Potential Health Risks of Exposure to Graphene and Its Derivatives: A Review
Abstract
:1. Introduction
2. Detection and Characterization of Graphene
2.1. Characterization of Graphene
2.2. Methods for Tracking Graphene Biological Exposure
3. Properties, Applications, and Potential Uses of GDs
4. Human Exposure Pathways to GDs and Their Health Risks
4.1. Inhalation
4.2. Ingestion
4.3. Dermal Exposure
4.4. Intraperitoneal and Intravenous Administration
4.5. Other Exposures Routes to Graphene
5. Comparison of Methods and Health Risks Between GDs and Dust Exposure Studies
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Dubey, A.; Singh, A.; Sundramoorthy, A.K.; Dixit, S.; Vatin, N.I.; Rather, M.U.D.; Arya, S. Synthesis and Characterization of GO/TiO2-Based Electrode for the Detection of Ethyl Lactate: A Simulant of Chemical Warfare Agent. J. Environ. Chem. Eng. 2024, 115155. [Google Scholar] [CrossRef]
- Kamalasekaran, K.; Magesh, V.; Atchudan, R.; Arya, S.; Sundramoorthy, A.K. Development of Electrochemical Sensor Using Iron (III) Phthalocyanine/Gold Nanoparticle/Graphene Hybrid Film for Highly Selective Determination of Nicotine in Human Salivary Samples. Biosensors 2023, 13, 839. [Google Scholar] [CrossRef]
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric Field Effect in Atomically Thin Carbon Films. Science 2004, 306, 666–669. [Google Scholar] [CrossRef]
- Nag, A.; Mitra, A.; Mukhopadhyay, S.C. Graphene and its sensor-based applications: A review. Sens. Actuators A Phys. 2018, 270, 177–194. [Google Scholar] [CrossRef]
- Gupta, N.; Gupta, S.M.; Sharma, S.K. Carbon nanotubes: Synthesis, properties and engineering applications. Carbon Lett. 2019, 29, 419–447. [Google Scholar] [CrossRef]
- Saeed, M.; Alshammari, Y.; Majeed, S.A.; Al-Nasrallah, E. Chemical Vapour Deposition of Graphene—Synthesis, Characterisation, and Applications: A Review. Molecules 2020, 25, 3856. [Google Scholar] [CrossRef] [PubMed]
- du Preez, H.N.; Halma, M. Graphene-based Nanomaterials: Uses, Environmental Fate, and Human Health Hazards. Nano Biomed. Eng. 2024, 16, 219–231. [Google Scholar] [CrossRef]
- Govindaraj, P.; Mirabedini, A.; Jin, X.; Antiohos, D.; Salim, N.; Aitchison, P.; Parker, J.; Fuss, F.K.; Hameed, N. Health and safety perspectives of graphene in wearables and hybrid materials. J. Mater. Sci. Technol. 2023, 155, 10–32. [Google Scholar] [CrossRef]
- Huang, C.; Xia, T.; Niu, J.; Yang, Y.; Lin, S.; Wang, X.; Yang, G.; Mao, L.; Xing, B. Transformation of 14C-Labeled Graphene to 14CO2 in the Shoots of a Rice Plant. Angew. Chem. Int. Ed. Engl. 2018, 57, 9759–9763. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Zhang, Z.; Liu, Y.; Chu, M.; Yang, C.; Li, W.; Shao, Y.; Yue, Y.; Xu, R. The short- and long-term effects of orally administered high-dose reduced graphene oxide nanosheets on mouse behaviors. Biomaterials 2015, 68, 100–113. [Google Scholar] [CrossRef] [PubMed]
- de Luna, L.A.V.; Loret, T.; Fordham, A.; Arshad, A.; Drummond, M.; Dodd, A.; Lozano, N.; Kostarelos, K.; Bussy, C. Lung recovery from DNA damage induced by graphene oxide is dependent on size, dose and inflammation profile. Part. Fibre Toxicol. 2022, 19, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Sun, B.; Liu, S.; Xia, T. Structure activity relationships of engineered nanomaterials in inducing NLRP3 inflammasome activation and chronic lung fibrosis. NanoImpact 2016, 6, 99–108. [Google Scholar] [CrossRef]
- Mousavi, S.M.; Hashemi, S.A.; Kalashgrani, M.Y.; Kurniawan, D.; Gholami, A.; Rahmanian, V.; Omidifar, N.; Chiang, W.-H. Recent Advances in Inflammatory Diagnosis with Graphene Quantum Dots Enhanced SERS Detection. Biosensors 2022, 12, 461. [Google Scholar] [CrossRef] [PubMed]
- Sanchez, V.C.; Jachak, A.; Hurt, R.H.; Kane, A.B. Biological Interactions of Graphene-Family Nanomaterials: An Interdisciplinary Review. Chem. Res. Toxicol. 2011, 25, 15–34. [Google Scholar] [CrossRef]
- Wu, T.; Wang, X.; Chen, M.; Zhang, X.; Zhang, J.; Cheng, J.; Kong, L.; Tang, M. Respiratory exposure to graphene quantum dots causes fibrotic effects on lung, liver and kidney of mice. Food Chem. Toxicol. 2022, 163, 112971. [Google Scholar] [CrossRef]
- Pelin, M.; Fusco, L.; León, V.; Martín, C.; Criado, A.; Sosa, S.; Vázquez, E.; Tubaro, A.; Prato, M. Differential cytotoxic effects of graphene and graphene oxide on skin keratinocytes. Sci. Rep. 2017, 7, 40572. [Google Scholar] [CrossRef]
- Smith, A.T.; LaChance, A.M.; Zeng, S.; Liu, B.; Sun, L. Synthesis, properties, and applications of graphene oxide/reduced graphene oxide and their nanocomposites. Nano Mater. Sci. 2019, 1, 31–47. [Google Scholar] [CrossRef]
- Lv, W.; Li, Z.; Deng, Y.; Yang, Q.-H.; Kang, F. Graphene-based materials for electrochemical energy storage devices: Opportunities and challenges. Energy Storage Mater. 2016, 2, 107–138. [Google Scholar] [CrossRef]
- Ding, X.; Pu, Y.; Tang, M.; Zhang, T. Environmental and health effects of graphene-family nanomaterials: Potential release pathways, transformation, environmental fate and health risks. Nano Today 2022, 42, 101379. [Google Scholar] [CrossRef]
