Junction-Based, Self-Powered Photodetector. Small 2015, 37, 4829–4836. [Google Scholar] [CrossRef] [PubMed]
- Yu, T.; Wang, F.; Xu, Y.; Ma, L.; Pi, X.; Yang, D. Graphene Coupled with Silicon Quantum Dots for High-Performance Bulk-Silicon-Based Schottky-Junction Photodetectors. Adv. Mater. 2016, 28, 4912–4919. [Google Scholar]
- Wu, J.; Yang, Z.; Qiu, C.; Zhang, Y.; Wu, Z.; Yang, J.; Lu, Y.; Li, J.; Yang, D.; Hao, R.; et al. Enhanced Performance of a Graphene/GaAs Self-Driven near-Infrared Photodetector with Upconversion Nanoparticles. Nanoscale 2018, 10, 8023–8030. [Google Scholar] [CrossRef]
- Li, H.; Bowen, C.R.; Yang, Y. Scavenging Energy Sources Using Ferroelectric Materials. Adv. Funct. Mater. 2021, 31, 2100905. [Google Scholar] [CrossRef]
- Paillard, C.; Bai, X.; Infante, I.C.; Guennou, M.; Geneste, G.; Alexe, M.; Kreisel, J.; Dkhil, B. Photovoltaics with Ferroelectrics: Current Status and Beyond. Adv. Mater. 2016, 28, 5153–5168. [Google Scholar]
- Han, X.; Ji, Y.; Yang, Y. Ferroelectric Photovoltaic Materials and Devices. Adv. Funct. Mater. 2022, 32, 2109625. [Google Scholar] [CrossRef]
- Nayak, P.K.; Mahesh, S.; Snaith, H.J.; Cahen, D. Photovoltaic Solar Cell Technologies: Analysing the State of the Art. Nat. Rev. Mater. 2019, 4, 269–285. [Google Scholar] [CrossRef]
- Yang, S.Y.; Seidel, J.; Byrnes, S.J.; Shafer, P.; Yang, C.-H.; Rossell, M.D.; Yu, P.; Chu, Y.-H.; Scott, J.F.; Ager, J.W.; et al. Above-Bandgap Voltages from Ferroelectric Photovoltaic Devices. Nat. Nanotechnol. 2010, 5, 143–147. [Google Scholar] [CrossRef] [PubMed]
- Hatada, H.; Nakamura, M.; Sotome, M.; Kaneko, Y.; Ogawa, N.; Morimoto, T.; Tokura, Y.; Kawasaki, M. Defect Tolerant Zero-Bias Topological Photocurrent in a Ferroelectric Semiconductor. Proc. Natl. Acad. Sci. USA 2020, 117, 20411–20415. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.J.; Ideue, T.; Onga, M.; Qin, F.; Suzuki, R.; Zak, A.; Tenne, R.; Smet, J.H.; Iwasa, Y. Enhanced Intrinsic Photovoltaic Effect in Tungsten Disulfide Nanotubes. Nature 2019, 570, 349–353. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Fu, J.; Mao, X.; Chen, C.; Liu, H.; Gong, M.; Zeng, H. Enhanced Bulk Photovoltaic Effect in Two-Dimensional Ferroelectric CuInP2S6. Nat. Commun. 2021, 12, 5896. [Google Scholar] [CrossRef] [PubMed]
- Yang, D.; Wu, J.; Zhou, B.T.; Liang, J.; Ideue, T.; Siu, T.; Awan, K.M.; Watanabe, K.; Taniguchi, T.; Iwasa, Y.; et al. Spontaneous-Polarization-Induced Photovoltaic Effect in Rhombohedrally Stacked MoS2. Nat. Photon. 2022, 16, 469–474. [Google Scholar] [CrossRef]
- Zhang, Y.; Holder, T.; Ishizuka, H.; De Juan, F.; Nagaosa, N.; Felser, C.; Yan, B. Switchable Magnetic Bulk Photovoltaic Effect in the Two-Dimensional Magnet CrI3. Nat. Commun. 2019, 10, 3783. [Google Scholar] [CrossRef]
