Application of Plant Extracts Rich in Anthocyanins in the Development of Intelligent Biodegradable Packaging: An Overview
Abstract
:1. Introduction
2. Anthocyanins
2.1. Sources
2.2. Anthocyanins Stability
2.3. Anthocyanins Extraction
2.3.1. Solvent Extraction (SE) and Deep Eutectic Solvent Extraction (DES)
2.3.2. Ultrasound-Assisted Extraction (UAE)
2.3.3. Microwave-Assisted Extraction (MAE)
2.3.4. Pressurized Liquid Extraction (PLE)
2.3.5. Supercritical Fluid Extraction (SFE)
2.3.6. Enzyme-Assisted Extraction (EAE)
3. Intelligent Food Packaging
Applications
4. Conclusions and Future Scope
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bhowmik, S.; Agyei, D.; Ali, A. Smart chitosan films as intelligent food packaging: An approach to monitoring food freshness and biomarkers. Food Packag. Shelf Life 2024, 46, 101370. [Google Scholar] [CrossRef]
- Alizadeh Sani, M.; Tavassoli, M.; Salim, S.A.; Azizi-lalabadi, M.; McClements, D.J. Development of green halochromic smart and active packaging materials: TiO2 nanoparticle- and anthocyanin-loaded gelatin/κ-carrageenan films. Food Hydrocoll. 2022, 124, 107324. [Google Scholar] [CrossRef]
- Etxabide, A.; Kilmartin, P.A.; Maté, J.I. Color stability and pH-indicator ability of curcumin, anthocyanin and betanin containing colorants under different storage conditions for intelligent packaging development. Food Control 2021, 121, 107645. [Google Scholar] [CrossRef]
- Cheng, H.; Xu, H.; McClements, D.J.; Chen, L.; Jiao, A.; Tian, Y.; Miao, M.; Jin, Z. Recent advances in intelligent food packaging materials: Principles, preparation and applications. Food Chem. 2022, 375, 131738. [Google Scholar] [CrossRef]
- Becerril, R.; Nerín, C.; Silva, F. Bring some colour to your package: Freshness indicators based on anthocyanin extracts. Trends Food Sci. Technol. 2021, 111, 495–505. [Google Scholar] [CrossRef]
- Sohail, M.; Sun, D.W.; Zhu, Z. Recent developments in intelligent packaging for enhancing food quality and safety. Crit. Rev. Food Sci. Nutr. 2018, 58, 2650–2662. [Google Scholar] [CrossRef]
- Bkowska-Barczak, A. Acylated anthocyanins as stable, natural food colorants—A review. Pol. J. Food Nutr. Sci. 2005, 14, 107–116. [Google Scholar]
- Castañeda-Ovando, A.; Pacheco-Hernández, M.L.; Páez-Hernández, M.E.; Rodríguez, J.A.; Galán-Vidal, C.A. Chemical studies of anthocyanins: A review. Food Chem. 2009, 113, 859–871. [Google Scholar] [CrossRef]
- Wu, C.; Li, Y.; Sun, J.; Lu, Y.; Tong, C.; Wang, L.; Yan, Z.; Pang, J. Novel konjac glucomannan films with oxidized chitin nanocrystals immobilized red cabbage anthocyanins for intelligent food packaging. Food Hydrocoll. 2020, 98, 105245. [Google Scholar] [CrossRef]
- Yong, H.; Liu, J.; Kan, J.; Liu, J. Active/intelligent packaging films developed by immobilizing anthocyanins from purple sweetpotato and purple cabbage in locust bean gum, chitosan and κ-carrageenan-based matrices. Int. J. Biol. Macromol. 2022, 211, 238–248. [Google Scholar] [CrossRef]
- Andretta, R.; Luchese, C.L.; Tessaro, I.C.; Spada, J.C. Development and characterization of pH-indicator films based on cassava starch and blueberry residue by thermocompression. Food Hydrocoll. 2019, 93, 317–324. [Google Scholar] [CrossRef]
- Capello, C.; Leandro, G.C.; Campos, C.E.M.; Hotza, D.; Mattar Carciofi, B.A.; Valencia, G.A. Adsorption and desorption of eggplant peel anthocyanins on a synthetic layered silicate. J. Food Eng. 2019, 262, 162–169. [Google Scholar] [CrossRef]
- Goodarzi, M.M.; Moradi, M.; Tajik, H.; Forough, M.; Ezati, P.; Kuswandi, B. Development of an easy-to-use colorimetric pH label with starch and carrot anthocyanins for milk shelf-life assessment. Int. J. Biol. Macromol. 2020, 153, 240–247. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Lu, S.; Chen, X. A visual pH sensing film using natural dyes from Bauhinia blakeana Dunn. Sens. Actuators B Chem. 2014, 198, 268–273. [Google Scholar] [CrossRef]
- Oladzadabbasabadi, N.; Nafchi, A.M.; Ghasemlou, M.; Ariffin, F.; Singh, Z.; Al-Hassan, A.A. Natural anthocyanins: Sources, extraction, characterization, and suitability for smart packaging. Food Packag. Shelf Life 2022, 33, 100872. [Google Scholar] [CrossRef]
- Ma, Q.; Liang, T.; Cao, L.; Wang, L. Intelligent poly (vinyl alcohol)-chitosan nanoparticles-mulberry extracts films capable of monitoring pH variations. Int. J. Biol. Macromol. 2018, 108, 576–584. [Google Scholar] [CrossRef]
- Luzi, F.; Torre, L.; Kenny, J.; Puglia, D. Bio- and fossil-based polymeric blends and nanocomposites for packaging: Structure–property relationship. Materials 2019, 12, 471. [Google Scholar] [CrossRef]
- Narancic, T.; Verstichel, S.; Chaganti, S.R.; Morales-Gamez, L.; Kenny, S.T.; Wilde, B.; Padamati, R.B.; O’Connor, K.E. Biodegradable Plastic Blends Create New Possibilities for End-of-Life Management of Plastics but They Are Not a Panacea for Plastic Pollution. Environ. Sci. Technol. 2018, 52, 10441–10452. [Google Scholar] [CrossRef]
- Vedove, T.M.A.R.D.; Maniglia, B.C.; Tadini, C.C. Production of sustainable smart packaging based on cassava starch and anthocyanin by an extrusion process. J. Food Eng. 2021, 289, 110274. [Google Scholar] [CrossRef]
- Guo, Z.; Zuo, H.; Ling, H.; Yu, Q.; Gou, Q.; Yang, L. A novel colorimetric indicator film based on watermelon peel pectin and anthocyanins from purple cabbage for monitoring mutton freshness. Food Chem. 2022, 383, 131915. [Google Scholar] [CrossRef]
- Pang, S.; Wang, Y.; Jia, H.; Hao, R.; Jan, M.; Li, S.; Pu, Y.; Dong, X.; Pan, J. The properties of pH-responsive gelatin-based intelligent film as affected by ultrasound power and purple cabbage anthocyanin dose. Int. J. Biol. Macromol. 2023, 230, 123156. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Wu, K.; Wang, B.; Li, X. Colorimetric indicator based on purple tomato anthocyanins and chitosan for application in intelligent packaging. Int. J. Biol. Macromol. 2021, 174, 370–376. [Google Scholar] [CrossRef] [PubMed]
- Lysiak, G. Ornamental Flowers Grown in Human Surroundings as a Source of Anthocyanins with High Anti-Inflammatory Properties. Foods 2022, 11, 948. [Google Scholar] [CrossRef] [PubMed]