- Cheriyan, D.; Khamraev, K.; Choi, J.-H. Varying health risks of respirable and fine particles from construction works. Sustain. Cities Soc. 2021, 72, 103016. [Google Scholar] [CrossRef]
- Yu, H.; Zahidi, I. Environmental hazards posed by mine dust, and monitoring method of mine dust pollution using remote sensing technologies: An overview. Sci. Total Environ. 2022, 864, 161135. [Google Scholar] [CrossRef] [PubMed]
- Torén, K.; Järvholm, B. Effect of Occupational Exposure to Vapors, Gases, Dusts, and Fumes on COPD Mortality Risk Among Swedish Construction Workers. Chest 2014, 145, 992–997. [Google Scholar] [CrossRef] [PubMed]
- Alex, F.J.; Tan, G.; Kyei, S.K.; Ansah, P.O.; Agyeman, P.K.; Fayzullayevich, J.V.; Olayode, I.O. Transmission of viruses and other pathogenic microorganisms via road dust: Emissions, characterization, health risks, and mitigation measures. Atmos. Pollut. Res. 2022, 14, 101642. [Google Scholar] [CrossRef]
- Yao, W.; Liu, H.; Sun, J.; Wu, B.; Liu, Y. Engineering of Chemical Vapor Deposition Graphene Layers: Growth, Characterization, and Properties. Adv. Funct. Mater. 2022, 32, 2202584. [Google Scholar] [CrossRef]
- Kidambi, P.R.; Bayer, B.C.; Blume, R.; Wang, Z.-J.; Baehtz, C.; Weatherup, R.S.; Willinger, M.-G.; Schloegl, R.; Hofmann, S. Observing Graphene Grow: Catalyst–Graphene Interactions during Scalable Graphene Growth on Polycrystalline Copper. Nano Lett. 2013, 13, 4769–4778. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.-J.; Dong, J.; Cui, Y.; Eres, G.; Timpe, O.; Fu, Q.; Ding, F.; Schloegl, R.; Willinger, M.-G. Stacking sequence and interlayer coupling in few-layer graphene revealed by in situ imaging. Nat. Commun. 2016, 7, 13256. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Ban, C.; Yuan, Y.; Huang, L.; Gan, Y. Nanoscale imaging of oxidized copper foil covered with chemical vapor deposition-grown graphene layers. Surf. Interface Anal. 2022, 54, 837–846. [Google Scholar] [CrossRef]
- Shihommatsu, K.; Takahashi, J.; Momiuchi, Y.; Hoshi, Y.; Kato, H.; Homma, Y. Formation Mechanism of Secondary Electron Contrast of Graphene Layers on a Metal Substrate. ACS Omega 2017, 2, 7831–7836. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Zhang, D.; Zhang, F.; Feng, Z.; Huang, Y.; Gan, Y. High-Contrast SEM Imaging of Supported Few-Layer Graphene for Differentiating Distinct Layers and Resolving Fine Features: There is Plenty of Room at the Bottom. Small 2018, 14, e1704190. [Google Scholar] [CrossRef]
- Huang, L.; Gan, Y. A review on SEM imaging of graphene layers. Micron 2024, 187, 103716. [Google Scholar] [CrossRef]
- Huang, L.; Zhang, D.; Zhang, F.-H.; Huang, Y.-D.; Feng, Z.-H.; Gan, Y. Twinkling graphene on polycrystalline Cu substrate: A scanning electron microscopy study. J. Appl. Phys. 2019, 125, 194303. [Google Scholar] [CrossRef]
- Kumari, P.; Samadder, S. Valorization of carbonaceous waste into graphene materials and their potential application in water & wastewater treatment: A review. Mater. Today Chem. 2022, 26, 101192. [Google Scholar] [CrossRef]
- Ro, I.; Resasco, J.; Christopher, P. Approaches for Understanding and Controlling Interfacial Effects in Oxide-Supported Metal Catalysts. ACS Catal. 2018, 8, 7368–7387. [Google Scholar] [CrossRef]
- Du, Y.; Guo, S.; Dong, S.; Wang, E. An integrated sensing system for detection of DNA using new parallel-motif DNA triplex system and graphene–mesoporous silica–gold nanoparticle hybrids. Biomaterials 2011, 32, 8584–8592. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Ghaffarian, H.; Kim, W.; Lee, T.; Han, S.M.; Ryu, S.; Oh, S.H. A Study on Dislocation Mechanisms of Toughening in Cu-Graphene Nanolayered Composite. Nano Lett. 2021, 22, 188–195. [Google Scholar] [CrossRef]
- Medalsy, I.; Hensen, U.; Muller, D.J. Imaging and Quantifying Chemical and Physical Properties of Native Proteins at Molecular Resolution by Force–Volume AFM. Angew. Chem. Int. Ed. Engl. 2011, 50, 12103–12108. [Google Scholar] [CrossRef] [PubMed]
- Musumeci, C. Advanced Scanning Probe Microscopy of Graphene and Other 2D Materials. Crystals 2017, 7, 216. [Google Scholar] [CrossRef]
- Yao, Y.; Ren, L.; Gao, S.; Li, S. Histogram method for reliable thickness measurements of graphene films using atomic force microscopy (AFM). J. Mater. Sci. Technol. 2017, 33, 815–820. [Google Scholar] [CrossRef]
- Sun, Z.; Yan, Z.; Yao, J.; Beitler, E.; Zhu, Y.; Tour, J.M. Growth of graphene from solid carbon sources. Nature 2010, 468, 549–552. [Google Scholar] [CrossRef]
- Liu, J.; Fu, S.; Yuan, B.; Li, Y.; Deng, Z. Toward a Universal “Adhesive Nanosheet” for the Assembly of Multiple Nanoparticles Based on a Protein-Induced Reduction/Decoration of Graphene Oxide. J. Am. Chem. Soc. 2010, 132, 7279–7281. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.H.; Lee, M.J.; Kim, Y.S.; Choi, J.S.; Park, B.H. Sample rotation angle dependence of graphene thickness measured using atomic force microscope. Carbon 2015, 81, 210–215. [Google Scholar] [CrossRef]
- Giannazzo, F.; Greco, G.; Schilirò, E.; Nigro, R.L.; Deretzis, I.; La Magna, A.; Roccaforte, F.; Iucolano, F.; Ravesi, S.; Frayssinet, E.; et al. High-Performance Graphene/AlGaN/GaN Schottky Junctions for Hot Electron Transistors. ACS Appl. Electron. Mater. 2019, 1, 2342–2354. [Google Scholar] [CrossRef]