- Song, T.; Cai, X.; Tu, M.W.-Y.; Zhang, X.; Huang, B.; Wilson, N.P.; Seyler, K.L.; Zhu, L.; Taniguchi, T.; Watanabe, K.; et al. Giant Tunneling Magnetoresistance in Spin-Filter van Der Waals Heterostructures. Science 2018, 360, 1214–1218. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.-M.; Kim, D.J.; Alexe, M. Flexo-Photovoltaic Effect. Science 2018, 360, 904–907. [Google Scholar] [CrossRef]
- Qiu, Q.; Huang, Z. Photodetectors of 2D Materials from Ultraviolet to Terahertz Waves. Adv. Mater. 2021, 33, 2008126. [Google Scholar] [CrossRef]
- Tielrooij, K.J.; Piatkowski, L.; Massicotte, M.; Woessner, A.; Ma, Q.; Lee, Y.; Myhro, K.S.; Lau, C.N.; Jarillo-Herrero, P.; Van Hulst, N.F.; et al. Generation of Photovoltage in Graphene on a Femtosecond Timescale through Efficient Carrier Heating. Nat. Nanotechnol. 2015, 10, 437–443. [Google Scholar] [CrossRef]
- Gabor, N.M.; Song, J.C.W.; Ma, Q.; Nair, N.L.; Taychatanapat, T.; Watanabe, K.; Taniguchi, T.; Levitov, L.S.; Jarillo-Herrero, P. Hot Carrier–Assisted Intrinsic Photoresponse in Graphene. Science 2011, 334, 648–652. [Google Scholar] [CrossRef]
- Wei, P.; Bao, W.; Pu, Y.; Lau, C.N.; Shi, J. Anomalous Thermoelectric Transport of Dirac Particles in Graphene. Phys. Rev. Lett. 2009, 102, 166808. [Google Scholar] [CrossRef] [PubMed]
- Cai, W.; Moore, A.L.; Zhu, Y.; Li, X.; Chen, S.; Shi, L.; Ruoff, R.S. Thermal Transport in Suspended and Supported Monolayer Graphene Grown by Chemical Vapor Deposition. Nano Lett. 2010, 10, 1645–1651. [Google Scholar] [CrossRef]
- Basko, D.M.; Aleiner, I.L. Interplay of Coulomb and Electron-Phonon Interactions in Graphene. Phys. Rev. B 2008, 77, 041409. [Google Scholar] [CrossRef]
- Xu, X.; Gabor, N.M.; Alden, J.S.; Van Der Zande, A.M.; McEuen, P.L. Photo-Thermoelectric Effect at a Graphene Interface Junction. Nano Lett. 2010, 10, 562–566. [Google Scholar] [CrossRef] [PubMed]
- Mak, K.F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T.F. Atomically Thin MoS2: A New Direct-Gap Semiconductor. Phys. Rev. Lett. 2010, 105, 136805. [Google Scholar] [CrossRef]
- Wu, J.; Schmidt, H.; Amara, K.K.; Xu, X.; Eda, G.; Özyilmaz, B. Large Thermoelectricity via Variable Range Hopping in Chemical Vapor Deposition Grown Single-Layer MoS2. Nano Lett. 2014, 14, 2730–2734. [Google Scholar] [CrossRef] [PubMed]
- Wi, S.; Kim, H.; Chen, M.; Nam, H.; Guo, L.J.; Meyhofer, E.; Liang, X. Enhancement of Photovoltaic Response in Multilayer MoS 2 Induced by Plasma Doping. ACS Nano 2014, 8, 5270–5281. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, H.; Wang, L.; Wang, H.; Xie, X.; Zhang, S.-L.; Liu, R.; Qiu, Z.-J. Photothermoelectric and Photovoltaic Effects Both Present in MoS2. Sci. Rep. 2015, 5, 7938. [Google Scholar] [CrossRef] [PubMed]
- Buscema, M.; Barkelid, M.; Zwiller, V.; Van Der Zant, H.S.J.; Steele, G.A.; Castellanos-Gomez, A. Large and Tunable Photothermoelectric Effect in Single-Layer MoS2. Nano Lett. 2013, 13, 358–363. [Google Scholar] [CrossRef]
