The Role of Different Roasting Temperatures on the Physico-Chemical Properties, Phenolic Compounds, Fatty Acid and Mineral Contents of Carob (Ceratonia siliqua L.) Fruit Powder
Abstract
:1. Introduction
2. Material and Methods
2.1. Material
2.2. Methods
2.2.1. Moisture Content
2.2.2. Protein Content
2.2.3. Color Measurements
2.2.4. Oil Content
2.2.5. Extraction Procedure
2.2.6. Total Phenolic Content
2.2.7. Total Flavonoid Amount
2.2.8. Antioxidant Capacity
2.2.9. Determination of Phenolic Profiles
2.2.10. Fatty Acid Composition
2.2.11. Determination of Mineral
2.3. Statistical Analyses
3. Results and Discussion
3.1. Physical and Bioactive Properties of Raw (Control) and Roasted Carob Powder
3.2. The Phenolic Compounds of Raw and Roasted Carob Powders
3.3. The Fatty Acid Composition and Amounts of the Raw and Roasted Carob-Powder Oils
3.4. The Mineral Contents of Unroasted Carob Powder (raw) and Carob Powders Roasted at Different Temperatures
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gübbük, H.; Kafkas, E.; Guven, D.; Günes, E. Physical and phytochemical profile of wild and domesticated carob (Ceratonia siliqua L.) genotypes. Spanish J. Agric. Res. 2010, 8, 129. [Google Scholar] [CrossRef]
- El Bouzdoudi, B.; El Ansari, Z.N.; Mangalagiu, I.; Mantu, D.; Badoc, A.; Lamarti, A. Determination of polyphenols content in carob pulp from wild and domesticated Moroccantrees. Am. J. Plant Sci. 2016, 7, 1937. [Google Scholar] [CrossRef]
- Stavrou, I.J.; Christou, A.; Kapnissi-Christodoulou, C.P. Polyphenols in carobs: A reviewon their composition, antioxidant capacity and cytotoxic effects, and health impact. Food Chem. 2018, 269, 355. [Google Scholar] [CrossRef] [PubMed]
- Bengoechea, C.; Romero, A.; Villanueva, A.; Moreno, G.; Alaiz, M.; Millan, F.; Guerrero, A.; Puppo, M.C. Composition and structure of carob (Ceratonia siliqua L.) erm proteins. Food Chem. 2008, 107, 675. [Google Scholar] [CrossRef]
- Matthaus, B.; Özcan, M.M. Lipid evaluation of cultivated and wild carob (Ceratonia siliqua L.) seed oil growing in Turkey. Sci. Hort. 2011, 130, 181. [Google Scholar] [CrossRef]
- Çağlar, A.; Erol, N.; Elgün, S.M. Effect of carob flour substitution on chemical and functional properties of tarhana. J. Food Process. Preserv. 2013, 37, 670–675. [Google Scholar] [CrossRef]
- Papagiannopoulos, M.; Wollseifen, H.R.; Mellenthin, A.; Haber, B.; Galensa, R. Identification and quantification of polyphenols in Carob Fruits (Ceratonia siliqua L.) and derived products by HPLC-UV-ESI/MSn. J. Agri. Food Chem. 2004, 52, 3784. [Google Scholar] [CrossRef]
- Tsatsaragkou, K.; Gounaropoulos, I.; Mandala, I. Development of gluten free bread containing carob flour and resistant starch. Food Sci. Technol. 2014, 58, 124–129. [Google Scholar] [CrossRef]
- Youssef, M.K.E.; El-Manfaloty, M.M.; Ali, H.M. Assessment of proximate chemical composition, nutritional status, fatty acid composition and phenolic compounds of carob (Ceratonia siliqua L.). Healthcare Food Serv. Mag. 2013, 3, 304–308. [Google Scholar]