- De Silva, K.K.H.; Huang, H.-H.; Viswanath, P.; Joshi, R.; Yoshimura, M. Nanoscale electrical characterization of graphene-based materials by atomic force microscopy. J. Mater. Res. 2022, 37, 3319–3339. [Google Scholar] [CrossRef]
- Ly, T.H.; Chiu, M.-H.; Li, M.-Y.; Zhao, J.; Perello, D.J.; Cichocka, M.O.; Oh, H.M.; Chae, S.H.; Jeong, H.Y.; Yao, F.; et al. Observing Grain Boundaries in CVD-Grown Monolayer Transition Metal Dichalcogenides. ACS Nano 2014, 8, 11401–11408. [Google Scholar] [CrossRef]
- Ferrari, A.C.; Basko, D.M. Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat. Nanotechnol. 2013, 8, 235–246. [Google Scholar] [CrossRef] [PubMed]
- Malard, L.M.; Pimenta, M.A.; Dresselhaus, G.; Dresselhaus, M.S. Raman spectroscopy in graphene. Phys. Rep. 2009, 473, 51–87. [Google Scholar] [CrossRef]
- Li, X.; Han, W.; Wu, J.; Qiao, X.; Zhang, J.; Tan, P. Layer-Number Dependent Optical Properties of 2D Materials and Their Application for Thickness Determination. Adv. Funct. Mater. 2017, 27, 1604468. [Google Scholar] [CrossRef]
- Rosenburg, F.; Ionescu, E.; Nicoloso, N.; Riedel, R. High-Temperature Raman Spectroscopy of Nano-Crystalline Carbon in Silicon Oxycarbide. Materials 2018, 11, 93. [Google Scholar] [CrossRef] [PubMed]
- Negri, F.; di Donato, E.; Tommasini, M.; Castiglioni, C.; Zerbi, G.; Müllen, K. Resonance Raman contribution to the D band of carbon materials: Modeling defects with quantum chemistry. J. Chem. Phys. 2004, 120, 11889–11900. [Google Scholar] [CrossRef] [PubMed]
- Puech, P.; Plewa, J.-M.; Mallet-Ladeira, P.; Monthioux, M. Spatial confinement model applied to phonons in disordered graphene-based carbons. Carbon 2016, 105, 275–281. [Google Scholar] [CrossRef]
- Akhavan, O.; Ghaderi, E. Toxicity of graphene and graphene oxide nanowalls against bacteria. ACS Nano 2010, 4, 5731–5736. [Google Scholar] [CrossRef] [PubMed]
- Ferrari, A.C.; Robertson, J. Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B 2000, 61, 14095–14107. [Google Scholar] [CrossRef]
- Schmidt, U.; Ayasse, P.; Hollricher, O. RISE Microscopy: Correlative R aman and SEM Imaging. In European Microscopy Congress 2016: Proceedings; European Microscopy Society, Ed.; Wiley: Amsterdam, The Netherlands, 2016; pp. 1023–1024. ISBN 978-3-527-34297-6. [Google Scholar]
- Wu, W.; Ranasinghe, J.C.; Chatterjee, A.; Huang, S. Recent advances on Raman spectroscopy of graphene: Towards biosensing applications. Mater. Chem. Phys. 2024, 318, 129281. [Google Scholar] [CrossRef]
- Ferrari, A.C.; Meyer, J.C.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec, S.; Jiang, D.; Novoselov, K.S.; Roth, S.; et al. Raman Spectrum of Graphene and Graphene Layers. Phys. Rev. Lett. 2006, 97, 187401. [Google Scholar] [CrossRef]
- Tan, P.H. (Ed.) Raman Spectroscopy of Two-Dimensional Materials; Springer: Singapore, 2019; Volume 276, ISBN 9789811318276. [Google Scholar]
- Malekpour, H.; Balandin, A.A. Raman-based technique for measuring thermal conductivity of graphene and related materials. J. Raman Spectrosc. 2017, 49, 106–120. [Google Scholar] [CrossRef]
- Calizo, I.; Bejenari, I.; Rahman, M.; Liu, G.; Balandin, A.A. Ultraviolet Raman microscopy of single and multilayer graphene. J. Appl. Phys. 2009, 106, 043509. [Google Scholar] [CrossRef]
- Rehman, S.K.U.; Kumarova, S.; Memon, S.A.; Javed, M.F.; Jameel, M. A Review of Microscale, Rheological, Mechanical, Thermoelectrical and Piezoresistive Properties of Graphene Based Cement Composite. Nanomaterials 2020, 10, 2076. [Google Scholar] [CrossRef] [PubMed]
- Dewangan, R.; Asthana, A.; Singh, A.K.; Carabineiro, S.A.C. Synthesis, characterization and antibacterial activity of a graphene oxide based NiO and starch composite material. J. Dispers. Sci. Technol. 2020, 43, 559–571. [Google Scholar] [CrossRef]
- Nodeh, H.R.; Ibrahim, W.A.W.; Kamboh, M.A.; Sanagi, M.M. Dispersive graphene-based silica coated magnetic nanoparticles as a new adsorbent for preconcentration of chlorinated pesticides from environmental water. RSC Adv. 2015, 5, 76424–76434. [Google Scholar] [CrossRef]
- Yusuf, M.; Elfghi, F.M.; Zaidi, S.A.; Abdullah, E.C.; Khan, M.A. Applications of graphene and its derivatives as an adsorbent for heavy metal and dye removal: A systematic and comprehensive overview. RSC Adv. 2015, 5, 50392–50420. [Google Scholar] [CrossRef]
- Liu, S.; Yu, B.; Zhang, H.; Fei, T.; Zhang, T. Enhancing NO2 gas sensing performances at room temperature based on reduced graphene oxide-ZnO nanoparticles hybrids. Sensors Actuators B Chem. 2014, 202, 272–278. [Google Scholar] [CrossRef]
- Ganesan, P.; Kamaraj, R.; Vasudevan, S. Application of isotherm, kinetic and thermodynamic models for the adsorption of nitrate ions on graphene from aqueous solution. J. Taiwan Inst. Chem. Eng. 2013, 44, 808–814. [Google Scholar] [CrossRef]
- Navalón, S.; Herance, J.R.; Álvaro, M.; García, H. General aspects in the use of graphenes in catalysis. Mater. Horizons 2018, 5, 363–378. [Google Scholar] [CrossRef]
- Zhang, H.-B.; Zheng, W.-G.; Yan, Q.; Yang, Y.; Wang, J.-W.; Lu, Z.-H.; Ji, G.-Y.; Yu, Z.-Z. Electrically conductive polyethylene terephthalate/graphene nanocomposites prepared by melt compounding. Polymer 2010, 51, 1191–1196. [Google Scholar] [CrossRef]