- Bridle, P.; Timberlake, C.F. Anthocyanins as natural food colours—Selected aspects. Food Chem. 1997, 58, 103–109. [Google Scholar] [CrossRef]
- Cheng, Y.; Liu, J.; Li, L.; Ren, J.; Lu, J.; Luo, F. Advances in embedding techniques of anthocyanins: Improving stability, bioactivity and bioavailability. Food Chem. X 2023, 20, 100983. [Google Scholar] [CrossRef]
- Lu, Z.; Wang, X.; Lin, X.; Mostafa, S.; Zou, H.; Wang, L.; Jin, B. Plant anthocyanins: Classification, biosynthesis, regulation, bioactivity, and health benefits. Plant Physiol. Biochem. 2024, 217, 109268. [Google Scholar] [CrossRef]
- Neves, D.; Andrade, P.B.; Videira, R.A.; Freitas, V.; Cruz, L. Berry anthocyanin-based films in smart food packaging: A mini-review. Food Hydrocoll. 2022, 133, 107885. [Google Scholar] [CrossRef]
- Lopes, T.J.; Xavier, M.F.; Quadri, M.G.N.; Quadri, M.B. Antocianinas: Uma breve revisão das características estruturais e da estabilidade. Rev. Bras. Agrociência 2007, 13, 291–297. [Google Scholar]
- Narayan, M.S.; Naidu, K.A.; Ravishankar, G.A.; Srinivas, L.; Venkataraman, L.V. Antioxidant effect of anthocyanin on enzymatic and non-enzymatic lipid peroxidation. Prostaglandins Leukot. Essent. Fat. Acids (PLEFA) 1999, 60, 1–4. [Google Scholar] [CrossRef]
- Farooq, S.; Shah, M.A.; Siddiqui, M.W.; Dar, B.N.; Mir, S.A.; Ali, A. Recent trends in extraction techniques of anthocyanins from plant materials. J. Food Meas. Charact. 2020, 14, 3508–3519. [Google Scholar] [CrossRef]
- Escribano-Bailón, M.T.; Santos-Buelga, C.; Rivas-Gonzalo, J.C. Anthocyanins in cereals. J. Chromatogr. A 2004, 1054, 129–141. [Google Scholar] [CrossRef]
- Bobbio, F.O.; Bobbio, P.A. Introdução à Química de Alimentos; Varela: São Paulo, Brazil, 1992. [Google Scholar]
- Turturica, M.; Oancea, A.M.; Râpeanu, G.; Bahrim, G. Anthocyanins: Naturally occuring fruit pigments with functional properties. AUDJG-Food Technol. 2015, 39, 9–24. [Google Scholar]
- Fennema, O.R.; Damodaran, S.; Parkin, K.L. Química de Alimentos de Fennema; Artmed: Porto Alegre, Brazil, 2010. [Google Scholar]
- Tang, R.; He, Y.; Fan, K. Recent advances in stability improvement of anthocyanins by efficient methods and its application in food intelligent packaging: A review. Food Biosci. 2023, 56, 103164. [Google Scholar] [CrossRef]
- Zhang, R.; Ye, S.; Guo, Y.; Wu, M.; Jiang, S.; He, J. Studies on the interaction between homological proteins and anthocyanins from purple sweet potato (PSP): Structural characterization, binding mechanism and stability. Food Chem. 2023, 400, 134050. [Google Scholar] [CrossRef] [PubMed]
- Xu, M.; Fang, D.; Kimatu, B.M.; Lyu, L.; Wu, W.; Cao, F.; Li, W. Recent advances in anthocyanin-based films and its application in sustainable intelligent food packaging: A review. Food Control 2024, 162, 110431. [Google Scholar] [CrossRef]
- Shao, Z.; Lan, W.; Xie, J. Colorimetric freshness indicators in aquatic products based on natural pigments: A review. Food Biosci. 2024, 58, 103624. [Google Scholar] [CrossRef]
- Giusti, M.M.; Wrolstad, R.E. Acylated anthocyanins from edible sources and their applications in food systems. Biochem. Eng. J. 2003, 14, 217–225. [Google Scholar] [CrossRef]
- Enaru, B.; Dretcanu, G.; Pop, T.D.; Stanila, A.; Diaconeasa, Z. Anthocyanins: Factors affecting their stability and degradation. Antioxidants 2021, 10, 1967. [Google Scholar] [CrossRef]
- Cai, D.; Li, X.; Chen, J.; Jiang, X.; Ma, X.; Sun, J.; Tian, L.; Vidyarthi, S.K.; Xu, J.; Pan, Z.; et al. A comprehensive review on innovative and advanced stabilization approaches of anthocyanin by modifying structure and controlling environmental factors. Food Chem. 2022, 366, 130611. [Google Scholar] [CrossRef]
- Podsędek, A.; Majewska, I.; Kucharska, A.Z. Inhibitory potential of red cabbage against digestive enzymes linked to obesity and type 2 diabetes. J. Agric. Food Chem. 2017, 65, 7192–7199. [Google Scholar] [CrossRef]
- Ahmadiani, N.; Sigurdson, G.T.; Robbins, R.J.; Collins, T.M.; Giusti, M.M. Solid phase fractionation techniques for segregation of red cabbage anthocyanins with different colorimetric and stability properties. Food Res. Int. 2019, 120, 688–696. [Google Scholar] [CrossRef] [PubMed]
- Ghareaghajlou, N.; Hallaj-Nezhadi, S.; Ghasempour, Z. Red cabbage anthocyanins: Stability, extraction, biological activities and applications in food systems. Food Chem. 2021, 365, 130482. [Google Scholar] [CrossRef] [PubMed]
- Zhan, S.; Yi, F.; Hou, F.; Song, L.; Chen, X.; Jiang, H.; Han, X.; Sun, X.; Liu, Z. Development of pH-freshness smart label based on gellan gum film incorporated with red cabbage anthocyanins extract and its application in postharvest mushroom. Colloids Surf. B Biointerfaces 2024, 236, 113830. [Google Scholar] [CrossRef] [PubMed]
- Nogueira, G.F.; Meneghetti, B.B.; Soares, I.H.B.T.; Soares, C.T.; Bevilaqua, G.; Fakhouri, F.M.; Oliveira, R.A. Multipurpose arrowroot starch films with anthocyanin-rich grape pomace extract: Color migration for food simulants and monitoring the freshness of fish meat. Int. J. Biol. Macromol. 2024, 265, 130934. [Google Scholar] [CrossRef]
- Hu, F.; Song, Y.; Thakur, K.; Zhang, J.; Khan, M.R.; Ma, Y.; Wei, Z. Blueberry anthocyanin based active intelligent wheat gluten protein films: Preparation, characterization, and applications for shrimp freshness monitoring. Food Chem. 2024, 453, 139676. [Google Scholar] [CrossRef]
- Yong, H.; Wang, X.; Zhang, X.; Liu, Y.; Qin, Y.; Liu, J. Effects of anthocyanin-rich purple and black eggplant extracts on the physical, antioxidant and pH-sensitive properties of chitosan film. Food Hydrocoll. 2019, 94, 93–104. [Google Scholar] [CrossRef]
- Chen, B.H.; Stephen Inbaraj, B. Nanoemulsion and nanoliposome based strategies for improving anthocyanin stability and bioavailability. Nutrients 2019, 11, 1052. [Google Scholar] [CrossRef]
- Zhang, N.; Jing, P. Anthocyanins in Brassicaceae: Composition, stability, bioavailability, and potential health benefits. Crit. Rev. Food Sci. Nutr. 2020, 62, 2205–2220. [Google Scholar] [CrossRef]
- Herrera-Balandrano, D.D.; Chai, Z.; Beta, T.; Feng, J.; Huang, W. Blueberry anthocyanins: An updated review on approaches to enhancing their bioavailability. Trends Food Sci. Technol. 2021, 118, 808–821. [Google Scholar] [CrossRef]