- Das, S.; Appenzeller, J. WSe2 Field Effect Transistors with Enhanced Ambipolar Characteristics. Appl. Phys. Lett. 2013, 103, 103501. [Google Scholar] [CrossRef]
- Groenendijk, D.J.; Buscema, M.; Steele, G.A.; Michaelis De Vasconcellos, S.; Bratschitsch, R.; Van Der Zant, H.S.J.; Castellanos-Gomez, A. Photovoltaic and Photothermoelectric Effect in a Double-Gated WSe2 Device. Nano Lett. 2014, 14, 5846–5852. [Google Scholar] [CrossRef]
- Low, T.; Engel, M.; Steiner, M.; Avouris, P. Origin of Photoresponse in Black Phosphorus Phototransistors. Phys. Rev. B 2014, 90, 081408. [Google Scholar] [CrossRef]
- Engel, M.; Steiner, M.; Avouris, P. Black Phosphorus Photodetector for Multispectral, High-Resolution Imaging. Nano Lett. 2014, 14, 6414–6417. [Google Scholar] [CrossRef]
- Lai, J.; Liu, Y.; Ma, J.; Zhuo, X.; Peng, Y.; Lu, W.; Liu, Z.; Chen, J.; Sun, D. Broadband Anisotropic Photoresponse of the “Hydrogen Atom” Version Type-II Weyl Semimetal Candidate TaIrTe4. ACS Nano 2018, 12, 4055–4061. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Zhang, H.; Li, Y.; Yin, S.; Kan, X.; Wei, W.; Du, H.; Ge, B.; An, C.; Tian, M.; et al. Ultra-Broadband, Fast, and Polarization-Sensitive Photoresponse of Low-Symmetry 2D NdSb2. Nano Res. 2022, 15, 5469–5475. [Google Scholar] [CrossRef]
- Li, G.; Yin, S.; Tan, C.; Chen, L.; Yu, M.; Li, L.; Yan, F. Fast Photothermoelectric Response in CVD-Grown PdSe2 Photodetectors with In-Plane Anisotropy. Adv. Funct. Mater. 2021, 31, 2104787. [Google Scholar] [CrossRef]
- Yang, S.; Wang, C.; Ataca, C.; Li, Y.; Chen, H.; Cai, H.; Suslu, A.; Grossman, J.C.; Jiang, C.; Liu, Q.; et al. Self-Driven Photodetector and Ambipolar Transistor in Atomically Thin GaTe-MoS2 p–n vdW Heterostructure. ACS Appl. Mater. Interfaces 2016, 8, 2533–2539. [Google Scholar] [CrossRef]
- Yu, X.; Shen, Y.; Liu, T.; Wu, T.; Jie Wang, Q. Photocurrent Generation in Lateral Graphene P-n Junction Created by Electron-Beam Irradiation. Sci. Rep. 2015, 5, 12014. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Zhang, Q.; Zhou, X.; Li, L.; Su, J.; Wang, F.; Zhai, T. Self-Powered Photovoltaic Photodetector Established on Lateral Monolayer MoS2-WS2 Heterostructures. Nano Energy 2018, 51, 45–53. [Google Scholar] [CrossRef]
- Liu, X.; Yang, X.; Gao, G.; Yang, Z.; Liu, H.; Li, Q.; Lou, Z.; Shen, G.; Liao, L.; Pan, C.; et al. Enhancing Photoresponsivity of Self-Aligned MoS 2 Field-Effect Transistors by Piezo-Phototronic Effect from GaN Nanowires. ACS Nano 2016, 10, 7451–7457. [Google Scholar] [CrossRef]
- Li, G.; Liu, L.; Wu, G.; Chen, W.; Qin, S.; Wang, Y.; Zhang, T. Self-Powered UV–Near Infrared Photodetector Based on Reduced Graphene Oxide/n-Si Vertical Heterojunction. Small 2016, 12, 5019–5026. [Google Scholar] [CrossRef] [PubMed]