- Liu, W.-W.; Chai, S.-P.; Mohamed, A.R.; Hashim, U. Synthesis and characterization of graphene and carbon nanotubes: A review on the past and recent developments. J. Ind. Eng. Chem. 2014, 20, 1171–1185. [Google Scholar] [CrossRef]
- Cayambe, M.; Zambrano, C.; Tene, T.; Guevara, M.; Usca, G.T.; Brito, H.; Molina, R.; Coello-Fiallos, D.; Caputi, L.; Gomez, C.V. Dispersion of graphene in ethanol by sonication. Mater. Today Proc. 2020, 37, 4027–4030. [Google Scholar] [CrossRef]
- Mattevi, C.; Colléaux, F.; Kim, H.; Lin, Y.-H.; Park, K.T.; Chhowalla, M.; Anthopoulos, T.D. Solution-processable organic dielectrics for graphene electronics. Nanotechnology 2012, 23, 344017. [Google Scholar] [CrossRef]
- Hayyan, M.; Abo-Hamad, A.; AlSaadi, M.A.; Hashim, M.A. Functionalization of graphene using deep eutectic solvents. Nanoscale Res. Lett. 2015, 10, 1–26. [Google Scholar] [CrossRef]
- Wang, B.; Jiang, R.; Wu, Z. Investigation of the Mechanical Properties and Microstructure of Graphene Nanoplatelet-Cement Composite. Nanomaterials 2016, 6, 200. [Google Scholar] [CrossRef]
- Jiang, L.; Gao, L.; Sun, J. Production of aqueous colloidal dispersions of carbon nanotubes. J. Colloid Interface Sci. 2003, 260, 89–94. [Google Scholar] [CrossRef]
- Pfaffeneder-Kmen, M.; Casas, I.F.; Naghilou, A.; Trettenhahn, G.; Kautek, W. A Multivariate Curve Resolution evaluation of an in-situ ATR-FTIR spectroscopy investigation of the electrochemical reduction of graphene oxide. Electrochim. Acta 2017, 255, 160–167. [Google Scholar] [CrossRef]
- Guo, H.-L.; Wang, X.-F.; Qian, Q.-Y.; Wang, F.-B.; Xia, X.-H. A Green Approach to the Synthesis of Graphene Nanosheets. ACS Nano 2009, 3, 2653–2659. [Google Scholar] [CrossRef]
- Marcano, D.C.; Kosynkin, D.V.; Berlin, J.M.; Sinitskii, A.; Sun, Z.; Slesarev, A.; Alemany, L.B.; Lu, W.; Tour, J.M. Improved Synthesis of Graphene Oxide. ACS Nano 2010, 4, 4806–4814. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Hou, L.; Cnossen, A.; Coleman, A.C.; Ivashenko, O.; Rudolf, P.; van Wees, B.J.; Browne, W.R.; Feringa, B.L. One-Pot Functionalization of Graphene with Porphyrin through Cycloaddition Reactions. Chem.–A Eur. J. 2011, 17, 8957–8964. [Google Scholar] [CrossRef]
- Mohamadi, S.; Ghorbanali, M. Adsorption and UV-assisted photodegradation of methylene blue by CeO2-decorated graphene sponge. Sep. Sci. Technol. 2020, 56, 507–517. [Google Scholar] [CrossRef]
- Maes, H.M.; Stibany, F.; Giefers, S.; Daniels, B.; Deutschmann, B.; Baumgartner, W.; Schäffer, A. Accumulation and Distribution of Multiwalled Carbon Nanotubes in Zebrafish (Danio rerio). Environ. Sci. Technol. 2014, 48, 12256–12264. [Google Scholar] [CrossRef]
- Guo, X.; Dong, S.; Petersen, E.J.; Gao, S.; Huang, Q.; Mao, L. Biological Uptake and Depuration of Radio-labeled Graphene by Daphnia magna. Environ. Sci. Technol. 2013, 47, 12524–12531. [Google Scholar] [CrossRef] [PubMed]
- Lu, K.; Hu, Q.; Zhai, L.; Zhu, Z.; Xu, Y.; Ding, Z.; Zeng, H.; Dong, S.; Gao, S.; Mao, L. Mineralization of Few-Layer Graphene Made It Bioavailable in Chlamydomonas reinhardtii. Environ. Sci. Technol. 2023, 57, 15255–15265. [Google Scholar] [CrossRef]
- Lu, K.; Zha, Y.; Dong, S.; Zhu, Z.; Lv, Z.; Gu, Y.; Deng, R.; Wang, M.; Gao, S.; Mao, L. Uptake Route Altered the Bioavailability of Graphene in Misgurnus anguillicaudatus: Comparing Waterborne and Sediment Exposures. Environ. Sci. Technol. 2022, 56, 9435–9445. [Google Scholar] [CrossRef] [PubMed]
- Sallustrau, A.; Keck, M.; Barbe, P.; Georgin, D.; Fresneau, N.; Campidelli, S.; Pibaleau, B.; Pinault, M.; Mayne-L’Hermite, M.; Granotier-Beckers, C.; et al. One-year post-exposure assessment of 14C-few-layer graphene biodistribution in mice: Single versus repeated intratracheal administration. Nanoscale 2023, 15, 17621–17632. [Google Scholar] [CrossRef]
- Lu, K.; Dong, S.; Xia, T.; Mao, L. Kupffer Cells Degrade 14C-Labeled Few-Layer Graphene to 14CO2 in Liver through Erythrophagocytosis. ACS Nano 2020, 15, 396–409. [Google Scholar] [CrossRef]
- Cazier, H.; Malgorn, C.; Georgin, D.; Fresneau, N.; Beau, F.; Kostarelos, K.; Bussy, C.; Campidelli, S.; Pinault, M.; Mayne-L’Hermite, M.; et al. Correlative radioimaging and mass spectrometry imaging: A powerful combination to study14C-graphene oxide in vivo biodistribution. Nanoscale 2023, 15, 5510–5518. [Google Scholar] [CrossRef]
- Su, Y.; Tong, X.; Huang, C.; Chen, J.; Liu, S.; Gao, S.; Mao, L.; Xing, B. Green Algae as Carriers Enhance the Bioavailability of 14C-Labeled Few-Layer Graphene to Freshwater Snails. Environ. Sci. Technol. 2018, 52, 1591–1601. [Google Scholar] [CrossRef] [PubMed]
- Weise, K.; Kurth, T.; Politowski, I.; Winkelmann, C.; Schäffer, A.; Kretschmar, S.; Berendonk, T.U.; Jungmann, D. A workflow to investigate the impacts of weathered multi-walled carbon nanotubes to the mud snail Lymnaea stagnalis. Environ. Sci. Pollut. Res. 2021, 29, 26706–26725. [Google Scholar] [CrossRef]
- Li, B.; Yang, J.; Huang, Q.; Zhang, Y.; Peng, C.; Zhang, Y.; He, Y.; Shi, J.; Li, W.; Hu, J.; et al. Biodistribution and pulmonary toxicity of intratracheally instilled graphene oxide in mice. NPG Asia Mater. 2013, 5, e44. [Google Scholar] [CrossRef]