- Lima, A.J.B.; Corrêa, A.D.; Saczk, A.A.; Martins, M.P.; Castilho, R.O. Anthocyanins, pigment stability and antioxidant activity in jabuticaba [Myrciaria cauliflora (Mart.) O. Berg]. Rev. Bras. Frutic. 2011, 33, 877–887. [Google Scholar] [CrossRef]
- Zang, Z.; Tang, S.; Li, Z.; Chou, S.; Shu, C.; Chen, Y.; Chen, W.; Yang, S.; Yang, Y.; Tian, J.; et al. An updated review on the stability of anthocyanins regarding the interaction with food proteins and polysaccharides. Compr. Rev. Food Sci. Food Saf. 2022, 21, 4378–4401. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Du, J.; Li, M.; Li, C. Degradation kinetics and pathways of red raspberry anthocyanins in model and juice systems and their correlation with color and antioxidant changes during storage. LWT-Food Sci. Technol. 2020, 128, 109448. [Google Scholar] [CrossRef]
- Chen, Y.; Belwal, T.; Xu, Y.; Ma, Q.; Li, D.; Li, L.; Xiao, H.; Luo, Z. Updated insights into anthocyanin stability behavior from bases to cases: Why and why not anthocyanins lose during food processing. Crit. Rev. Food Sci. Nutr. 2023, 63, 8639–8671. [Google Scholar] [CrossRef] [PubMed]
- Escher, G.B.; Wen, M.; Zhang, L.; Rosso, N.D.; Granato, D. Phenolic composition by UHPLC-Q-TOF-MS/MS and stability of anthocyanins from Clitoria ternatea L. (butterfly pea) blue petals. Food Chem. 2020, 331, 127341. [Google Scholar] [CrossRef]
- Ngamwonglumlert, L.; Devahastin, S.; Chiewchan, N. Natural colorants: Pigment stability and extraction yield enhancement via utilization of appropriate pretreatment and extraction methods. Crit. Rev. Food Sci. Nutr. 2017, 57, 3243–3259. [Google Scholar] [CrossRef]
- Zhang, P.; Li, Y.; Chong, S.; Yan, S.; Yu, R.; Chen, R.; Si, J.; Zhang, X. Identification and quantitative analysis of anthocyanins composition and their stability from different strains of Hibiscus syriacus L. flowers. Ind. Crops Prod. 2022, 177, 114457. [Google Scholar] [CrossRef]
- Alvarez-Suarez, J.M.; Cuadrado, C.; Redondo, I.B.; Giampieri, F.; González-Paramás, A.M.; Santos-Buelga, C. Novel approaches in anthocyanin research-Plant fortification and bioavailability issues. Trends Food Sci. Technol. 2021, 117, 92–105. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, Z.; Zhang, H.; Liu, Y.; Zhang, S.; Meng, Q.; Liu, W. Isolation of high purity anthocyanin monomers from red cabbage with recycling preparative liquid chromatography and their photostability. Molecules 2018, 23, 991. [Google Scholar] [CrossRef]
- Liu, P.; Li, W.; Hu, Z.; Qin, X.; Liu, G. Isolation, purification, identification, and stability of anthocyanins from Lycium ruthenicum Murr. LWT 2020, 126, 109334. [Google Scholar] [CrossRef]
- Akther, S.; Sultana, F.; Badsha, M.R.; Sultana, J.; Alim, M.A. Anthocyanin stability profile of mango powder: Temperature, ph, light, solvent and sugar content effects. Turk. J. Agric.-Food Sci. Technol. 2020, 8, 1871–1877. [Google Scholar] [CrossRef]
- Slavu, M.; Aprodu, I.; Milea, Ș.A.; Enachi, E.; Rapeanu, G.; Bahrim, G.E.; Stanciuc, N. Thermal degradation kinetics of anthocyanins extracted from purple maize flour extract and the effect of heating on selected biological functionality. Foods 2020, 9, 1593. [Google Scholar] [CrossRef] [PubMed]
- Wijesekara, T.; Xu, B. A critical review on the stability of natural food pigments and stabilization techniques. Food. Res. Int. 2024, 179, 114011. [Google Scholar] [CrossRef] [PubMed]
- Calva-Estrada, S.J.; Jiménez-Fernández, M.; Lugo-Cervantes, E. Betalains and their applications in food: The current state of processing, stability and future opportunities in the industry. Food Chem. Mol. Sci. 2022, 4, 100089. [Google Scholar] [CrossRef] [PubMed]
- Chemat, F.; Rombaut, N.; Sicaire, A.; Meullemiestre, A.; Fabiano-Tixier, A.; Abert-Vian, M. Ultrasound assisted extraction of food and natural products. Mechanisms, techniques, combinations, protocols and applications. A review. Ultrason. Sonochem. 2017, 34, 540–560. [Google Scholar] [CrossRef] [PubMed]
- Silva, S.; Costa, E.M.; Calhau, C.; Morais, R.M.; Pintado, M.E. Anthocyanin extraction from plant tissues: A review. Crit. Rev. Food Sci. Nutr. 2017, 57, 3072–3083. [Google Scholar] [CrossRef]
- Wang, Q.; Qin, X.; Liang, Z.; Li, S.; Cai, J.; Zhu, Z.; Liu, G. HPLC–DAD–ESI–MS2 analysis of phytochemicals from Sichuan red orange peel using ultrasound-assisted extraction. Food Biosci. 2018, 25, 15–20. [Google Scholar] [CrossRef]
- Chen, Y.; Xie, M.; Gong, X. Microwave-assisted extraction used for the isolation of total triterpenoid saponins from Ganoderma atrum. J. Food Eng. 2007, 81, 162–170. [Google Scholar] [CrossRef]
- Mattos, G.N.; Santiago, M.C.P.A.; Chaves, A.C.S.D.; Rosenthal, A.; Tonon, R.V.; Cabral, L.M.C. Anthocyanin Extraction from Jaboticaba Skin (Myrciaria cauliflora Berg.) Using Conventional and Non-Conventional Methods. Foods 2022, 11, 885. [Google Scholar] [CrossRef]
- Jovanovic, A.; Petrovic, P.; Ðorðevic, V.; Zdunic, G.; Šavikin, K.; Bugarski, B. Polyphenols extraction from plant sources. Lek. Sirovine 2017, 37, 37–39. [Google Scholar] [CrossRef]
- Foroutani, Z.; Mogaddam, M.R.A.; Ghasempour, Z.; Ghareaghajlou, N. Application of deep eutectic solvents in the extraction of anthocyanins: Stability, bioavailability, and antioxidant property. Trends Food Sci. Technol. 2024, 144, 104324. [Google Scholar] [CrossRef]
- Chemat, F.; Zill-e-Huma; Khan, M.K. Applications of ultrasound in food technology: Processing, preservation and extraction. Ultrason. Sonochem. 2011, 18, 813–835. [Google Scholar] [CrossRef]
- Chemat, S.; Lagha, A.; AitAmar, H.; Bartels, P.V.; Chemat, F. Comparison of conventional and ultrasound-assisted extraction of carvone and limonene from caraway seeds. Flavour Fragr. J. 2004, 19, 188–195. [Google Scholar] [CrossRef]
- Middelberg, A.P.J. Process-scale disruption of microorganisms. Biotechnol. Adv. 1995, 13, 491–551. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Reinoso, Z.; Mora-Adames, W.I.; Fuenmayor, C.A.; Darghan-Contreras, A.E.; Gardana, C.; Gutiérrez, L. Microwave-assisted extraction of phenolic compounds from Sacha Inchi shell: Optimization, physicochemical properties and evaluation of their antioxidant activity. Chem. Eng. Process.-Process Intensif. 2020, 153, 107922. [Google Scholar] [CrossRef]
