Advancing Energy Recovery: Evaluating Torrefaction Temperature Effects on Food Waste Properties from Fruit and Vegetable Processing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Sample Preparation
2.2. Torrefaction Experiments
2.3. Analytical Methods
2.3.1. Higher Heating Value Analysis, Mass Yield and Energy Yield
- mr = weight of the raw sample;
- mt = weight of the torrefied sample.
2.3.2. Thermogravimetric Analysis (TGA)
3. Results and Discussion
3.1. Parameters for the Efficiency of the Torrefaction Process
3.2. TGA/DTG Analysis
3.3. Hydrophobicity
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
ATR | Attenuated total reflection |
DTG | Derivative thermogravimetric |
ED | Energy density |
EF | Enhancement factor |
EY | Energy yield |
FC | Fixed carbon |
FR | Fuel ratio |
FTIR | Fourier transform infrared spectroscopy |
FW | Food waste |
HHV | Higher heating value |
MY | Mass yield |
RH | Relative humidity |
TGA | Thermogravimetric analysis |
WL | Weight loss |
References
- Orisaleye, J.I.; Jekayinfa, S.O.; Pecenka, R.; Ogundare, A.A.; Akinseloyin, M.O.; Fadipe, O.L. Investigation of the Effects of Torrefaction Temperature and Residence Time on the Fuel Quality of Corncobs in a Fixed-Bed Reactor. Energies 2022, 15, 5284. [Google Scholar] [CrossRef]
- Dyjakon, A.; Noszczyk, T.; Smędzik, M. The Influence of Torrefaction Temperature on Hydrophobic Properties of Waste Biomass from Food Processing. Energies 2019, 12, 4609. [Google Scholar] [CrossRef]
- Sarker, A.; Ahmmed, R.; Ahsan, S.M.; Rana, J.; Ghosh, M.K.; Nandi, R. A Comprehensive Review of Food Waste Valorization for the Sustainable Management of Global Food Waste. Sustain. Food Technol. 2024, 2, 48–69. [Google Scholar] [CrossRef]
- Kende, Z.; Piroska, P.; Szemők, G.E.; Khaeim, H.; Sghaier, A.H.; Gyuricza, C.; Tarnawa, Á. Optimizing Water, Temperature, and Density Conditions for In Vitro Pea (Pisum sativum L.) Germination. Plants 2024, 13, 2776. [Google Scholar] [CrossRef]
- Economou, F.; Voukkali, I.; Papamichael, I.; Phinikettou, V.; Loizia, P.; Naddeo, V.; Sospiro, P.; Liscio, M.C.; Zoumides, C.; Țîrcă, D.M.; et al. Turning Food Loss and Food Waste into Watts: A Review of Food Waste as an Energy Source. Energies 2024, 17, 3191. [Google Scholar] [CrossRef]
- Ibitoye, S.E.; Mahamood, R.M.; Jen, T.-C.; Loha, C.; Akinlabi, E.T. An Overview of Biomass Solid Fuels: Biomass Sources, Processing Methods, and Morphological and Microstructural Properties. J. Bioresour. Bioprod. 2023, 8, 333–360. [Google Scholar] [CrossRef]
- Álvarez, A.; Nogueiro, D.; Pizarro, C.; Matos, M.; Bueno, J.L. Non-Oxidative Torrefaction of Biomass to Enhance Its Fuel Properties. Energy 2018, 158, 1–8. [Google Scholar] [CrossRef]
- Catchpole, O.; Tallon, S.; Dyer, P.; Montanes, F.; Moreno, T.; Vagi, E.; Eltringham, W.; Billakanti, J. Integrated Supercritical fluid extraction and Bioprocessing. Am. J. Biochem. Biotechnol. 2012, 8, 263–287. [Google Scholar] [CrossRef]
- Caton, P.A.; Carr, M.A.; Kim, S.S.; Beautyman, M.J. Energy Recovery from Waste Food by Combustion or Gasification with the Potential for Regenerative Dehydration: A Case Study. Energy Convers. Manag. 2010, 51, 1157–1169. [Google Scholar] [CrossRef]