- Su, Y.; Yang, G.; Lu, K.; Petersen, E.J.; Mao, L. Colloidal properties and stability of aqueous suspensions of few-layer graphene: Importance of graphene concentration. Environ. Pollut. 2017, 220, 469–477. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhou, Q.; Zou, W.; Hu, X. Molecular Mechanisms of Developmental Toxicity Induced by Graphene Oxide at Predicted Environmental Concentrations. Environ. Sci. Technol. 2017, 51, 7861–7871. [Google Scholar] [CrossRef]
- Zhu, J.; Xu, M.; Gao, M.; Zhang, Z.; Xu, Y.; Xia, T.; Liu, S. Graphene Oxide Induced Perturbation to Plasma Membrane and Cytoskeletal Meshwork Sensitize Cancer Cells to Chemotherapeutic Agents. ACS Nano 2017, 11, 2637–2651. [Google Scholar] [CrossRef]
- Zhu, J.; Liu, L.; Ma, J.; Fu, Q.; Zheng, Z.; Du, E.; Xu, Y.; Zhang, Z. Biotransformation of graphene oxide within lung fluids could intensify its synergistic biotoxicity effect with cadmium by inhibiting cellular efflux of cadmium. Environ. Pollut. 2022, 306, 119421. [Google Scholar] [CrossRef] [PubMed]
- Kucki, M.; Aengenheister, L.; Diener, L.; Rippl, A.V.; Vranic, S.; Newman, L.; Vazquez, E.; Kostarelos, K.; Wick, P.; Buerki-Thurnherr, T. Impact of graphene oxide on human placental trophoblast viability, functionality and barrier integrity. 2D Mater. 2018, 5, 035014. [Google Scholar] [CrossRef]
- Hu, X.; Wei, Z.; Mu, L. Graphene oxide nanosheets at trace concentrations elicit neurotoxicity in the offspring of zebrafish. Carbon 2017, 117, 182–191. [Google Scholar] [CrossRef]
- Yao, Y.; Hua, F.; Wu, K.; Ye, Z.; Zhang, Z.; Qian, C. Research progress of photocatalytic degradation of organic pollutants in wastewater by graphene-based composites. Ind. Water Treat. 2024, 44, 1–8. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, X.-G.; Zhou, X.; Zhang, Y.-N. Review on the graphene based optical fiber chemical and biological sensors. Sens. Actuators B Chem. 2016, 231, 324–340. [Google Scholar] [CrossRef]
- Liang, Y.; Wang, X.; Li, H.; Ni, J.; Jin, Q. Fabrication and Research Progress of Graphene Reinforced Cu Matrix Composites. RARE Met. Mater. Eng. 2021, 50, 2607–2619. [Google Scholar]
- Xio, W.; Xiao, W. Preparation and properties of graphene-reinforced CuCr25 alloy. Rare Met. Mater. Eng. 2018, 46, 3862–3867. [Google Scholar]
- Guo, J.; Galliero, G.; Vermorel, R. How Membrane Flexibility Impacts Permeation and Separation of Gas through Nanoporous Graphenes. Nano Lett. 2024, 24, 12292–12298. [Google Scholar] [CrossRef] [PubMed]
- Gamil, M.; Pei, Q.; Zhang, Y. Mechanical behaviour of kirigami graphene under shear loading. Comput. Mater. Sci. 2019, 173, 109462. [Google Scholar] [CrossRef]
- Srimaneepong, V.; Skallevold, H.E.; Khurshid, Z.; Zafar, M.S.; Rokaya, D.; Sapkota, J. Graphene for Antimicrobial and Coating Application. Int. J. Mol. Sci. 2022, 23, 499. [Google Scholar] [CrossRef] [PubMed]
- Malisz, K.; Świeczko-Żurek, B. Graphene Production and Biomedical Applications: A Review. Crystals 2023, 13, 1413. [Google Scholar] [CrossRef]
- Lee, E.; Hong, J.-Y.; Kang, H.; Jang, J. Synthesis of TiO2 nanorod-decorated graphene sheets and their highly efficient photocatalytic activities under visible-light irradiation. J. Hazard. Mater. 2012, 219–220, 13–18. [Google Scholar] [CrossRef] [PubMed]
- Beura, R.; Pachaiappan, R.; Paramasivam, T. Photocatalytic degradation studies of organic dyes over novel Ag-loaded ZnO-graphene hybrid nanocomposites. J. Phys. Chem. Solids 2021, 148, 109689. [Google Scholar] [CrossRef]
- Li, Z.; Xue, Y. Research progress of carbon-based fibrous flexible supercapacitors. Guangzhou Chem. 2024, 49, 23–28. [Google Scholar] [CrossRef]
- Stoller, M.D.; Park, S.; Zhu, Y.; An, J.; Ruoff, R.S. Graphene-Based Ultracapacitors. Nano Lett. 2008, 8, 3498–3502. [Google Scholar] [CrossRef] [PubMed]
- Perala, R.S.; Chandrasekar, N.; Balaji, R.; Alexander, P.S.; Humaidi, N.Z.N.; Hwang, M.T. A comprehensive review on graphene-based materials: From synthesis to contemporary sensor applications. Mater. Sci. Eng. R Rep. 2024, 159, 100805. [Google Scholar] [CrossRef]
- Ma, J.; Xuan, H.; Ho, H.L.; Jin, W.; Yang, Y.; Fan, S. Fiber-Optic Fabry–Pérot Acoustic Sensor With Multilayer Graphene Diaphragm. IEEE Photonics Technol. Lett. 2013, 25, 932–935. Available online: https://ieeexplore.ieee.org/document/6493391 (accessed on 6 December 2024). [CrossRef]
- Wang, Y.; Lei, L.; Zang, J.; Dong, W.; Zhang, X.; Xu, P. High Efficiency Electro-Optic Modulation in a Graphene Silicon Hybrid Tapered Microring Resonator. IEEE Access 2021, 9, 87869–87876. [Google Scholar] [CrossRef]
- Bonaccorso, F.; Sun, Z.; Hasan, T.; Ferrari, A.C. Graphene photonics and optoelectronics. Nat. Photonics 2010, 4, 611–622. [Google Scholar] [CrossRef]
- Kolahdouz, M.; Xu, B.; Nasiri, A.F.; Fathollahzadeh, M.; Manian, M.; Aghababa, H.; Wu, Y.; Radamson, H.H. Carbon-Related Materials: Graphene and Carbon Nanotubes in Semiconductor Applications and Design. Micromachines 2022, 13, 1257. [Google Scholar] [CrossRef] [PubMed]
- Graphene Market Size, Growth Analysis & Industry Share | 2034. Available online: https://www.factmr.com/report/graphene-market (accessed on 3 January 2025).