- Gallo, M.; Ferracane, R.; Graziani, G.; Ritieni, A.; Fogliano, V. Microwave assisted extraction of phenolic compounds from four different spices. Molecules 2010, 15, 6365–6374. [Google Scholar] [CrossRef]
- Kala, H.K.; Mehta, R.; Sen, K.K.; Tandey, R.; Mandal, V. Critical analysis of research trends and issues in microwave assisted extraction of phenolics: Have we really done enough. TrAC-Trends Anal. Chem. 2016, 85, 140–152. [Google Scholar] [CrossRef]
- Gomes, S.V.F.; Portugal, L.A.; Anjos, J.P.; de Jesus, O.N.; de Oliveira, E.J.; David, J.P.; David, J.M. Accelerated solvent extraction of phenolic compounds exploiting a Box-Behnken design and quantification of five flavonoids by HPLC-DAD in Passiflora species. Microchem. J. 2017, 132, 28–35. [Google Scholar] [CrossRef]
- Paes, J.; Dotta, R.; Barbero, G.F.; Martínez, J. Extraction of phenolic compounds and anthocyanins from blueberry (Vaccinium myrtillus L.) residues using supercritical CO2 and pressurized liquids. J. Supercrit. Fluids 2014, 95, 8–16. [Google Scholar] [CrossRef]
- Setyaningsih, W.; Saputro, I.E.; Palma, M.; Barroso, C.G. Optimization of the ultrasound-assisted extraction of tryptophan and its derivatives from rice (Oryza sativa) grains through a response surface methodology. J. Cereal Sci. 2017, 75, 192–197. [Google Scholar] [CrossRef]
- Tena, M.T. Extraction | Pressurized Liquid Extraction. In Encyclopedia of Analytical Science; Elsevier: Amsterdam, The Netherlands, 2019; pp. 78–83. [Google Scholar] [CrossRef]
- Herzyk, F.; Pilakowska-Pietras, D.; Korzeniowska, M. Supercritical Extraction Techniques for Obtaining Biologically Active Substances from a Variety of Plant Byproducts. Foods 2024, 13, 1713. [Google Scholar] [CrossRef]
- Gligor, O.; Mocan, A.; Moldovan, C.; Locatelli, M.; Crișan, G.; Ferreira, I.C.F.R. Enzyme-assisted extractions of polyphenols—A comprehensive review. Trends Food Sci. Technol. 2019, 88, 302–315. [Google Scholar] [CrossRef]
- Chen, L.; Zhong, J.; Lin, Y.; Yuan, T.; Huang, J.; Gan, L.; Wang, L.; Lin, C.; Fan, H. Microwave and enzyme co-assisted extraction of anthocyanins from Pulple-heart Radish: Process optimization, composition analysis and antioxidant activity. LWT-Food Sci. Technol. 2023, 187, 115312. [Google Scholar] [CrossRef]
- Domínguez-Rodríguez, M.L.G.; Plaza, M.M. Enzyme-assisted extraction of bioactive non-extractable polyphenols from sweet cherry (Prunus avium L.) pomace. Food Chem. 2021, 339, 128086. [Google Scholar] [CrossRef] [PubMed]
- Setford, P.C.; Jeffery, D.W.; Grbin, P.R.; Muhlack, R.A. Factors affecting extraction and evolution of phenolic compounds during red wine maceration and the role of process modelling. Trends Food Sci. Technol. 2017, 69, 106–117. [Google Scholar] [CrossRef]
- Bubalo, M.C.; Ćurko, N.; Tomašević, M.; Ganić, K.K.; Redovniković, I.R. Green extraction of grape skin phenolics by using deep eutectic solvents. Food Chem. 2016, 200, 159–166. [Google Scholar] [CrossRef]
- Airouyuwa, J.O.; Sivapragasam, N.; Redha, A.A.; Maqsood, S. Sustainable green extraction of anthocyanins and carotenoids using deep eutectic solvents (DES): A review of recent developments. Food Chem. 2024, 448, 139061. [Google Scholar] [CrossRef]
- Kurek, M.A.; Custodio-Mendoza, J.A.; Aktas, H.; Pokorski, P. Exploring deep eutectic solvent extraction’s impact on anthocyanin degradation kinetics in various conditions. LWT-Food Sci. Technol. 2024, 198, 115994. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, Z. Optimization and comparison of ultrasound/microwave assisted extraction (UMAE) and ultrasonic assisted extraction (UAE) of lycopene from tomatoes. Ultrason. Sonochem. 2008, 15, 731–737. [Google Scholar] [CrossRef]
- Gogate, P.R.; Kabadi, A.M. A review of applications of cavitation in biochemical engineering/biotechnology. Biochem. Eng. J. 2009, 44, 60–72. [Google Scholar] [CrossRef]
- Geciova, J.; Bury, D.; Jelen, P. Methods for disruption of microbial cells for potential use in the dairy industry: A review. Int. Dairy J. 2002, 12, 541–553. [Google Scholar] [CrossRef]
- Pinela, J.; Prieto, M.A.; Pereira, E.; Jabeur, I.; Barreiro, M.F.; Barros, L.; Ferreira, I.C.F.R. Optimization of heat- and ultrasound-assisted extraction of anthocyanins from Hibiscus sabdariffa calyces for natural food colorants. Food Chem. 2019, 275, 309–321. [Google Scholar] [CrossRef]
- Bosiljkov, T.; Dujmić, F.; Bubalo, M.C.; Hribar, J.; Vidrih, R.; Brnčić, M.; Zlatic, E.; Redovniković, I.R.; Jokić, S. Natural deep eutectic solvents and ultrasound-assisted extraction: Green approaches for extraction of wine lees anthocyanins. Food Bioprod. Process. 2017, 102, 195–203. [Google Scholar] [CrossRef]
- Ivanović, M.; Albreht, A.; Krajnc, P.; Vovk, I.; Razboršek, M.I. Sustainable ultrasound-assisted extraction of valuable phenolics from inflorescences of Helichrysum arenarium L. using natural deep eutectic solvents. Ind. Crops Prod. 2021, 160, 113102. [Google Scholar] [CrossRef]
- Devi, L.M.; Das, A.B.; Badwaik, L.S. Ultrasound-assisted extraction of anthocyanin from black rice bran and its encapsulation by complex coacervation. Food Hydrocoll. Health 2024, 5, 100174. [Google Scholar] [CrossRef]
- Albuquerque, B.R.; Pinela, J.; Pereira, C.; Mandim, F.; Heleno, S.; Oliveira, M.B.P.P.; Barros, L. Recovery of anthocyanins from Eugenia spp. fruit peels: A comparison between heat- and ultrasound-assisted extraction. Sustain. Food Technol. 2024, 2, 189–201. [Google Scholar] [CrossRef]
- Chan, C.; Yusoff, R.; Ngoh, G.; Kung, F.W. Microwave-assisted extractions of active ingredients from plants. J. Chromatogr. A 2011, 16, 6213–6225. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Avila, V.; Luque de Castro, M.D. Microwave-Assisted Extraction. In Reference Module in Chemistry, Molecular Sciences and Chemical Engineering; Elsevier Inc.: Amsterdam, The Netherlands, 2014. [Google Scholar] [CrossRef]