- Sęczyk, L.; Świeca, M.; Gawlik-Dziki, U. Effect of carob (Ceratonia siliqua L.) flour on the antioxidant potential, nutritional quality, and sensory characteristics of fortified durum wheat pasta. Food Chem. 2016, 194, 637–642. [Google Scholar] [CrossRef]
- Dewanto, V.; Wu, X.; Adom, K.K.; Liu, R.H. Thermal processing enhances the nutritional value of tomatoes by increasing total antioxidant activity. J. Agric. Food Chem. 2002, 50, 3010–3014. [Google Scholar] [CrossRef] [PubMed]
- Ayaz, F.A.; Torun, H.; Ayaz, S.; Correia, P.J.; Alaiz, M.; Sanz, C.; Gruz, J.; Strnad, M. Determination of chemical composition of Anatolian carob pod (Ceratonia siliqua L.): Sugars, amino and organic acids, minerals and phenolic compounds. J. Food Qual. 2007, 30, 1040. [Google Scholar] [CrossRef]
- Babiker, E.E.; Özcan, M.M.; Ghafoor, K.; AlJuhaimi, F.; Ahmed, I.A.M.; Almusallam, I.A. Physico-chemical and bioactive properties, fatty acids, phenolic compounds, mineral contents, and sensory properties of cookies enriched with carob flour. J. Food Process. Preserv. 2020, 44, e14745. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis. In Association of Official Analytical Chemists Durazzo, A., Turfani, V International, 18th ed.; Horwitz, W., Ed.; AOAC Press: Arlington, VA, USA, 2005. [Google Scholar]
- Durazzo, A.; Turfani, V.; Narducci, V.; Azzini, E.; Maiani, G.; Carcea, M. Nutritional characterisation and bioactive components of commercial carobs flours. Food Chem. 2014, 153, 109–113. [Google Scholar] [CrossRef]
- Yoo, K.M.; Lee, K.W.; Park, J.B.; Lee, H.J.; Hwang, I.K. Variation in major antioxidants and total antioxidant activity of Yuzu (Citrusjunos Siebex Tanaka) during maturation and between cultivars. J. Agric. Food Chem. 2004, 52, 5907. [Google Scholar] [CrossRef]
- Hogan, S.; Zhang, L.; Li, J.; Zoecklein, B.; Zhou, K. Antioxidant properties and bioactive components of Norton (Vitis aestivalis) and Cabernet Franc (Vitis vinifera) wine grapes. LWT—Food Sci. Technol. 2009, 42, 1269. [Google Scholar] [CrossRef]
- Lee, S.K.; Mbwambo, Z.H.; Chung, H.S.; Luyengi, L.; Games, E.J.C.; Mehta, R.G. Evaluation of the antioxidant potential of natural products. Comb. Chem. High Throughput Screen. 1998, 1, 35. [Google Scholar] [CrossRef]
- Method ISO 5509; Animal and Vegetable Fats and Oils Preperation of Methyl esters of Fatty Acids. ISO-International Organization for Standardization: Geneve, Switzerland, 1978.
- Günel, Z.; Tontul, I.; Dincer, C.; Topuz, A.; Sahin, H. Influence of microwave, the combined microwave/hot air and only hot air roasting on the formation of heat-induced contaminants of carob powders. Food Addit. Contam. Part A 2018, 35, 2332–2339. [Google Scholar] [CrossRef]
- Eldeep, G.S.S.; Mosilhey, S.H. Roasting temperature impact on bioactivecompounds and PAHs in Carob powder (Ceratonia siliqua L.). J. Food Sci. Technol. 2022, 9, 105–113. [Google Scholar] [CrossRef]