- Wang, T.; Zhai, Y.; Zhu, Y.; Li, C.; Zeng, G. A Review of the Hydrothermal Carbonization of Biomass Waste for Hydrochar Formation: Process Conditions, Fundamentals, and Physicochemical Properties. Renew. Sustain. Energy Rev. 2018, 90, 223–247. [Google Scholar] [CrossRef]
- Murugesan, P.; Raja, V.; Dutta, S.; Moses, J.A.; Anandharamakrishnan, C. Food Waste Valorisation via Gasification—A Review on Emerging Concepts, Prospects and Challenges. Sci. Total Environ. 2022, 851, 157955. [Google Scholar] [CrossRef] [PubMed]
- Naveed, M.H.; Gul, J.; Khan, M.N.A.; Naqvi, S.R.; Štěpanec, L.; Ali, I. Torrefied Biomass Quality Prediction and Optimization Using Machine Learning Algorithms. Chem. Eng. J. Adv. 2024, 19, 100620. [Google Scholar] [CrossRef]
- Bergman, P.; Boersma, A.; Zwart, R.; Kiel, J. Torrefaction for Biomass Co-Firing in Existing Coal-Fired Power Stations; Energy Research Centre of the Netherlands ECN: Petten, The Netherlands, 2005. [Google Scholar]
- Ivanovski, M.; Goričanec, D.; Urbancl, D. The Evaluation of Torrefaction Efficiency for Lignocellulosic Materials Combined with Mixed Solid Wastes. Energies 2023, 16, 3694. [Google Scholar] [CrossRef]
- Ong, H.C.; Yu, K.L.; Chen, W.-H.; Pillejera, M.K.; Bi, X.; Tran, K.-Q.; Pétrissans, A.; Pétrissans, M. Variation of Lignocellulosic Biomass Structure from Torrefaction: A Critical Review. Renew. Sustain. Energy Rev. 2021, 152, 111698. [Google Scholar] [CrossRef]
- Farooq, M.U.; Sadiq, K.; Anis, M.; Hussain, G.; Usman, M.; Fouad, Y.; Mujtaba, M.A.; Fayaz, H.; Silitonga, A.S. Turning Trash into Treasure: Torrefaction of Mixed Waste for Improved Fuel Properties. A Case Study of Metropolitan City. Heliyon 2024, 10, e28980. [Google Scholar] [CrossRef]
- Râpă, M.; Darie-Niță, R.N.; Coman, G. Valorization of Fruit and Vegetable Waste into Sustainable and Value-Added Materials. Waste 2024, 2, 258–278. [Google Scholar] [CrossRef]
- Ribeiro, J.M.C.; Godina, R.; Matias, J.C.D.O.; Nunes, L.J.R. Future Perspectives of Biomass Torrefaction: Review of the Current State-Of-The-Art and Research Development. Sustainability 2018, 10, 2323. [Google Scholar] [CrossRef]
- Alcazar-Ruiz, A.; Dorado, F.; Sanchez-Silva, L. Influence of Temperature and Residence Time on Torrefaction Coupled to Fast Pyrolysis for Valorizing Agricultural Waste. Energies 2022, 15, 7914. [Google Scholar] [CrossRef]
- Głód, K.; Lasek, J.A.; Supernok, K.; Pawłowski, P.; Fryza, R.; Zuwała, J. Torrefaction as a Way to Increase the Waste Energy Potential. Energy 2023, 285, 128606. [Google Scholar] [CrossRef]
- UNI EN 14918:2019; Solid Recovered Fuels—Method for the Determination of Calorific Value. UNI: Milano, Italy, 2019.
- ASTM DIN 51900; Determining the Gross Calorific Value of Solid and Liquid Fuels Using the Bomb Calorimeter, and Calculation of Net Calorific Value—Part 1: General Information. DIN: Berlin, Germany, 2000.
- ISO 1928; Solid Mineral Fuels—Determination of Gross Calorific Value by the Bomb Calorimeter and Calculation of the Net Calorific Value. ISO: Geneva, Switzerland, 2009.