- Llompart, M.; Celeiro, M.; Dagnac, T. Microwave-assisted extraction of pharmaceuticals, personal care products and industrial contaminants in the environment. TrAC-Trends Anal. Chem. 2019, 116, 136–150. [Google Scholar] [CrossRef]
- López-Salazar, H.; Camacho-Díaz, B.H.; Ocampo, M.L.A.; Jiménez-Aparicio, A.R. Microwave-assisted extraction of functional compounds from plants: A Review. BioResources 2023, 18, 6614–6638. [Google Scholar] [CrossRef]
- Elez Garofulić, I.; Dragović-Uzelac, V.; Režek Jambrak, A.; Jukić, M. The effect of microwave assisted extraction on the isolation of anthocyanins and phenolic acids from sour cherry Marasca (Prunus cerasus var. Marasca). J. Food Eng. 2013, 117, 437–442. [Google Scholar] [CrossRef]
- Gamage, G.C.; Choo, W.S. Hot water extraction, ultrasound, microwave and pectinase-assisted extraction of anthocyanins from blue pea flower. Food Chem. Adv. 2023, 2, 100209. [Google Scholar] [CrossRef]
- Alves, T.P.; Triques, C.C.; Palsikowski, P.A.; da Silva, C.; Fiorese, M.L.; da Silva, E.A.; Fagundes-Klen, M.R. Improved extraction of bioactive compounds from Monteverdia aquifolia leaves by pressurized-liquid and ultrasound-assisted extraction: Yield and chemical composition. J. Supercrit. Fluids 2022, 181, 105468. [Google Scholar] [CrossRef]
- Oliveira, A.M.B.; Viganó, J.; Sanches, V.L.; Rostagno, M.A.; Martínez, J. Extraction of potential bioactive compounds from industrial Tahiti lime (Citrus latifólia Tan.) by-product using pressurized liquids and ultrasound-assisted extraction. Food Res. Int. 2022, 157, 111381. [Google Scholar] [CrossRef] [PubMed]
- Vardanega, R.; Fuentes, F.S.; Palma, J.; Bugueño-Muñoz, W.; Cerezal-Mezquita, P.; Ruiz-Domínguez, M.C. Valorization of granadilla waste (Passiflora ligularis, Juss.) by sequential green extraction processes based on pressurized fluids to obtain bioactive compounds. J. Supercrit. Fluids 2023, 194, 105833. [Google Scholar] [CrossRef]
- Sabino, L.B.S.; Alves Filho, E.G.; Fernandes, F.A.N.; de Brito, E.S.; da Silva Júnior, I.J. Optimization of pressurized liquid extraction and ultrasound methods for recovery of anthocyanins present in jambolan fruit (Syzygium cumini L.). Food Bioprod. Process. 2021, 127, 77–89. [Google Scholar] [CrossRef]
- Avhad, D.N.; Rathod, V.K. Ultrasound assisted production of a fibrinolytic enzyme in a bioreactor. Ultrason. Sonochem. 2015, 22, 257–264. [Google Scholar] [CrossRef] [PubMed]
- Feuereisen, M.M.; Zimmermann, B.F.; Schulze-Kaysers, N.; Schieber, A. Differentiation of Brazilian Peppertree (Schinus terebinthifolius Raddi) and Peruvian Peppertree (Schinus molle L.) Fruits by UHPLC–UV–MS Analysis of Their Anthocyanin and Biflavonoid Profiles. J. Agric. Food Chem. 2017, 65, 5330–5338. [Google Scholar] [CrossRef] [PubMed]
- Bombana, V.B.; Nascimento, L.H.; Rigo, D.; Fischer, B.; Colet, R.; Paroul, N.; Dallago, R.M.; Junges, Al.; Cansian, R.L.; Backes, G.T. Extraction by maceration, ultrasound, and pressurizes liquid methods for the recovery of anthocyanins present in the peel of guabiju (Myrcianthes pungens): Maximazing the extraction of anthocyanins from peel of guabiju. Sustain. Chem. Pharm. 2023, 36, 101264. [Google Scholar] [CrossRef]
- Sánchez-Camargo, A.P.; Mendiola, J.A.; Ibáñez, E.; Herrero, M. Supercritical Fluid Extraction. In Reference Module in Chemistry, Molecular Sciences and Chemical Engineering; Elsevier: Amsterdam, The Netherlands, 2014. [Google Scholar] [CrossRef]
- Idham, Z.; Putra, N.R.; Aziz, A.H.A.; Zaini, A.S.; Rasidek, N.A.M.; Mili, N.; Yunus, M.A.C. Improvement of extraction and stability of anthocyanins, the natural red pigment from roselle calyces using supercritical carbon dioxide extraction. J. CO2 Util. 2022, 56, 101839. [Google Scholar] [CrossRef]
- Qu, A.; Du, C.; Wu, Z.; Wu, Y.; Yu, M.; Li, D.; Ruan, X.; Wang, Q. Composing functional food from agro-forest wastes: Selectively extracting bioactive compounds using supercritical fluid extraction. Food Chem. 2024, 455, 139848. [Google Scholar] [CrossRef]
- Jiao, G.; Pour, A.K. Extraction of anthocyanins from haskap berry pulp using supercritical carbon dioxide: Influence of co-solvent composition and pretreatment. LWT-Food Sci. Technol. 2018, 98, 237–244. [Google Scholar] [CrossRef]
- Nadar, S.S.; Rao, P.; Rathod, V.K. Enzyme assisted extraction of biomolecules as an approach to novel extraction technology: A review. Food Res. Int. 2018, 108, 309–330. [Google Scholar] [CrossRef]
- Amulya, P.R.; Islam, R. Optimization of enzyme-assisted extraction of anthocyanins from eggplant (Solanum melongena L.) peel. Food Chem. X 2023, 18, 100643. [Google Scholar] [CrossRef] [PubMed]
- González, M.J.A.; Carrera, C.; Barbero, G.F.; Palma, M. A comparison study between ultrasound–assisted and enzyme–assisted extraction of anthocyanins from blackcurrant (Ribes nigrum L.). Food Chem. X 2022, 13, 100192. [Google Scholar] [CrossRef] [PubMed]
- Mihindukulasuriya, S.D.F.; Lim, L.T. Nanotechnology development in food packaging: A review. Trends Food Sci. Technol. 2014, 40, 149–167. [Google Scholar] [CrossRef]
- Ghaani, M.; Cozzolino, C.A.; Castelli, G.; Farris, S. An overview of the intelligent packaging technologies in the food sector. Trends Food Sci. Technol. 2016, 51, 1–11. [Google Scholar] [CrossRef]
- Dobrucka, R.; Przekop, R. New perspectives in active and intelligent food packaging. J. Food Process. Preserv. 2019, 43, e14194. [Google Scholar] [CrossRef]
- Poyatos-Racionero, E.; Ros-Lis, J.V.; Vivancos, J.; Martínez-Máñez, R. Recent advances on intelligent packaging as tools to reduce food waste. J. Clean. Prod. 2018, 172, 3398–3409. [Google Scholar] [CrossRef]
- Sganzerla, W.; Ribeiro, C.; Rodrigues, N.; Rosa, C.; Ferrareze, J.; Veeck, A.; Nunes, M. Biocatalysis and Agricultural Biotechnology Bioactive and pH-sensitive films based on carboxymethyl cellulose and blackberry (Morus nigra L.) anthocyanin-rich extract: A perspective coating material to improve the shelf life of cherry tomato. Biocatal. Agric. Biotechnol. 2021, 33, 101989. [Google Scholar] [CrossRef]
- Kalpana, S.; Priyadarshini, S.R.; Maria Leena, M.; Moses, J.A.; Anandharamakrishnan, C. Intelligent packaging: Trends and applications in food systems. Trends Food Sci. Technol. 2019, 93, 145–157. [Google Scholar] [CrossRef]