- Poulsen, S.S.; Bengtson, S.; Williams, A.; Jacobsen, N.R.; Troelsen, J.T.; Halappanavar, S.; Vogel, U. A transcriptomic overview of lung and liver changes one day after pulmonary exposure to graphene and graphene oxide. Toxicol. Appl. Pharmacol. 2021, 410, 115343. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, A.F.; Newman, L.; Jasim, D.; Mukherjee, S.P.; Wang, J.; Vacchi, I.A.; Ménard-Moyon, C.; Bianco, A.; Fadeel, B.; Kostarelos, K.; et al. Size-Dependent Pulmonary Impact of Thin Graphene Oxide Sheets in Mice: Toward Safe-by-Design. Adv. Sci. 2020, 7, 1903200. [Google Scholar] [CrossRef] [PubMed]
- Khan, B.; Adeleye, A.S.; Burgess, R.M.; Russo, S.M.; Ho, K.T. Effects of graphene oxide nanomaterial exposures on the marine bivalve, Crassostrea virginica. Aquat. Toxicol. 2019, 216, 105297. [Google Scholar] [CrossRef]
- Khan, B.; Adeleye, A.S.; Burgess, R.M.; Smolowitz, R.; Russo, S.M.; Ho, K.T. A 72-h exposure study with eastern oysters (Crassostrea virginica) and the nanomaterial graphene oxide. Environ. Toxicol. Chem. 2019, 38, 820–830. [Google Scholar] [CrossRef] [PubMed]
- Nasirzadeh, N.; Azari, M.R.; Rasoulzadeh, Y.; Mohammadian, Y. An assessment of the cytotoxic effects of graphene nanoparticles on the epithelial cells of the human lung. Toxicol. Ind. Health 2019, 35, 79–87. [Google Scholar] [CrossRef] [PubMed]
- Kucki, M.; Rupper, P.; Sarrieu, C.; Melucci, M.; Treossi, E.; Schwarz, A.; León, V.; Kraegeloh, A.; Flahaut, E.; Vázquez, E.; et al. Interaction of graphene-related materials with human intestinal cells: An in vitro approach. Nanoscale 2016, 8, 8749–8760. [Google Scholar] [CrossRef]
- Liao, K.-H.; Lin, Y.-S.; Macosko, C.W.; Haynes, C.L. Cytotoxicity of Graphene Oxide and Graphene in Human Erythrocytes and Skin Fibroblasts. ACS Appl. Mater. Interfaces 2011, 3, 2607–2615. [Google Scholar] [CrossRef] [PubMed]
- Erf, G.F.; Falcon, D.M.; Sullivan, K.S.; Bourdo, S.E. T lymphocytes dominate local leukocyte infiltration in response to intradermal injection of functionalized graphene-based nanomaterial. J. Appl. Toxicol. 2017, 37, 1317–1324. [Google Scholar] [CrossRef]
- Syama, S.; Paul, W.; Sabareeswaran, A.; Mohanan, P.V. Raman spectroscopy for the detection of organ distribution and clearance of PEGylated reduced graphene oxide and biological consequences. Biomaterials 2017, 131, 121–130. [Google Scholar] [CrossRef] [PubMed]
- Brown, J.M.; Wang, X.; Podila, R.; Shannahan, J.H.; Rao, A.M.; Wang, X.; Podila, R.; Rao, A.M. Intravenously delivered graphene nanosheets and multiwalled carbon nanotubes induce site-specific Th2 inflammatory responses via the IL-33/ST2 axis. Int. J. Nanomed. 2013, 8, 1733–1748. [Google Scholar] [CrossRef] [PubMed]
- Di Cristo, L.; Grimaldi, B.; Catelani, T.; Vázquez, E.; Pompa, P.P.; Sabella, S. Repeated exposure to aerosolized graphene oxide mediates autophagy inhibition and inflammation in a three-dimensional human airway model. Mater. Today Bio 2020, 6, 100050. [Google Scholar] [CrossRef]
- Park, M.V.; Bleeker, E.A.; Brand, W.; Cassee, F.R.; van Elk, M.; Gosens, I.; de Jong, W.H.; Meesters, J.A.; Peijnenburg, W.J.; Quik, J.T.; et al. Considerations for Safe Innovation: The Case of Graphene. ACS Nano 2017, 11, 9574–9593. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, K.; Murata, M.; Yamaguchi, T.; Zaki, K.M. TGF-β/Smad signaling during hepatic fibro-carcinogenesis (Review). Int. J. Oncol. 2014, 45, 1363–1371. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, K.; Matsuzaki, K.; Murata, M.; Yamaguchi, T.; Suwa, K.; Okazaki, K. Clinico-Pathological Importance of TGF-β/Phospho-Smad Signaling during Human Hepatic Fibrocarcinogenesis. Cancers 2018, 10, 183. [Google Scholar] [CrossRef] [PubMed]
- Zhou, T.; Zhou, X.; Xing, D. Controlled release of doxorubicin from graphene oxide based charge-reversal nanocarrier. Biomaterials 2014, 35, 4185–4194. [Google Scholar] [CrossRef] [PubMed]
- Banna, G.L.; Collovà, E.; Gebbia, V.; Lipari, H.; Giuffrida, P.; Cavallaro, S.; Condorelli, R.; Buscarino, C.; Tralongo, P.; Ferraù, F. Anticancer oral therapy: Emerging related issues. Cancer Treat Rev. 2010, 36, 595–605. [Google Scholar] [CrossRef] [PubMed]
- Yoo, Y.-E.; Ko, C.-P. Treatment with trichostatin A initiated after disease onset delays disease progression and increases survival in a mouse model of amyotrophic lateral sclerosis. Exp. Neurol. 2011, 231, 147–159. [Google Scholar] [CrossRef]
- Shvedova, A.; Castranova, V.; Kisin, E.; Schwegler-Berry, D.; Murray, A.; Gandelsman, V.; Maynard, A.; Baron, P. Exposure to Carbon Nanotube Material: Assessment of Nanotube Cytotoxicity using Human Keratinocyte Cells. J. Toxicol. Environ. Health Part A 2003, 66, 1909–1926. [Google Scholar] [CrossRef] [PubMed]
- Eedy, D.J. Carbon-fibre-induced airborne irritant contact dermatitis. Contact Dermat. 1996, 35, 362–363. [Google Scholar] [CrossRef]
- Tauffenberger, A.; Magistretti, P.J. Reactive Oxygen Species: Beyond Their Reactive Behavior. Neurochem. Res. 2021, 46, 77–87. [Google Scholar] [CrossRef]
- Alesci, A.; Nicosia, N.; Fumia, A.; Giorgianni, F.; Santini, A.; Cicero, N. Resveratrol and Immune Cells: A Link to Improve Human Health. Molecules 2022, 27, 424. [Google Scholar] [CrossRef] [PubMed]