- Mamvura, T.A.; Pahla, G.; Muzenda, E. Torrefaction of Waste Biomass for Application in Energy Production in South Africa. S. Afr. J. Chem. Eng. 2018, 25, 1–12. [Google Scholar] [CrossRef]
- Patra, B.R. Slow Pyrolysis of Agro-Food Waste to Produce Biochar and Activated Carbon for Adsorption of Pollutants from Model Wastewater. Ph.D. Thesis, University of Saskatchewan, Saskatoon, SK, Canada, 2021. [Google Scholar] [CrossRef]
- Călin, C.; Sîrbu, E.-E.; Tănase, M.; Győrgy, R.; Popovici, D.R.; Banu, I. A Thermogravimetric Analysis of Biomass Conversion to Biochar: Experimental and Kinetic Modeling. Appl. Sci. 2024, 14, 9856. [Google Scholar] [CrossRef]
- Elkhalifa, S.; Mariyam, S.; Mackey, H.R.; Al-Ansari, T.; McKay, G.; Parthasarathy, P. Pyrolysis Valorization of Vegetable Wastes: Thermal, Kinetic, Thermodynamics, and Pyrogas Analyses. Energies 2022, 15, 6277. [Google Scholar] [CrossRef]
- Tumuluru, J.S.; Wright, C.T.; Boardman, R.D.; Kremer, T. Proximate and Ultimate Compositional Changes in Corn Stover during Torrrefaction Using Thermogravimetric Analyzer and Microwaves. In Proceedings of the 2012, Dallas, TX, USA, 29 July–1 August 2012; American Society of Agricultural and Biological Engineers: St. Joseph, MA, USA, 2012. [Google Scholar]
- Lin, B.-J.; Silveira, E.A.; Colin, B.; Chen, W.-H.; Pétrissans, A.; Rousset, P.; Pétrissans, M. Prediction of Higher Heating Values (HHVs) and Energy Yield during Torrefaction via Kinetics. Energy Procedia 2019, 158, 111–116. [Google Scholar] [CrossRef]
- Correia, R.; Gonçalves, M.; Nobre, C.; Mendes, B. Impact of Torrefaction and Low-Temperature Carbonization on the Properties of Biomass Wastes from Arundo Donax L. and Phoenix Canariensis. Bioresour. Technol. 2017, 223, 210–218. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Yang, H.; Yang, J.; Liu, F. Prediction of Fuel Properties of Torrefied Biomass Based on Back Propagation Neural Network Hybridized with Genetic Algorithm Optimization. Energies 2023, 16, 1483. [Google Scholar] [CrossRef]
- Oyebode, W.A.; Ogunsuyi, H.O. Impact of Torrefaction Process Temperature on the Energy Content and Chemical Composition of Stool Tree (Alstonia Congenisis Engl) Woody Biomass. Curr. Res. Green Sustain. Chem. 2021, 4, 100115. [Google Scholar] [CrossRef]
- Filip, M.; Vlassa, M.; Petean, I.; Țăranu, I.; Marin, D.; Perhaiță, I.; Prodan, D.; Borodi, G.; Dragomir, C. Structural Characterization and Bioactive Compound Evaluation of Fruit and Vegetable Waste for Potential Animal Feed Applications. Agriculture 2024, 14, 2038. [Google Scholar] [CrossRef]
- Dardick, C.D.; Callahan, A.M.; Chiozzotto, R.; Schaffer, R.J.; Piagnani, M.C.; Scorza, R. Stone Formation in Peach Fruit Exhibits Spatial Coordination of the Lignin and Flavonoid Pathways and Similarity to Arabidopsisdehiscence. BMC Biol. 2010, 8, 13. [Google Scholar] [CrossRef]
- Fatani, A.M.N.; Suh, J.H.; Auger, J.; Alabasi, K.M.; Wang, Y.; Segal, M.S.; Dahl, W.J. Pea Hull Fiber Supplementation Does Not Modulate Uremic Metabolites in Adults Receiving Hemodialysis: A Randomized, Double-Blind, Controlled Trial. Front. Nutr. 2023, 10, 1179295. [Google Scholar] [CrossRef]