- Liu, H.-M.; Han, Y.-F.; Wang, N.-N.; Zheng, Y.-Z.; Wang, X.-D. Formation and antioxidant activity of maillard reaction products derived from different sugar-amino acid aqueous model systems of sesame roasting. J. Oleo Sci. 2020, 69, 391. [Google Scholar] [CrossRef]
- Petkova, N.; Ivanova, L.; Filova, G.; Ivanov, I.; Denev, P. Antioxidants and carbohydrate content in infusions and microwave extracts from eight medicinal plants. J. Appl. Pharm. Sci. 2017, 7, 55–61. [Google Scholar]
- Karababa, E.; Coşkuner, Y. Physical properties of carob bean (Ceratonia siliqua L.): An industrial gum yielding crop. Ind. Crops Prod. 2013, 42, 440. [Google Scholar] [CrossRef]
- Kumazawa, S.; Taniguchi, M.; Suzuki, Y.; Shimura, M.; Kwon, M.; Nakayama, T. Antioxidant activity of polyphenols in carob pods. J. Agric. Food Chem. 2002, 50, 373–377. [Google Scholar] [CrossRef] [PubMed]
- Manzocco, L.; Anese, M.; Nicoli, M.C. Antioxidant properties of tea extracts as affected by processing. LWT—Food Sci. Technol. 1998, 31, 694. [Google Scholar] [CrossRef]
- Alkaltham, M.S.; Özcan, M.M.; Uslu, N.; Salamatullah, A.M.; Hayat, K. Effect of microwave and oven roasting methods on total phenol, antioxidant activity, phenolic compounds, and fatty acid compositions of coffee beans. J. Food Process. Preserv. 2020, 44, e148. [Google Scholar] [CrossRef]
- Talcott, S.T.; Passeretti, S.; Duncan, C.E.; Gorbet, D.W. Polyphenolic content and sensory properties of normal and high oleic acid peanuts. Food Chem. 2005, 90, 379. [Google Scholar] [CrossRef]
- Dewanto, V.; Wu, X.; Liu, R.H. Processed sweet corn has higher antioxidant activity. J. Agric. Food Chem. 2002, 50, 4959. [Google Scholar] [CrossRef] [PubMed]
- Rakib, E.M.; Chicha, H.; Abouricha, S.; Alaoui, M.; Bouli, A.A.; Hansali, M.; Owen, R.W. Determination of Phenolic Composition of Carob Pods Grown in Different Regions of Morocco. J. Nat. Prod. 2010, 3, 134–140. [Google Scholar]
- Brassesco, M.E.; Brandao, T.R.S.; Silva, C.L.M.; Pintado, M. Carob bean (Ceratonia siliqua L.): A new perspective for functional food. Trends Food Sci. Technol. 2021, 114, 310–322. [Google Scholar] [CrossRef]
- Corsi, L.; Avallone, R.; Cosenza, F.; Farina, F.; Baraldi, C.; Baraldi, M. Antiproliferative Effects of Ceratonia siliqua L. on Mouse Hepatocellular Carcinoma Cell Line. Fitoterapia 2002, 73, 674–684. [Google Scholar] [CrossRef]
- Sakakibara, H.; Honda, Y.; Nakagawa, S.; Ashida, H.; Kanazawa, K. Simultaneous Determination of all Polyphenols in Vegetables, Fruits, and Teas. J. Agric. Food Chem. 2003, 51, 571–581. [Google Scholar] [CrossRef] [PubMed]
- Owen, R.W.; Haubne, R.; Hull, W.E.; Erben, G.; Spiegelhalder, B.; Bartsch, H.; Haber, B. Isolation and structure elucidation of the major individual polyphenols in carob fiber. Food Chem. Toxicol. 2003, 41, 1727. [Google Scholar] [CrossRef] [PubMed]
- Sigge, G.; Iipumbu, L.; Britz, T. Proximate composition of carob cultivars growing in South Africa. S. Afr. J. Plant Soil 2011, 28, 17. [Google Scholar] [CrossRef]