- Merz, B.; Capello, C.; Leandro, G.C.; Moritz, D.E.; Monteiro, A.R.; Valencia, G.A. A novel colorimetric indicator film based on chitosan, polyvinyl alcohol and anthocyanins from jambolan (Syzygium cumini) fruit for monitoring shrimp freshness. Int. J. Biol. Macromol. 2020, 153, 625–632. [Google Scholar] [CrossRef]
- Lv, H.; Wang, C.; He, D.; Zhao, H.; Zhao, M.; Xu, E.; Jin, Z.; Yuan, C.; Guo, L.; Wu, Z.; et al. Intelligent food tag: A starch-anthocyanin-based pH-sensitive electrospun nanofiber mat for real-time food freshness monitoring. Int. J. Biol. Macromol. 2024, 256, 128384. [Google Scholar] [CrossRef]
- Chi, W.; Cao, L.; Sun, G.; Meng, F.; Zhang, C.; Li, J.; Wang, L. Developing a highly pH- sensitive ĸ-carrageenan-based intelligent film incorporating grape skin powder via a cleaner process. J. Clean. Prod. 2020, 244, 118862. [Google Scholar] [CrossRef]
- Kabir, F.; Bhuiyan, M.M.H.; Manir, M.S.; Rahaman, M.S.; Khan, M.A.; Ikegami, T. Development of dye-sensitized solar cell based on combination of natural dyes extracted from Malabar spinach and red spinach. Results Phys. 2019, 14, 102474. [Google Scholar] [CrossRef]
- Jafarzadeh, S.; Yildiz, Z.; Yildiz, P.; Strachowski, P.; Forough, M.; Esmaeili, Y.; Naebe, M.; Abdollahi, M. Advanced technologies in biodegradable packaging using intelligent sensing to fight food waste. Int. J. Biol. Macromol. 2024, 261, 129647. [Google Scholar] [CrossRef] [PubMed]
- Luchese, C.L.; Abdalla, V.F.; Spada, J.C.; Tessaro, I.C. Evaluation of blueberry residue incorporated cassava starch film as pH indicator in different simulants and foodstuffs. Food Hydrocoll. 2018, 82, 209–218. [Google Scholar] [CrossRef]
- Prietto, L.; Mirapalhete, T.C.; Pinto, V.Z.; Hoffmann, J.F.; Vanier, N.L.; Lim, L.T.; Guerra Dias, A.R.; da Rosa Zavareze, E. pH-sensitive films containing anthocyanins extracted from black bean seed coat and red cabbage. LWT-Food Sci. Technol. 2017, 80, 492–500. [Google Scholar] [CrossRef]
- Pessanha, K.L.F.; Farias, M.G.; Carvalho, C.W.P.; Godoy, R.L.O. Starch Films Added of Açaí Pulp (Euterpe oleracea Martius). Braz. Arch. Biol. Technol. 2018, 61, e18170824. [Google Scholar] [CrossRef]
- Jamróz, E.; Kulawik, P.; Guzik, P.; Duda, I. The verification of intelligent properties of furcellaran films with plant extracts on the stored fresh Atlantic mackerel during storage at 2 °C. Food Hydrocoll. 2019, 97, 105211. [Google Scholar] [CrossRef]
- Wang, S.; Xia, P.; Wang, S.; Liang, J.; Sun, Y.; Yue, P.; Gao, X. Packaging films formulated with gelatin and anthocyanins nanocomplexes: Physical properties, antioxidant activity and its application for olive oil protection. Food Hydrocoll. 2019, 96, 617–624. [Google Scholar] [CrossRef]
- Kusznierewicz, B.; Staroszczyk, H.; Malinowska-Panczyk, E.; Parchem, K.; Bartoszek, A. Novel ABTS-dot-blot method for the assessment of antioxidant properties of food packaging. Food Packag. Shelf Life 2020, 24, 100478. [Google Scholar] [CrossRef]
- Velasquez, P.; Bustos, D.; Montenegro, G.; Giordano, A. Ultrasound-Assisted extraction of anthocyanins using natural deep eutectic solvents and their incorporation in edible films. Molecules 2021, 26, 984. [Google Scholar] [CrossRef]
- Sani, M.A.; Tavassoli, M.; Hamishehkar, H.; McClements, D.J. Carbohydrate based films containing pH-sensitive red barberry anthocyanins: Application as biodegradable smart food packaging materials. Carbohydr. Polym. 2021, 255, 117488. [Google Scholar] [CrossRef] [PubMed]
- Wardani, N.I.; Alahmad, W.; Varanusuoakul, P. A review of utilizing anthocyanins as natural reagents for eco-friendly solid-state colorimetric sensors: A green perspective. Green Anal. Chem. 2024, 9, 100117. [Google Scholar] [CrossRef]
- Chen, W.; Ma, S.; Wang, Q.; McClements, D.J.; Liu, X.; Ngai, T.; Liu, F. Fortification of edible films with bioactive agents: A review of their formation, properties, and application in food preservation. Crit. Rev. Food Sci. Nutr. 2022, 62, 5029–5055. [Google Scholar] [CrossRef] [PubMed]
- Chayavanich, K.; Thiraphibundet, P.; Imyim, A. Biocompatible film sensors containing red radish extract for meat spoilage observation. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2020, 226, 117601. [Google Scholar] [CrossRef]
- Dong, H.; Ling, Z.; Zhang, X.; Zhang, X.; Ramaswamy, S.; Xu, F. Smart colorimetric sensing films with high mechanical strength and hydrophobic properties for visual monitoring of shrimp and pork freshness. Sens. Actuators B Chem. 2020, 309, 127752. [Google Scholar] [CrossRef]
- Wei, Y.C.; Cheng, C.H.; Ho, Y.C.; Tsai, M.L.; Mi, F.L. Active gellan gum/purple sweet potato composite films capable of monitoring pH variations. Food Hydrocoll. 2017, 69, 491–502. [Google Scholar] [CrossRef]
- Pourjavaher, S.; Almasi, H.; Meshkini, S.; Pirsa, S.; Parandi, E. Development of a colorimetric pH indicator based on bacterial cellulose nanofibers and red cabbage (Brassica oleraceae) extract. Carbohydr. Polym. 2017, 156, 193–201. [Google Scholar] [CrossRef]
- Luo, Q.; Hossen, M.A.; Zeng, Y.; Dai, J.; Li, S.; Qin, W.; Liu, Y. Gelatin-based composite films and their application in food packaging: A review. J. Food Eng. 2022, 313, 110762. [Google Scholar] [CrossRef]
- Bhargava, N.; Sharanagat, V.S.; Mor, R.S.; Kumar, K. Active and intelligent biodegradable packaging films using food and food waste-derived bioactive compounds: A review. Trends Food Sci. Technol. 2020, 105, 385–401. [Google Scholar] [CrossRef]
- Kaewprachu, P.; Romruen, O.; Jaisan, C.; Rawdkuen, S.; Klunklin, W. Smart colorimetric sensing films based on carboxymethyl cellulose incorporated with a natural pH indicator. Int. J. Biol. Macromol. 2024, 259, 129156. [Google Scholar] [CrossRef]
- Quilez-Molina, A.I.; Merino, D.; Dumon, M. Porous starch embedded with anthocyanins-CMC coating as bifunctional packaging with seafood freshness monitoring properties. Food Hydrocoll. 2024, 154, 110114. [Google Scholar] [CrossRef]
- Koop, B.L.; Soares, L.S.; Cesca, K.; Souza, V.G.L.; Valencia, G.A.; Monteiro, A.R. Enhancing the stability of anthocyanins extracts through adsorption into nanoclays—Development of a smart biohybrid sensor for intelligent food packaging or as natural food additive/preservative. Food Bioprod. Process. 2024, 147, 315–326. [Google Scholar] [CrossRef]