- Aldalbahi, A.; Rivera, M.; Rahaman, M.; Zhou, A.; Mohammed Alzuraiqi, W.; Feng, P. High-Performance and Self-Powered Deep UV Photodetectors Based on High Quality 2D Boron Nitride Nanosheets. Nanomaterials 2017, 7, 454. [Google Scholar] [CrossRef] [PubMed]
- Duan, L.; He, F.; Tian, Y.; Sun, B.; Fan, J.; Yu, X.; Ni, L.; Zhang, Y.; Chen, Y.; Zhang, W. Fabrication of Self-Powered Fast-Response Ultraviolet Photodetectors Based on Graphene/ZnO:Al Nanorod-Array-Film Structure with Stable Schottky Barrier. ACS Appl. Mater. Interfaces 2017, 9, 8161–8168. [Google Scholar] [CrossRef] [PubMed]
- Zeng, L.-H.; Wang, M.-Z.; Hu, H.; Nie, B.; Yu, Y.-Q.; Wu, C.-Y.; Wang, L.; Hu, J.-G.; Xie, C.; Liang, F.-X.; et al. Monolayer Graphene/Germanium Schottky Junction As High-Performance Self-Driven Infrared Light Photodetector. ACS Appl. Mater. Interfaces 2013, 5, 9362–9366. [Google Scholar] [CrossRef] [PubMed]
- Lv, P.; Zhang, X.; Zhang, X.; Deng, W.; Jie, J. High-Sensitivity and Fast-Response Graphene/Crystalline Silicon Schottky Junction-Based Near-IR Photodetectors. IEEE Electron Device Lett. 2013, 34, 1337–1339. [Google Scholar] [CrossRef]
- Li, L.; Liu, X.; Li, Y.; Xu, Z.; Wu, Z.; Han, S.; Tao, K.; Hong, M.; Luo, J.; Sun, Z. Two-Dimensional Hybrid Perovskite-Type Ferroelectric for Highly Polarization-Sensitive Shortwave Photodetection. J. Am. Chem. Soc. 2019, 141, 2623–2629. [Google Scholar] [CrossRef] [PubMed]
- Aftab, S.; Shehzad, M.A.; Salman Ajmal, H.M.; Kabir, F.; Iqbal, M.Z.; Al-Kahtani, A.A. Bulk Photovoltaic Effect in Two-Dimensional Distorted MoTe2. ACS Nano 2023, 17, 17884–17896. [Google Scholar] [CrossRef]
- Peng, Y.; Liu, X.; Sun, Z.; Ji, C.; Li, L.; Wu, Z.; Wang, S.; Yao, Y.; Hong, M.; Luo, J. Exploiting the Bulk Photovoltaic Effect in a 2D Trilayered Hybrid Ferroelectric for Highly Sensitive Polarized Light Detection. Angew. Chem. Int. Ed. 2020, 59, 3933–3937. [Google Scholar] [CrossRef]
- Li, D.; Qin, J.-K.; Zhu, B.; Yue, L.-Q.; Huang, P.-Y.; Zhu, C.; Zhou, F.; Zhen, L.; Xu, C.-Y. Intercorrelated Ferroelectricity and Bulk Photovoltaic Effect in Two-Dimensional Sn2P2S6 Semiconductor for Polarization-Sensitive Photodetection. ACS Nano 2024, 18, 9636–9644. [Google Scholar] [CrossRef] [PubMed]
- Cai, X.; Sushkov, A.B.; Suess, R.J.; Jadidi, M.M.; Jenkins, G.S.; Nyakiti, L.O.; Myers-Ward, R.L.; Li, S.; Yan, J.; Gaskill, D.K.; et al. Sensitive Room-Temperature Terahertz Detection via the Photothermoelectric Effect in Graphene. Nat. Nanotechnol. 2014, 9, 814–819. [Google Scholar] [CrossRef] [PubMed]
- Hsu, A.L.; Herring, P.K.; Gabor, N.M.; Ha, S.; Shin, Y.C.; Song, Y.; Chin, M.; Dubey, M.; Chandrakasan, A.P.; Kong, J.; et al. Graphene-Based Thermopile for Thermal Imaging Applications. Nano Lett. 2015, 15, 7211–7216. [Google Scholar] [CrossRef] [PubMed]