- Öziyci, H.R.; Tetik, N.; Turhan, I.; Yatmaz, E.; Ucgun, K.; Akgul, H.; Gübbük, H.; Karhan, M. Mineral composition of pods and seeds of wild and grafted carob (Ceratonia siliqua L.) fruits. Sci. Hort. 2014, 167, 149. [Google Scholar] [CrossRef]
- Higazy, M.; ELDiffrawy, E.; Zeitoun, M.; Shaltout, O.; El-Yazeed, A. Nutrients of Carob and Seed Powders and Its Application in Some Food Products. J. Adv. Agric. Res. (Fac. Agric. Saba Basha) 2018, 23, 130–147. [Google Scholar]
- Ibrahim, R.M.; Abdel-Salam, F.F.; Farahat, E. Utilization of Carob (Ceratonia siliqua L.) Extract as Functional Ingredient in Some Confectionery Products. Food Nutr. Sci. 2020, 11, 757. [Google Scholar]
- Özcan, M.; Arslan, D.; Gökçalik, H. Some compositional properties and mineral contents of carob (Ceratonia siliqua) fruit, flour and syrup. Int. J. Food Sci. Nut. 2007, 58, 652. [Google Scholar] [CrossRef]
Temperature | Moisture Content (%) | Oil Content (%) | L* | a* | b* | ||
---|---|---|---|---|---|---|---|
Control | 8.84 ± 0.13 ** a | 0.85 ± 0.15 a | 61.57 ± 1.28 a | 4.05 ± 0.35 d | 28.66 ± 0.32 a | ||
90 °C | 4.14 ± 0.04 b *** | 0.40 ± 0.10 d | 60.24 ± 1.01 b | 4.32 ± 0.14 c | 26.25 ± 0.70 b | ||
120 °C | 3.53 ± 0.39 c | 0.75 ± 0.05 b | 55.16 ± 1.38 c | 7.90 ± 0.10 b | 26.09 ± 0.80 c | ||
150 °C | 3.34 ± 0.01 d | 0.50 ± 0.10 c | 45.08 ± 1.29 d | 11.23 ± 0.45 a | 24.59 ± 0.34 d | ||
Temperature | Total phenolic (mg/100 g) | Total flavonoid (mg/100 g) | Antioxidant activity (mmol/kg) | Crude protein (%) | |||
Control | 781.16 ± 17.85 d | 663.81 ± 32.12 d | 10.30 ± 0.01 a | 10.27 ± 0.54 a | |||
90 °C | 869.63 ± 15.11 b | 747.62 ± 34.52 c | 10.27 ± 0.01 a | 8.87 ± 0.61 b | |||
120 °C | 823.92 ± 75.51 c | 770.48 ± 41.49 b | 10.14 ± 0.02 b | 8.40 ± 0.87 c | |||
150 °C | 903.07 ± 17.39 a | 1141.90 ± 37.49 a | 9.27 ± 0.04 | 9.45 ± 0.58 c |
Phenolic Compounds (mg/100 g) | Control | 90 °C | 120 °C | 150 °C |
---|---|---|---|---|
Gallic acid | 45.16 ± 0.40 * d | 108.39 ± 6.19 c | 115.13 ± 6.09 b | 120.66 ± 9.30 a |
3,4-Dihydroxybenzoic acid | 7.06 ± 0.83 d ** | 8.55 ± 1.52 c | 11.13 ± 1.65 b | 20.46 ± 2.96 a |
Catechin | 13.65 ± 0.81 d | 61.02 ± 1.59 b | 58.39 ± 0.98 c | 68.86 ± 1.30 a |
Caffeic acid | 2.56 ± 0.45 c | 2.23 ± 0.53 d | 18.67 ± 4.61 a | 11.90 ± 0.69 b |
Syringic acid | 3.69 ± 1.00 c | 1.95 ± 0.43 d | 33.47 ± 9.25 a | 24.17 ± 1.89 b |
Rutin | 16.79 ± 3.04 d | 31.81 ± 0.82 c | 37.82 ± 0.95 b | 39.63 ± 0.57 a |
p-Coumaric acid | 2.58 ± 0.17 d | 2.80 ± 0.25 c | 3.75 ± 0.77 b | 8.99 ± 1.70 a |
Ferulic acid | 6.81 ± 0.87 c | 4.19 ± 0.70 d | 9.90 ± 0.58 b | 10.25 ± 1.80 a |
Resveratrol | 0.35 ± 0.04 d | 2.63 ± 0.84 a | 2.14 ± 0.32 c | 2.40 ± 0.22 b |
Quercetin | 0.83 ± 0.05 d | 2.14 ± 0.63 c | 6.27 ± 1.13 a | 4.07 ± 0.26 b |
Cinnamic acid | 1.81 ± 0.31 d | 1.97 ± 0.27 c | 2.32 ± 0.32 a | 1.29 ± 0.35 b |
Kaempferol | 0.26 ± 0.01 c | 0.49 ± 0.04 b | 0.54 ± 0.06 a | 0.22 ± 0.03 d |
Fatty Acids (%) | Control | 90 °C | 120 °C | 150 °C |
---|---|---|---|---|
Myristic | 0.13 ± 0.00 | - | - | - |