- Wideman, R.F.; Hamal, K.R.; Bayona, M.T.; Lorenzoni, A.G.; Cross, D.; Khajali, F.; Rhoads, D.D.; Erf, G.F.; Anthony, N.B. Plexiform Lesions in the Lungs of Domestic Fowl Selected for Susceptibility to Pulmonary Arterial Hypertension: Incidence and Histology. Anat. Rec. 2011, 294, 739–755. [Google Scholar] [CrossRef] [PubMed]
- Davison, F. The importance of the avian immune system and its unique features. In Avian Immunology, 2nd ed.; Academic Press: Cambridge, MA, USA, 2022; pp. 1–9. ISBN 978-0-12-818708-1. [Google Scholar]
- Perini, G.; Palmieri, V.; Ciasca, G.; De Spirito, M.; Papi, M. Unravelling the Potential of Graphene Quantum Dots in Biomedicine and Neuroscience. Int. J. Mol. Sci. 2020, 21, 3712. [Google Scholar] [CrossRef] [PubMed]
- Tu, Y.; Lv, M.; Xiu, P.; Huynh, T.; Zhang, M.; Castelli, M.; Liu, Z.; Huang, Q.; Fan, C.; Fang, H.; et al. Destructive extraction of phospholipids from Escherichia coli membranes by graphene nanosheets. Nat. Nanotechnol. 2013, 8, 594–601. [Google Scholar] [CrossRef]
- Fu, C.; Liu, T.; Li, L.; Liu, H.; Liang, Q.; Meng, X. Effects of graphene oxide on the development of offspring mice in lactation period. Biomaterials 2015, 40, 23–31. [Google Scholar] [CrossRef]
- Dziewięcka, M.; Witas, P.; Karpeta-Kaczmarek, J.; Kwaśniewska, J.; Flasz, B.; Balin, K.; Augustyniak, M. Reduced fecundity and cellular changes in Acheta domesticus after multigenerational exposure to graphene oxide nanoparticles in food. Sci. Total Environ. 2018, 635, 947–955. [Google Scholar] [CrossRef]
- Dziewięcka, M.; Karpeta-Kaczmarek, J.; Augustyniak, M.; Rost-Roszkowska, M. Short-term in vivo exposure to graphene oxide can cause damage to the gut and testis. J. Hazard. Mater. 2017, 328, 80–89. [Google Scholar] [CrossRef] [PubMed]
- Cebadero-Domínguez, Ó.; Jos, A.; Cameán, A.M.; Cătunescu, G.M. Hazard characterization of graphene nanomaterials in the frame of their food risk assessment: A review. Food Chem. Toxicol. 2022, 164, 113014. [Google Scholar] [CrossRef]
- Liu, X. Study on the Role of Graphene Oxide Induced Intestinal Flora Imbalance in Embryonic Toxicity. Ph.D. Thesis, Shandong University, Jinan, China, 2021. [Google Scholar]
- Broucke, S.V.D.; Vanoirbeek, J.A.J.; Derua, R.; Hoet, P.H.M.; Ghosh, M. Effect of Graphene and Graphene Oxide on Airway Barrier and Differential Phosphorylation of Proteins in Tight and Adherens Junction Pathways. Nanomaterials 2021, 11, 1283. [Google Scholar] [CrossRef]
- Lahiani, M.H.; Gokulan, K.; Williams, K.; Khare, S. Ex Vivo Human Colon Tissue Exposure to Pristine Graphene Activates Genes Involved in the Binding, Adhesion and Proliferation of Epithelial Cells. Int. J. Mol. Sci. 2021, 22, 11443. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y. Toxicity and Mechanism of Graphene Oxide to Zebrafish Embryo Development. Ph.D. Thesis, Nankai University, Tianjin, China, 2018. [Google Scholar]
- Kang, Y.; Liu, J.; Wu, J.; Yin, Q.; Liang, H.; Chen, A.; Shao, L. Graphene oxide and reduced graphene oxide induced neural pheochromocytoma-derived PC12 cell lines apoptosis and cell cycle alterations via the ERK signaling pathways. Int. J. Nanomed. 2017, 12, 5501–5510. [Google Scholar] [CrossRef]
- Xue, H.; Tang, Z.; Li, P.; Zhao, L.; Duan, G.; Wen, L. GO nanosheets inhibit the proliferation of hPDLCs by covering the membrane to block the EGFR-AKT signaling pathway. Colloid Interface Sci. Commun. 2023, 57, 100746. [Google Scholar] [CrossRef]
- Hu, M. Distribution and Toxic Effects of C-14 Labeled Graphene in Mice. Master’s Thesis, Nanjing University, Nanjing, China, 2019. [Google Scholar]
- Lwin, K.S.; Tobias, A.; Chua, P.L.; Yuan, L.; Thawonmas, R.; Ith, S.; Htay, Z.W.; Yu, L.S.; Yamasaki, L.; Roqué, M.; et al. Effects of Desert Dust and Sandstorms on Human Health: A Scoping Review. GeoHealth 2023, 7, e2022GH000728. [Google Scholar] [CrossRef]
- Dement, J.M.; Cloeren, M.; Ringen, K.; Quinn, P.; Chen, A.; Cranford, K.; Haas, S.; Hines, S. COPD risk among older construction workers—Updated analyses 2020. Am. J. Ind. Med. 2021, 64, 462–475. [Google Scholar] [CrossRef] [PubMed]
- Luo, Q.; Huang, L.; Xue, X.; Chen, Z.; Zhou, F.; Wei, L.; Hua, J. Occupational health risk assessment based on dust exposure during earthwork construction. J. Build. Eng. 2021, 44, 103186. [Google Scholar] [CrossRef]
- Andersson, M.; Blanc, P.D.; Torén, K.; Järvholm, B. Smoking, occupational exposures, and idiopathic pulmonary fibrosis among Swedish construction workers. Am. J. Ind. Med. 2021, 64, 251–257. [Google Scholar] [CrossRef] [PubMed]
- Liang, R.; Dong, C.; Yuan, L.; Jiang, B.; Wang, D.; Chen, W. Progress in the epidemiological studies on coal mine dust exposure with workers’ health damage. Chin. J. Ind. Hyg. Occup. Dis. 2022, 40, 476–480. [Google Scholar] [CrossRef]
- Tong, D.Q.; Gill, T.E.; Sprigg, W.A.; Van Pelt, R.S.; Baklanov, A.A.; Barker, B.M.; Bell, J.E.; Castillo, J.; Gassó, S.; Gaston, C.J.; et al. Health and Safety Effects of Airborne Soil Dust in the Americas and Beyond. Rev. Geophys. 2023, 61, e2021RG000763. [Google Scholar] [CrossRef]
- Ceballos, D.M.; Herrick, R.F.; Dong, Z.; Kalweit, A.; Miller, M.; Quinn, J.; Spengler, J.D. Factors affecting lead dust in construction workers’ homes in the Greater Boston Area. Environ. Res. 2021, 195, 110510. [Google Scholar] [CrossRef]