- Badioli, M.; Woessner, A.; Tielrooij, K.J.; Nanot, S.; Navickaite, G.; Stauber, T.; García De Abajo, F.J.; Koppens, F.H.L. Phonon-Mediated Mid-Infrared Photoresponse of Graphene. Nano Lett. 2014, 14, 6374–6381. [Google Scholar] [CrossRef] [PubMed]
- Tong, J.; Muthee, M.; Chen, S.-Y.; Yngvesson, S.K.; Yan, J. Antenna Enhanced Graphene THz Emitter and Detector. Nano Lett. 2015, 15, 5295–5301. [Google Scholar] [CrossRef] [PubMed]
- Viti, L.; Hu, J.; Coquillat, D.; Knap, W.; Tredicucci, A.; Politano, A.; Vitiello, M.S. Black Phosphorus Terahertz Photodetectors. Adv. Mater. 2015, 27, 5567–5572. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Wang, X.; Nanot, S.; Cong, K.; Jiang, Q.; Kane, A.A.; Goldsmith, J.E.M.; Hauge, R.H.; Léonard, F.; Kono, J. Photothermoelectric p–n Junction Photodetector with Intrinsic Broadband Polarimetry Based on Macroscopic Carbon Nanotube Films. ACS Nano 2013, 7, 7271–7277. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Fujimura, N.; Lloyd, J.M.; Erickson, K.J.; Talin, A.A.; Zhang, Q.; Gao, W.; Jiang, Q.; Kawano, Y.; Hauge, R.H.; et al. Carbon Nanotube Terahertz Detector. Nano Lett. 2014, 14, 3953–3958. [Google Scholar] [CrossRef] [PubMed]
- Léonard, F.; Song, E.; Li, Q.; Swartzentruber, B.; Martinez, J.A.; Wang, G.T. Simultaneous Thermoelectric and Optoelectronic Characterization of Individual Nanowires. Nano Lett. 2015, 15, 8129–8135. [Google Scholar] [CrossRef]
- Lai, Y.; Tsai, C.; Chang, C.; Huang, C.; Hsiao, V.K.S.; Su, Y.O. Photothermoelectric Effects in Nanoporous Silicon. Adv. Mater. 2016, 28, 2644–2648. [Google Scholar] [CrossRef]
- Yi, S.-G.; Kim, S.H.; Park, S.; Oh, D.; Choi, H.Y.; Lee, N.; Choi, Y.J.; Yoo, K.-H. Mo1– xWxSe2-Based Schottky Junction Photovoltaic Cells. ACS Appl. Mater. Interfaces 2016, 8, 33811–33820. [Google Scholar] [CrossRef] [PubMed]
- Baugher, B.W.H.; Churchill, H.O.H.; Yang, Y.; Jarillo-Herrero, P. Optoelectronic Devices Based on Electrically Tunable p–n Diodes in a Monolayer Dichalcogenide. Nat. Nanotechnol. 2014, 9, 262–267. [Google Scholar] [CrossRef] [PubMed]
- Buscema, M.; Groenendijk, D.J.; Steele, G.A.; Van Der Zant, H.S.J.; Castellanos-Gomez, A. Photovoltaic Effect in Few-Layer Black Phosphorus PN Junctions Defined by Local Electrostatic Gating. Nat. Commun. 2014, 5, 4651. [Google Scholar] [CrossRef]
- Memaran, S.; Pradhan, N.R.; Lu, Z.; Rhodes, D.; Ludwig, J.; Zhou, Q.; Ogunsolu, O.; Ajayan, P.M.; Smirnov, D.; Fernández-Domínguez, A.I.; et al. Pronounced Photovoltaic Response from Multilayered Transition-Metal Dichalcogenides PN-Junctions. Nano Lett. 2015, 15, 7532–7538. [Google Scholar] [CrossRef] [PubMed]