Palmitic | 10.02 ± 0.06 * d | 16.19 ± 0.18 a | 12.73 ± 0.00 b | 11.93 ± 0.02 c |
Stearic | 6.58 ± 0.02 b ** | 5.19 ± 0.02 d | 8.41 ± 0.01 a | 5.87 ± 0.01 c |
Oleic | 29.55 ± 0.02 d | 36.27 ± 0.10 a | 35.66 ± 0.03 b | 30.30 ± 0.01 c |
Linoleic | 17.30 ± 0.02 d | 36.99 ± 0.06 a | 19.78 ± 0.07 c | 23.80 ± 0.00 b |
Arachidic | 0.35 ± 0.00 d | 0.75 ± 0.01 a | 0.48 ± 0.00 b | 0.46 ± 0.00 c |
Linolenic | 35.70 ± 0.12 b | 46.17 ± 0.09 a | 22.39 ± 0.16 d | 27.29 ± 0.00 c |
Behenic | 0.27 ± 0.01 d | 0.32 ± 0.01 c | 0.37 ± 0.02 a | 0.35 ± 0.00 b |
Roasting Temperatures | P | K | Ca | Mg | S | Na | Fe | Cu | Mn | Ni | Pb | Zn | B |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Control | 914.97 ± 117.60 * d | 8889.40 ± 113.42 d | 4362.82 ± 134.47 d | 781.17 ± 50.84 d | 706.39 ± 34.35 d | 196.05 ± 3.15 d | 373.24 ± 15.93 b | 17.91 ± 5.14 a | 9.91 ± 0.88 b | 2.48 ± 0.47 d | 29.31 ± 7.73 c | 13.90 ± 2.13 a | 10.85 ± 0.13 d |
90 °C | 97,392 ± 253.24 c ** | 9719.97 ± 776.33 c | 4528.77 ± 207.31 c | 817.80 ± 63.89 c | 723.65 ± 90.49 c | 222.42 ± 4.52 b | 371.67 ± 93.77 c | 13.97 ± 0.07 d | 8.96 ± 0.02 d | 2.50 ± 0.49 c | 35.38 ± 3.56 a | 11.97 ± 0.97 d | 11.94 ± 0.03 b |
120 °C | 1032.63 ± 88.65 b | 10,275.55 ± 533.05 b | 4894.64 ± 99.26 a | 866.39 ± 11.02 b | 787.97 ± 36.32 a | 235.87 ± 3.44 a | 394.76 ± 50.23 a | 15.00 ± 0.05 b | 10.55 ± 0.53 a | 3.01 ± 0.02 a | 31.47 ± 0.56 b | 12.49 ± 0.52 b | 12.02 ± 0.07 a |
150 °C | 1091.75 ± 33.26 a | 10,606.93 ± 213.99 a | 4849.76 ± 210.57 b | 876.10 ± 17.32 a | 783.92 ± 23.54 b | 212.06 ± 4.00 c | 301.93 ± 6.76 d | 13.89 ± 0.04 d | 9.43 ± 0.48 c | 2.97 ± 0.01 b | 26.29 ± 5.39 d | 11.89 ± 0.03 e | 11.89 ± 0.03 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohamed Ahmed, I.A.; AlJuhaimi, F.Y.; Özcan, M.M.; Uslu, N.; Karrar, E. The Role of Different Roasting Temperatures on the Physico-Chemical Properties, Phenolic Compounds, Fatty Acid and Mineral Contents of Carob (Ceratonia siliqua L.) Fruit Powder. Processes 2024, 12, 1990. https://doi.org/10.3390/pr12091990
Mohamed Ahmed IA, AlJuhaimi FY, Özcan MM, Uslu N, Karrar E. The Role of Different Roasting Temperatures on the Physico-Chemical Properties, Phenolic Compounds, Fatty Acid and Mineral Contents of Carob (Ceratonia siliqua L.) Fruit Powder. Processes. 2024; 12(9):1990. https://doi.org/10.3390/pr12091990
Chicago/Turabian StyleMohamed Ahmed, Isam A., Fahad Y. AlJuhaimi, Mehmet Musa Özcan, Nurhan Uslu, and Emad Karrar. 2024. "The Role of Different Roasting Temperatures on the Physico-Chemical Properties, Phenolic Compounds, Fatty Acid and Mineral Contents of Carob (Ceratonia siliqua L.) Fruit Powder" Processes 12, no. 9: 1990. https://doi.org/10.3390/pr12091990
APA StyleMohamed Ahmed, I. A., AlJuhaimi, F. Y., Özcan, M. M., Uslu, N., & Karrar, E. (2024). The Role of Different Roasting Temperatures on the Physico-Chemical Properties, Phenolic Compounds, Fatty Acid and Mineral Contents of Carob (Ceratonia siliqua L.) Fruit Powder. Processes, 12(9), 1990. https://doi.org/10.3390/pr12091990