- Wagh, R.V.; Riahi, Z.; Kim, J.T.; Rhim, J. Carrageenan-based functional films hybridized with carbon dots and anthocyanins from rose petals for smart food packaging applications. Int. J. Biol. Macromol. 2024, 272, 132817. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Yan, X.; Zhang, J.; Wu, X.; Luan, M.; Zhang, Q. Preparation and characterization of pH-sensitive intelligent packaging films based on cassava starch/polyvinyl alcohol matrices containing Aronia melanocarpa anthocyanins. LWT-Food Sci. Technol. 2024, 194, 115818. [Google Scholar] [CrossRef]
- Zheng, D.; Cao, S.; Li, D.; Wu, Y.; Duan, P.; Liu, S.; Li, X.; Zhang, X.; Chen, Y. Fabrication and characterization of chitosan/anthocyanin intelligent packaging film fortified by cellulose nanocrystal for shrimp preservation and visual freshness monitoring. Int. J. Biol. Macromol. 2024, 264, 130692. [Google Scholar] [CrossRef]
- Riahi, Z.; Khan, A.; Rhim, J.; Shin, G.H.; Kim, J.T. Carrageenan-based active and intelligent packaging films integrated with anthocyanin and TiO2-doped carbon dots derived from sweet potato peels. Int. J. Biol. Macromol. 2024, 259, 129371. [Google Scholar] [CrossRef]
- Kafashan, A.; Joze-Majidi, H.; Kazemi-Pasarvi, S.; Babei, A.; Jafari, S.M. Nanocomposites of soluble soybean polysaccharides with grape skin anthocyanins and graphene oxide as an efficient halochromic smart packaging. Sustain. Mater. Technol. 2023, 38, e00755. [Google Scholar] [CrossRef]
- Huang, X.; Xu, F.; Yun, D.; Li, C.; Kan, J.; Liu, J. Development and application of intelligent packaging films based on guar gum, polyvinyl alcohol and hyacinth bean (Lablab purpureus (L.) sweet) anthocyanins. Int. J. Biol. Macromol. 2023, 251, 126369. [Google Scholar] [CrossRef]
- Mirmoeini, S.S.; Moradi, M.; Tajik, H.; Almasi, H.; Gama, F.M. Cellulose/Salep-based intelligent aerogel with red grape anthocyanins: Preparation, characterization and application in beef packaging. Food Chem. 2023, 425, 136493. [Google Scholar] [CrossRef]
- Huang, X.; Du, L.; Li, Z.; Xue, J.; Shi, J.; Zhai, X.; Zhang, J.; Zhang, N.; Holmes, M.; Zou, X. Fabrication and characterization of colorimetric indicator for Salmon freshness monitoring using agar/polyvinyl alcohol gel and anthocyanin from different plant sources. Int. J. Biol. Macromol. 2023, 239, 124198. [Google Scholar] [CrossRef]
- Wang, F.; Xie, C.; Tang, H.; Li, H.; Hou, J.; Zhang, R.; Liu, Y.; Jiang, L. Intelligent packaging based on chitosan/fucoidan incorporated with coleus grass (Plectranthus scutellarioides) leaves anthocyanins and its application in monitoring the spoilage of salmon (Salmo salar L.). Int. J. Biol. Macromol. 2023, 252, 126423. [Google Scholar] [CrossRef]
Method | Advantage | Disadvantage | Reference |
---|---|---|---|
Solvent extraction | This is an extraction method of easy operation. Also, it is possible to use several solvents, such as deep eutectic solvents. Also, this extraction method has been related to good values of anthocyanin recovery. | The main disadvantage of this method is related to the high amount of waste generated. Also, it has a long time of reaction and low yield. | [70,71,72] |
Ultrasound-assisted extraction | This method has as its main advantages faster mass transfer, the usage of reduced temperature, low solvent consumption, low installation cost and ease of operation. | The main disadvantage is the potential for inhomogeneous heating in the extraction process. Also, the intensity of the bubbles generated can affect the cells, enhancing the temperature and causing an enhancement of the temperature. | [73,74,75] |
Microwave-assisted extraction | This method uses low amounts of solvent and sample, as well as short treatment times. Also, it has easy adaptation to industrial scale and low operating costs. | Some factors as the time, extraction power and effect of temperature on the sample must be carefully considered to avoid anthocyanin degradation due to excessive heat. | [76,77,78] |
Pressurized liquid extraction | The use of high pressure allows working at high temperatures. These conditions increase the solubility of the anthocyanins. | The main disadvantages are related to the high cost of the equipment and the necessity of optimization of extraction parameters, such as temperature and pressure. | [79,80,81,82] |
Supercritical fluid extraction | This method results in an extract of elevated quality, with high purity. Also, this method is considered more sustainable and environmentally friendly. | This method has a substantial initial investment. Also, it is a process that demands a high amount of energy due to supercritical conditions. | [83] |
Enzyme-assisted extraction | The extraction is performed under relatively mild conditions. Also, this method has presented a higher yield and quality extract. | The major disadvantage is the long extraction time. Also, it is well known that the presence of enzymes can reduce the stability of anthocyanins, so stability evaluation must be performed. | [84,85,86] |
Source | Matrix | Food | Main Results | Reference |
---|---|---|---|---|
Grape peel | Rice starch and citrated starch | Shrimp | The porous starch matrix provided great mechanical resistance, higher than the commercial polystyrene foam available. The anthocyanins incorporated into the foam presented efficient colorimetric changes based on the pH (∆E approximately 40). Also, both films developed exhibited moderate antioxidant activity (between 2 and 16%). | [147] |
Grape pomace | Arrowroot starch | Fish meat | The grape pomace extract has colors varying from purple and blue tones. When added to the arrowroot starch film, it was able to present a color change, from pink at acidic pH to green at basic pH. All firms presented color differences with values higher than 3, which is easily detected by the naked eye. | [46] |