- Tsai, M.-L.; Su, S.-H.; Chang, J.-K.; Tsai, D.-S.; Chen, C.-H.; Wu, C.-I.; Li, L.-J.; Chen, L.-J.; He, J.-H. Monolayer MoS2 Heterojunction Solar Cells. ACS Nano 2014, 8, 8317–8322. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.; Li, X.; Wang, P.; Xu, Z.; Zhang, S.; Zhong, H.; Wu, Z.; Xu, W.; Chen, H. Interface Designed MoS2/GaAs Heterostructure Solar Cell with Sandwich Stacked Hexagonal Boron Nitride. Sci. Rep. 2015, 5, 15103. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.; Wang, P.; Li, X.; Wu, Z.; Xu, Z.; Zhang, S.; Xu, W. Gate Tunable Monolayer MoS2/InP Heterostructure Solar Cells. Appl. Phys. Lett. 2015, 107, 153904. [Google Scholar] [CrossRef]
- Yu, W.J.; Liu, Y.; Zhou, H.; Yin, A.; Li, Z.; Huang, Y.; Duan, X. Highly Efficient Gate-Tunable Photocurrent Generation in Vertical Heterostructures of Layered Materials. Nat. Nanotechnol. 2013, 8, 952–958. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Liu, H.; Chen, X.; Chu, G.; Chu, S.; Zhang, H. Wafer-Size and Single-Crystal MoSe2 Atomically Thin Films Grown on GaN Substrate for Light Emission and Harvesting. ACS Appl. Mater. Interfaces 2016, 8, 20267–20273. [Google Scholar] [CrossRef]
- Wang, P.; Lin, S.; Ding, G.; Li, X.; Wu, Z.; Zhang, S.; Xu, Z.; Xu, S.; Lu, Y.; Xu, W.; et al. Enhanced Monolayer MoS2/InP Heterostructure Solar Cells by Graphene Quantum Dots. Appl. Phys. Lett. 2016, 108, 163901. [Google Scholar] [CrossRef]
- Lin, S.; Wu, Z.; Li, X.; Zhang, Y.; Zhang, S.; Wang, P.; Panneerselvam, R.; Li, J. Stable 16.2% Efficient Surface Plasmon-Enhanced Graphene/GaAs Heterostructure Solar Cell. Adv. Energy Mater. 2016, 6, 1600822. [Google Scholar] [CrossRef]
- Hao, L.Z.; Gao, W.; Liu, Y.J.; Han, Z.D.; Xue, Q.Z.; Guo, W.Y.; Zhu, J.; Li, Y.R. High-Performance n-MoS2 /i-SiO2 /p-Si Heterojunction Solar Cells. Nanoscale 2015, 7, 8304–8308. [Google Scholar] [CrossRef]
- Gehring, P.; Urcuyo, R.; Duong, D.L.; Burghard, M.; Kern, K. Thin-Layer Black Phosphorus/GaAs Heterojunction p-n Diodes. Appl. Phys. Lett. 2015, 106, 233110. [Google Scholar] [CrossRef]
- Ji, W.; Yao, K.; Liang, Y.C. Bulk Photovoltaic Effect at Visible Wavelength in Epitaxial Ferroelectric BiFeO3 Thin Films. Adv. Mater. 2010, 22, 1763–1766. [Google Scholar] [CrossRef] [PubMed]
- Zenkevich, A.; Matveyev, Y.; Maksimova, K.; Gaynutdinov, R.; Tolstikhina, A.; Fridkin, V. Giant Bulk Photovoltaic Effect in Thin Ferroelectric BaTiO3 Films. Phys. Rev. B 2014, 90, 161409. [Google Scholar] [CrossRef]
- Grinberg, I.; West, D.V.; Torres, M.; Gou, G.; Stein, D.M.; Wu, L.; Chen, G.; Gallo, E.M.; Akbashev, A.R.; Davies, P.K.; et al. Perovskite Oxides for Visible-Light-Absorbing Ferroelectric and Photovoltaic Materials. Nature 2013, 503, 509–512. [Google Scholar] [CrossRef] [PubMed]
- Pal, S.; Swain, A.B.; Biswas, P.P.; Murali, D.; Pal, A.; Nanda, B.R.K.; Murugavel, P. Giant Photovoltaic Response in Band Engineered Ferroelectric Perovskite. Sci. Rep. 2018, 8, 8005. [Google Scholar] [CrossRef]
- Peng, L.; Xie, W. Theoretical and Experimental Investigations on the Bulk Photovoltaic Effect in Lead-Free Perovskites MASnI3 and FASnI3. RSC Adv. 2020, 10, 14679–14688. [Google Scholar] [CrossRef]