- Chen, W.-H.; Ye, S.-C.; Sheen, H.-K. Hydrothermal Carbonization of Sugarcane Bagasse via Wet Torrefaction in Association with Microwave Heating. Bioresour. Technol. 2012, 118, 195–203. [Google Scholar] [CrossRef]
- Torres Ramos, R.; Valdez Salas, B.; Montero Alpírez, G.; Coronado Ortega, M.A.; Curiel Álvarez, M.A.; Tzintzun Camacho, O.; Beleño Cabarcas, M.T. Torrefaction under Different Reaction Atmospheres to Improve the Fuel Properties of Wheat Straw. Processes 2023, 11, 1971. [Google Scholar] [CrossRef]
- Galvis Sandoval, D.E.; Lozano Pérez, A.S.; Guerrero Fajardo, C.A. Pea Pod Valorization: Exploring the Influence of Biomass/Water Ratio, Particle Size, Stirring, and Catalysts on Chemical Platforms and Biochar Production. Sustainability 2024, 16, 7352. [Google Scholar] [CrossRef]
- Reza, M.T.; Freitas, A.; Yang, X.; Hiibel, S.; Lin, H.; Coronella, C. Hydrothermal Carbonization (HTC) of Cow Manure: Carbon and Nitrogen Distributions in HTC Products. Environ. Prog. Sustain. Energy 2016, 35, 1002–1011. [Google Scholar] [CrossRef]
- Gan, Y.Y.; Ong, H.C.; Ling, T.C.; Chen, W.-H.; Chong, C.T. Torrefaction of De-Oiled Jatropha Seed Kernel Biomass for Solid Fuel Production. Energy 2019, 170, 367–374. [Google Scholar] [CrossRef]
- Mekonnen, K.D. Fourier Transform Infrared Spectroscopy as a Tool for Identifying the Unique Characteristic Bands of Lipid in Oilseed Components: Confirmed via Ethiopian Indigenous Desert Date Fruit. Heliyon 2023, 9, e14699. [Google Scholar] [CrossRef]
- Ivanovski, M.; Goricanec, D.; Krope, J.; Urbancl, D. Torrefaction Pretreatment of Lignocellulosic Biomass for Sustainable Solid Biofuel Production. Energy 2022, 240, 122483. [Google Scholar] [CrossRef]
- Kaewtrakulchai, N.; Wisetsai, A.; Phongaksorn, M.; Thipydet, C.; Jongsomjit, B.; Laosiripojana, N.; Worasuwannarak, N.; Pimsamarn, J.; Jadsadajerm, S. Parametric Study on Mechanical-Press Torrefaction of Palm Oil Empty Fruit Bunch for Production of Biochar. Carbon Resour. Convers. 2024; 100285, in press. [Google Scholar] [CrossRef]
- Lu, X.; Xu, R.; Sun, K.; Jiang, J.; Sun, Y.; Zhang, Y. Study on the Effect of Torrefaction on Pyrolysis Kinetics and Thermal Behavior of Cornstalk Based On a Combined Approach of Chemical and Structural Analyses. ACS Omega 2022, 7, 13789–13800. [Google Scholar] [CrossRef]
- Soh, M.; Khaerudini, D.S.; Chew, J.J.; Sunarso, J. Wet Torrefaction of Empty Fruit Bunches (EFB) and Oil Palm Trunks (OPT): Effects of Process Parameters on Their Physicochemical and Structural Properties. S. Afr. J. Chem. Eng. 2021, 35, 126–136. [Google Scholar] [CrossRef]
- Pimsamarn, J.; Kaewtrakulchai, N.; Wisetsai, A.; Mualchontham, J.; Muidaeng, N.; Jiraphothikul, P.; Autthanit, C.; Eiad-Ua, A.; Laosiripojana, N.; Jadsadajerm, S. Torrefaction of Durian Peel in Air and N2 Atmospheres: Impact on Chemical Properties and Optimization of Energy Yield Using Multilevel Factorial Design. Results Eng. 2024, 23, 102767. [Google Scholar] [CrossRef]
- Mallampati, R.; Valiyaveettil, S. Apple Peels—A Versatile Biomass for Water Purification? ACS Appl. Mater. Interfaces 2013, 5, 4443–4449. [Google Scholar] [CrossRef]