Blueberry | Wheat gluten proteins | Shrimp | The film developed presented improved water vapor barrier, mechanical and light blocking. Also, it was efficient to monitor shrimp degradation, changing color according to the pH. Also, this color variation is stable for 15 days. | [47] |
Jambolan fruit extract | Laponite and montmorillonite nanoclay | Shrimp | Anthocyanins were stabilized into montmorillonite and showed antioxidant properties. They maintained a stable color for 60 days and allowed us to monitor the quality of fresh shrimp throughout their shelf life. | [148] |
Roselle (Hibiscus sabdariffa) | Octenyl succinic anhydride starch and polyvinyl alcohol | Pork and Shrimp | The film produced presented good morphology, thermal and color stability, as well as pH sensitivity, changing from bright red to yellow with increasing pH from 2.0 to 12.0. The colorimetric changes can be visualized by the naked eye and represent the freshness loss. | [126] |
Rose petal | Carrageenan hybridized with carbon dots | Pork and Shrimp | The film produced presented good thermal stability. The loss of freshness was successfully visualized with a color change from red to yellow, presenting a high potential for application in food packaging. | [149] |
Aronia melanocarpa anthocyanins | Cassava starch and PVA films | Milk | Aronia melanocarpa anthocyanins improved the mechanical (from 10 to 25 MPa) and UV barrier properties of the starch/PVA films (between 60 and 80% at 800 nm). The colorimetric responses of the films to pH changes, combined with a rancid aroma from the milk, indicated the potential use of the produced material as intelligent packaging. | [150] |
Blueberries extract | Chitosan films fortified by cellulose nanocrystal | Shrimp | Biodegradable packaging was prepared based on chitosan that was incorporated with blueberry extract and fortified with cellulose nanocrystals. Applying 9% cellulose nanocrystals improved the film’s mechanical properties. However, it showed a negative impact on its barrier properties. The developed films showed antioxidant and antimicrobial properties and colorimetric responses to pH variations, showing the potential to indicate shrimp freshness and delay its deterioration. | [151] |
Sweet potato peel extract | Carrageenan films integrated with TiO2 carbon dots | Shrimp | Films manufactured with carrageenan and incorporating carbon dots doped with TiO2 and anthocyanins from sweet potato peel showed 100% UV protection, high antioxidant activity and antibacterial activity against strains of L. monocytogenes and E. coli. Due to their sensitivity to pH variations, the films produced showed the ability to monitor shrimp freshness in real time, serving as a good indicator and helping to provide safe food. | [152] |
Grape skin | Soybean polysaccharide, glycerol and graphene oxide | Salmon | The film, added with anthocyanins, presented a reduction in the mechanical (from 27.2 to 2.7 MPa) and thermal properties and presented an increase in the MC (15.1 to 25.1%). The film exhibited a recognizable color alteration when the environment changed to alkaline, being a suitable option to indicate freshness changes. | [153] |
Hyacinth bean (Lablab purpureus (L.) | Films based on guar gum (GG) and polyvinyl alcohol (PVA) | Shrimp and pork | GG/PVA-based films incorporated with hyacinth bean anthocyanins (HBAs) were developed to monitor the quality of meat products, such as shrimp and pork. HBA improved the uniformity and compactness of the films by forming hydrogen bonds with the film matrix. The application of 2% HBA enhanced the films’ mechanical, thermal, barrier properties and antioxidant activity. The developed films showed responses to pH variations during refrigerated storage of shrimp and pork, making them suitable for application in the intelligent packaging field. | [154] |
Red grape | Cellulose/Salep-based intelligent aerogel | Beef | Aerogel based on cellulose/Salep incorporated with anthocyanins was developed to monitor the freshness of beef. The aerogel produced by freeze-drying showed high porosity (90.22–91.13%) and low density (13.55–16.08 mg/cm3), which influenced the sensitivity and stability of the color. During meat storage, the aerogels showed high sensitivity to pH variations due to the chemical breakdown of proteins and the release of volatile bases. | [155] |
Black wolfberry, Roselle, Morning glory, purple potato, Rose, Carnation, Mulberry, Red cabbage and Grapes | Agar and polyvinyl alcohol | Salmon | Among all the anthocyanin sources, Roselle presented the highest absorption spectrum value. Also, when added to the hydrogel film, it was an effective freshness indicator, changing from red to green. | [156] |
Coleus grass (Plectranthus scutellarioides) leaves | Chitosan and Fucoidan | Salmon | The addition of anthocyanins improved the antibacterial (from 10 to 25 mm) and antioxidant activity (from 20 to 80%) of the films. Also, the films produced are sensitive to ammonia gas produced during food degradation, even with a few anthocyanins. | [157] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Klaric, S.V.; Galvão Maciel, A.; Arend, G.D.; Tres, M.V.; de Lima, M.; Soares, L.S. Application of Plant Extracts Rich in Anthocyanins in the Development of Intelligent Biodegradable Packaging: An Overview. Processes 2025, 13, 191. https://doi.org/10.3390/pr13010191
Klaric SV, Galvão Maciel A, Arend GD, Tres MV, de Lima M, Soares LS. Application of Plant Extracts Rich in Anthocyanins in the Development of Intelligent Biodegradable Packaging: An Overview. Processes. 2025; 13(1):191. https://doi.org/10.3390/pr13010191
Chicago/Turabian StyleKlaric, Stephany Vasconcellos, Amanda Galvão Maciel, Giordana Demaman Arend, Marcus Vinícius Tres, Marieli de Lima, and Lenilton Santos Soares. 2025. "Application of Plant Extracts Rich in Anthocyanins in the Development of Intelligent Biodegradable Packaging: An Overview" Processes 13, no. 1: 191. https://doi.org/10.3390/pr13010191
APA StyleKlaric, S. V., Galvão Maciel, A., Arend, G. D., Tres, M. V., de Lima, M., & Soares, L. S. (2025). Application of Plant Extracts Rich in Anthocyanins in the Development of Intelligent Biodegradable Packaging: An Overview. Processes, 13(1), 191. https://doi.org/10.3390/pr13010191