Mechanism | Device | Working Wavelength | Ion/Ioff | Responsivity | Rise Time | Refs. |
---|---|---|---|---|---|---|
PV | p–GaTe/n–MoS2 | 633 nm | 340 | 1.36 A W−1 | 10 ms | [141] |
PV | p–WS2/n–MoS2 | 514 nm | - | 44 mA W−1 | 100 μs | [79] |
PV | p–PtSe2/n–Si | 808 nm | 1.5 × 105 | 520 mA W−1 | 13.9 μs | [90] |
PV | p–GaSe/n–InSe | 470 nm | - | 21 mA W−1 | 1.85 μs | [32] |
PV | Graphene p–n homojunction | 633 nm | - | 5 mA W−1 | 0.9 ms | [142] |
PV | p–MoS2/n–WS2 | 532 nm | 102 | 4.36 mA W−1 | 4 ms | [143] |
PV | p–GaN/n–MoS2 | 550 nm | 105 | 443.3 A W−1 | 5 ms | [144] |
PV | rGO/n–Si | 600 nm | 104 | 1.52 A W−1 | 2 ms | [145] |
PV | Au–InSe/Au–In | 365 nm | 103 | 369 mA W−1 | 23 ms | [102] |
PV | Au–BN/plasma Schottky contact | 250 nm | 350 | 296 mA W−1 | 400 ms | [146] |
PV | Au–MoS2–ITO | 637 nm | 106 | 1 A W−1 | 64 μs | [103] |
PV | Au–WSe2–ITO | 637 nm | 104 | 0.1 A W−1 | 50 μs | [104] |
PV | Graphene/ZnO:Al | 380 nm | 102 | 39 mA W−1 | 37 μs | [147] |
PV | Graphene/germanium | 1550 nm | 2 × 104 | 51.8 mA W−1 | 23 μs | [148] |
PV | Graphene/Si | 850 nm | 106 | 29 mA W−1 | 93 μs | [149] |
PV | Graphene/GaAs | 532 nm | - | 231 mA W−1 | 85 μs | [106] |
PV | Si–QD/graphene/Si | 860 nm | - | 495 mA W−1 | 25ns | [108] |
BPVE | [CH3(CH2)3NH3]2(CH3NH3) Pb2Br7 | 405 nm | 1.2 × 103 | - | 20 μs | [150] |
BPVE | Gr/ MoS2/Gr | 633 nm | - | 68 mA W−1 | - | [57] |
BPVE | Distorted MoTe2 | 400 nm | - | 98 mA W−1 | - | [151] |
BPVE | (allyammonium)2(ethylammonium)2 | |||||
Pb3Br10 | 405 nm | 104 | 50 μA W−1 | - | [152] | |
BPVE | Sn2P2S6 | 405 nm | 103 | 3 mA W−1 | 230 ms | [153] |
PTE | Graphene (asymmetric electrodes) | 1.54, 119 μm | - | 0.25, 10V W−1 | 110 ps | [154] |
PTE | Graphene/SiN | 10.6 μm | - | 7–9 V W−1 | 23 ms | [155] |
PTE | Graphene/SiO2 | 6.4–10 μm | - | 78 nA W−1 | - | [156] |
PTE | Graphene (antenna–assisted) | 157 μm | - | 4.9 V W−1 | - | [157] |
PTE | Black phosphorus | 400–1700 nm | - | 0.35 mA W−1 | 40 μs | [58] |
PTE | BP (antenna–assisted) | 1.006 mm | - | 0.15 V W−1 | - | [158] |
PTE | Carbon nanotube film | 660 nm | - | 45 mA W−1 | 80 μs | [159] |
PTE | Carbon nanotube film | 215, 119, 96 μm | - | 2.5, 1, 7 V W−1 | - | [160] |
PTE | GaN/AlGaN/GaN nanowire | 325 nm | - | - | <30 ms | [161] |
PTE | Nanoporous silicon | 660 nm | - | - | 5 s | [162] |
Mechanism | Device | Voc[V] | Isc or Jsc | FF | PCE | QE (%) | Refs. |
---|---|---|---|---|---|---|---|
PV | Mo0.5W0.5Se2 | 0.44 | 92 mA cm−2 | 0.32 | 5–16 | - | [163] |
PV | WSe2 | 0.65 | 1 nA | - | 0.005 | 0.2 (EQE) | [164] |
PV | BP (6 nm) | 0.05 | 1 nA | 0.3 | <0.001 | 0.1 (EQE) | [165] |
PV | MoSe2 | 0.36 | 0.6 nA | 0.7 | 14 | - | [166] |
PV | BP (8.5 nm) | 0.14 | 3 nA | 0.38 | 0.66 | - | [31] |
PV | BP (2.8 nm) | 0.44 | 180 nA | 0.75 | 0.75 | - | [81] |
PV | WS2–WSe2 | 0.47 | 1.2 nA | - | 0.9 | 43 (IQE) | [68] |