- Ivanovski, M.; Petrovič, A.; Goričanec, D.; Urbancl, D.; Simonič, M. Exploring the Properties of the Torrefaction Process and Its Prospective in Treating Lignocellulosic Material. Energies 2023, 16, 6521. [Google Scholar] [CrossRef]
- Chen, D.; Zheng, Z.; Fu, K.; Zeng, Z.; Wang, J.; Lu, M. Torrefaction of Biomass Stalk and Its Effect on the Yield and Quality of Pyrolysis Products. Fuel 2015, 159, 27–32. [Google Scholar] [CrossRef]
- Chen, W.-H.; Lin, B.-J.; Colin, B.; Chang, J.-S.; Pétrissans, A.; Bi, X.; Pétrissans, M. Hygroscopic Transformation of Woody Biomass Torrefaction for Carbon Storage. Appl. Energy 2018, 231, 768–776. [Google Scholar] [CrossRef]
- Tumuluru, J.S.; Ghiasi, B.; Soelberg, N.R.; Sokhansanj, S. Biomass Torrefaction Process, Product Properties, Reactor Types, and Moving Bed Reactor Design Concepts. Front. Energy Res. 2021, 9, 728140. [Google Scholar] [CrossRef]
- Grycova, B.; Pryszcz, A.; Krzack, S.; Klinger, M.; Lestinsky, P. Torrefaction of Biomass Pellets Using the Thermogravimetric Analyser. Biomass Convers. Biorefinery 2021, 11, 2837–2842. [Google Scholar] [CrossRef]
- Fernandes, P.A.R.; Silva, A.M.S.; Evtuguin, D.V.; Nunes, F.M.; Wessel, D.F.; Cardoso, S.M.; Coimbra, M.A. The Hydrophobic Polysaccharides of Apple Pomace. Carbohydr. Polym. 2019, 223, 115132. [Google Scholar] [CrossRef]
- Dyjakon, A.; Noszczyk, T.; Sobol, Ł.; Misiakiewicz, D. Influence of Torrefaction Temperature and Climatic Chamber Operation Time on Hydrophobic Properties of Agri-Food Biomass Investigated Using the EMC Method. Energies 2021, 14, 5299. [Google Scholar] [CrossRef]
- Acharjee, T.C.; Coronella, C.J.; Vasquez, V.R. Effect of Thermal Pretreatment on Equilibrium Moisture Content of Lignocellulosic Biomass. Bioresour. Technol. 2011, 102, 4849–4854. [Google Scholar] [CrossRef]
- Beniwal, A.; Sangwan, V.; Punia, D.; Savita, V.S. Pea Shells (Pisum sativum L.) Powder: A Study on physiochemical, in vitro Digestibility and Phytochemicals Screening. Multilogic Sci. 2022, XII, 251–257. [Google Scholar]
- Shaikhiev, I.G.; Kraysman, N.V.; Sverguzova, S.V. Review of Peach (Prúnus Pérsica) Shell Use to Remove Pollutants from Aquatic Environments. Biointerface Res. Appl. Chem. 2024, 13, 49. [Google Scholar] [CrossRef]
- Fernández, V.; Khayet, M.; Montero-Prado, P.; Heredia-Guerrero, J.A.; Liakopoulos, G.; Karabourniotis, G.; Del Río, V.; Domínguez, E.; Tacchini, I.; Nerín, C.; et al. New Insights into the Properties of Pubescent Surfaces: Peach Fruit as a Model. Plant Physiol. 2011, 156, 2098–2108. [Google Scholar] [CrossRef]
Sample | Ttor (°C) | HHV (kJ/kg) ±3% | WL (%) | MY (%) | EY (%) | Enhancement Factor |
---|---|---|---|---|---|---|
Pea shells | Raw | 4.811 | 0 | 0 | 100 | 1.00 |
250 | 6.366 | 15.94 | 74.05 | 97.75 | 1.32 | |
350 | 9.307 | 47.44 | 50.55 | 97.56 | 1.93 | |
450 | 10.888 | 63.38 | 36.61 | 82.73 | 2.26 | |
Apple peels | Raw | 10.019 | 0 | 0 | 100 | 1.00 |
250 | 12.098 | 33.54 | 66.45 | 80.40 | 1.21 | |
350 | 15.346 | 51.79 | 48.20 | 73.74 | 1.53 | |
450 | 28.481 | 66.03 | 33.96 | 96.44 | 2.84 | |
Peach pits | Raw | 11.898 | 0 | 0 | 100 | 1.00 |
250 | 13.352 | 21.47 | 89.08 | 99.76 | 1.12 | |