- Fadeel, B.; Bussy, C.; Merino, S.; Vázquez, E.; Flahaut, E.; Mouchet, F.; Evariste, L.; Gauthier, L.; Koivisto, A.J.; Vogel, U.; et al. Safety Assessment of Graphene-Based Materials: Focus on Human Health and the Environment. ACS Nano 2018, 12, 10582–10620. [Google Scholar] [CrossRef] [PubMed]
Exposure Pathways | Experimental Types | Studied Objective | Material | Dose | Exposure Time | Effects | References |
---|---|---|---|---|---|---|---|
Inhalation | In vivo intranasal instillation | mice | Graphene quantum dots | 0.1 or 1 mg/kg weight | 28 d | dysfunction, histopathological alternations, and fibrosis in the lung, liver and kidney tissues of mice; disruption of the iron balance and redox equilibrium of these respiratory organs. | [15] |
In vivo Intratracheal instillation | mice | Graphene oxide | 3.24 μg/mouse | 1, 3, 28, 90 d | Transcriptomic changes associated with pulmonary inflammation and increased risks of atherosclerosis development and fibrosis in the lung and liver. | [112] | |
In vivo Intratracheal administration | mice | 14C-few-layer graphene (14C-FLG) flakes | 0.17 mg per kg b.w. | repeated once a week for 4 weeks | Material accumulation in the lungs after one-year post-exposure | [82] | |
In vivo Nostril instillation | mice | GO | 50 μL dispersions of 1mg/mL GO | 1, 7, 28, 90 d | Granulomas in lungs persisting for up to 90 days | [113] | |
In vivo Water exposure | oyster | Graphene oxide | 2.5, 5 mg/L | 14 d | Elevated lipid peroxidation and changes in glutathione-s-transferase (GST) activities in gills and digestive gland tissues. | [114] | |
In vivo Water exposure | oyster | Graphene oxide | 1, 10 mg/L | 72 h | Elevated lipid peroxidation, loss of mucous cells, hemocytic infiltration, and vacuolation in gills. | [115] | |
In vitro | A549 epithelial cells of the human lung | Synthesized GDs | 0.1–1000 µg/mL | 24, 48, 72 h | reduced cell viability at high concentrations | [116] | |
In vitro | BEAS-2B, Human normal lung epithelial cells | Graphene oxide | 1–100 μg/mL | 24 h | suppress the efflux function of ATP-binding cassette transporters | [91] | |
Ingestion | In vivo Water exposure | oyster | Graphene oxide | 1, 10 mg/L | 72 h | reduced total protein levels in digestive gland tissues | [115] |
In vivo Water exposure | oyster | Graphene oxide | 2.5, 5 mg/L | 14 d | Elevated lipid peroxidation and changes in glutathione-s-transferase (GST) activities in gills and digestive gland tissues. | [114] | |
In vivo oro-pharyngeal aspiration | mice | GO sheet | 1, 10 μg | Once per 14 days (lasting for 84 days) | Long-term DNA double-strand breaks at a higher dose of micrometric GO sheets | [11] | |
In vivo Oral administration | mice | rGO nanosheets | 60 mg/kg body weight/d | 5 d | A short-term decrease in locomotor activity and neuromuscular coordination | [10] | |
In vitro | Caco-2 cells derived from human colorectal adenocarcinoma | GOs and graphene nanoplatelets | 0–80 μg/mL in culture medium | 24, 48 h | ROS formation after GO exposure; low acute toxicity at high concentrations of graphene nanoplatelets | [117] | |
Dermal exposure | In vitro | human skin HaCaT cell | layered graphene (FLG), GOs (GO1, GO2, GO3) | FLG (0.005 to 90 μg/mL culture medium) GO (0.005 to 100 μg/mL culture medium) | 72 h | Impaired mitochondrial activity associated with plasma membrane damage | [16] |
In vitro | Human skin fibroblast cells (CRL-2522) | graphene oxide (GO) and graphene sheets (GS) of various sizes and oxygen content | 3.125–200 μg/mL | 1 h | cytotoxicity, and more reactive oxygen species (ROS) formation | [118] | |
In vivo intradermal GBN injection | Growing feathers (GF) of chickens | oxygen-functionalized graphene nanomaterial (f-GNB) | 60 g/chicken | 0, 0.25, 1, 2, 3, 4, 5, and 7 days | inflammatory immune response activity initiated by cellular/tissue damage | [119] | |
Intraperitoneal and intravenous administration | In vivo Intraperitoneal and intravenous administration | Healthy albino mice | PEGylated reduced graphene oxide (PrGO) | 10 mg/kg body weight | 3, 7, 14 and 21 days | PrGO was distributed in the brain, liver, kidney, spleen, and bone marrow and might induce inflammatory responses; Cross blood–brain barrier; organ damage. | [120] |
in vivo tail vein injection | mice | Graphene nanosheets | 1 mg/kg body weight | 1 or 7 days | Th2 immune responses which may induce adverse allergic reactions. | [121] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jin, H.; Lai, N.; Jiang, C.; Wang, M.; Yao, W.; Han, Y.; Song, W. Potential Health Risks of Exposure to Graphene and Its Derivatives: A Review. Processes 2025, 13, 209. https://doi.org/10.3390/pr13010209
Jin H, Lai N, Jiang C, Wang M, Yao W, Han Y, Song W. Potential Health Risks of Exposure to Graphene and Its Derivatives: A Review. Processes. 2025; 13(1):209. https://doi.org/10.3390/pr13010209
Chicago/Turabian StyleJin, Huanyu, Nami Lai, Chao Jiang, Mengying Wang, Wanying Yao, Yue Han, and Weiwei Song. 2025. "Potential Health Risks of Exposure to Graphene and Its Derivatives: A Review" Processes 13, no. 1: 209. https://doi.org/10.3390/pr13010209
APA StyleJin, H., Lai, N., Jiang, C., Wang, M., Yao, W., Han, Y., & Song, W. (2025). Potential Health Risks of Exposure to Graphene and Its Derivatives: A Review. Processes, 13(1), 209. https://doi.org/10.3390/pr13010209