PV | WSe2–MoS2 | 0.22 | 0.008 nA | 0.39 | 0.2 | - | [82] |
PV | MoS2 | 0.28 | 20.9 mA cm−2 | 0.47 | 2.8 | 37–78 (EQE) | [131] |
PV | BP/MoS2 | 0.3 | 20 nA | 0.5 | 0.57 | 0.3 (EQE) | [45] |
PV | ML WSe2/FL MoS2 | 0.27 | 200 nA | 0.4 | 12 | - | [79] |
PV | ML WSe2/MoS2 | 0.53 | 0.005 nA | - | 0.2 | 1.5 (EQE) | [84] |
PV | MoS2/Si | 0.41 | 22.36 mA cm−2 | 0.57 | 5.23 | - | [167] |
PV | MoS2/h–BN/GaAs | 0.76 | 21.1 mA cm−2 | - | 9.03 | 56.3 (EQE) | [168] |
PV | MoS2/InP | 0.47 | 27.4 A cm−2 | 0.55 | 7.1 | - | [169] |
PV | Gr/MoS2/Gr | 0.28 | 1700 nA | - | - | 85 (IQE) | [170] |
PV | MoSe2/GaN | 0.62 | 6.05 mA cm−2 | 0.35 | 1.29 | - | [171] |
PV | GQDs/MoS2/InP | 0.27 | 24.2 mA cm−2 | 0.53 | 4.1 | - | [172] |
PV | Gr/GaAs | 0.81 | 24.9 mA cm−2 | 0.69 | 16.2 | - | [173] |
PV | MoS2/SiO2/p–Si | 0.3 | 5.5 mA cm−2 | 0.42 | 4.5 | - | [174] |
PV | BP/GaAs | 0.6 | 1250 nA | 0.3 | 0.24 | 31 (EQE) | [175] |
BPVE | Nanotube WS2 | 0.35 | 15 nA | - | - | 1.3 (EQE) | [116] |
BPVE | CuInP2S6 | 0.8 | 10 mA cm−2 | 25 | 0.02 | - | [117] |
BPVE | BiFeO3 | 0.27 | 3.8 × 10−7 A cm−2 | 25 | 0.0034 | - | [176] |
BPVE | BaTiO3 (20 nm) | 0.6 | 2.2 × 10−6 A cm−2 | 25 | <0.001 | - | [177] |
BPVE | KBNNO | 3.5 | 4 × 10−8 A cm−2 | 31.5 | 0.0011 | - | [178] |
BPVE | PLZTN | 23 | 3.7 × 10−8 A cm−2 | 46 | <0.001 | - | [44] |
BPVE | BBLT | 16 | 6.5 × 10−9 A cm−2 | 29 | <0.001 | - | [179] |
BPVE | hBN/Gr/3RMoS2/Gr/hBN/Gr | 0.06 | 30 nA | - | - | 16 (EQE) | [118] |
BPVE | Strained MoS2 | 0.003 | 20 nA | - | - | - | [55] |
BPVE | Gr/MoS2/Gr | 0.1 | 1.0 μA | - | - | 2.5 (EQE) | [57] |
BPVE | Distorted MoTe2 | 0.016 | 60 μA | - | - | 30 (EQE) | [151] |
BPVE | MASnI3 | 0.57 | 12.47 mA cm−2 | 0.44 | 3.13 | - | [180] |
BPVE | FASnI3 | 0.64 | 25.36 mA cm−2 | 0.56 | 5.51 | - | [180] |
BPVE | (allyammnium)2(ethylammonium)2 | ||||||
Pb3Br10 | 2.5 | 5 nA | - | - | - | [152] | |
BPVE | Sn2P2S6 | 0.16 | 1.1 mA cm−2 | - | - | 0.8 (EQE) | [153] |
PTE | Carbon nanotube film | 0.002 | 25 μA | - | - | - | [159] |
PTE | Carbon nanotube film | 0.0004 | 3 nA | - | - | - | [162] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, J.; Zhang, Z.; Zhang, W.; Chen, Z. Recent Progress of Self-Powered Optoelectronic Devices Based on 2D Materials. Processes 2024, 12, 1728. https://doi.org/10.3390/pr12081728
Xu J, Zhang Z, Zhang W, Chen Z. Recent Progress of Self-Powered Optoelectronic Devices Based on 2D Materials. Processes. 2024; 12(8):1728. https://doi.org/10.3390/pr12081728
Chicago/Turabian StyleXu, Jiyuan, Zailan Zhang, Wei Zhang, and Zhesheng Chen. 2024. "Recent Progress of Self-Powered Optoelectronic Devices Based on 2D Materials" Processes 12, no. 8: 1728. https://doi.org/10.3390/pr12081728
APA StyleXu, J., Zhang, Z., Zhang, W., & Chen, Z. (2024). Recent Progress of Self-Powered Optoelectronic Devices Based on 2D Materials. Processes, 12(8), 1728. https://doi.org/10.3390/pr12081728