350 | 14.531 | 48.10 | 51.89 | 63.30 | 1.22 | |
450 | 18.370 | 7.91 | 38.35 | 59.05 | 1.54 |
Sample | Ti (°C) | Tp (°C) | Tb (°C) | Moisture Content (%) | Volatile Matter Contents (%) | Ash Content (%) | Fixed Carbon Content (%) | Fuel Ratio (FR) (/) |
---|---|---|---|---|---|---|---|---|
Pea shells | ||||||||
Raw | 250.4 | 290.2 | 469.8 | 7.06 | 91.39 | 7.4 | 0.01 | 0.0001 |
250 °C | 270.9 | 301.3 | 525.2 | 6.79 | 92.15 | 7.8 | 0.05 | 0.00054 |
350 °C | 282.5 | 320.5 | 520.3 | 6.51 | 87.29 | 12.6 | 0.11 | 0.0013 |
450 °C | 285.9 | 330.6 | 510.3 | 6.39 | 81.50 | 18.3 | 0.20 | 0.0024 |
Apple peels | ||||||||
Raw | 194.6 | 225.4 | 505.2 | 7.11 | 98.47 | 2.5 | 0.0 | 0.0 |
250 °C | 278.7 | 308.2 | 560.1 | 5.15 | 93.94 | 3.2 | 2.86 | 0.031 |
350 °C | 295.06 | 332.1 | 550.3 | 4.45 | 83.38 | 5.3 | 11.32 | 0.136 |
450 °C | 306.69 | 350.1 | 561.2 | 4.34 | 63.91 | 7.3 | 28.79 | 0.403 |
Peach pits | ||||||||
Raw | 274.51 | 290.1 | 510.2 | 5.23 | 94.75 | 0.2 | 5.05 | 0.053 |
250 °C | 290.75 | 330.3 | 530.2 | 4.80 | 99.37 | 0.3 | 0.33 | 0.003 |
350 °C | 357.41 | 420.2 | 540.8 | 4.02 | 84.23 | 0.7 | 15.07 | 0.179 |
450 °C | 355.75 | 395.1 | 670.1 | 3.50 | 61.34 | 1.1 | 37.56 | 0.612 |
Wavelength (cm−1) | Functional Groups | Description |
---|---|---|
3700 | O–H stretching in alcohols | Mostly in raw biomass |
3340 | O–H peak in hydroxyl groups | In torrefied samples, a less intense peak |
3000–2850 | C–H expansion in alkanes | Loss of aliphatic groups with temperature increase |
1710 | C=O | As the temperature increases, it decreases |
1630 | Variation of C=O groups | Higher peak at torrefaction temperatures |
1513 | C=C expansion of aromatic rings | Stronger with increasing temperature. No change in the raw sample |
1315–1000 | Expansion vibrations of CO | Larger peaks in torrefied samples than in raw biomass |
1150–1300 | C–H deformation | As the temperature rises, these deformations are increased |
770 | C-H vibrations in cellulose | With an increase in temperature |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Škorjanc, A.; Gruber, S.; Rola, K.; Goričanec, D.; Urbancl, D. Advancing Energy Recovery: Evaluating Torrefaction Temperature Effects on Food Waste Properties from Fruit and Vegetable Processing. Processes 2025, 13, 208. https://doi.org/10.3390/pr13010208
Škorjanc A, Gruber S, Rola K, Goričanec D, Urbancl D. Advancing Energy Recovery: Evaluating Torrefaction Temperature Effects on Food Waste Properties from Fruit and Vegetable Processing. Processes. 2025; 13(1):208. https://doi.org/10.3390/pr13010208
Chicago/Turabian StyleŠkorjanc, Andreja, Sven Gruber, Klemen Rola, Darko Goričanec, and Danijela Urbancl. 2025. "Advancing Energy Recovery: Evaluating Torrefaction Temperature Effects on Food Waste Properties from Fruit and Vegetable Processing" Processes 13, no. 1: 208. https://doi.org/10.3390/pr13010208
APA StyleŠkorjanc, A., Gruber, S., Rola, K., Goričanec, D., & Urbancl, D. (2025). Advancing Energy Recovery: Evaluating Torrefaction Temperature Effects on Food Waste Properties from Fruit and Vegetable Processing. Processes, 13(1), 208. https://doi.org/10.3390/pr13010208