A Compact Review of Current Technologies for Carbon Capture as Well as Storing and Utilizing the Captured CO2
Abstract
:1. Introduction
2. Current Challenges of Reducing CO2 from Flue Gases
2.1. High Energy Consumption and Carbon Penalty
2.2. High Initial Capital Costs or Operational Costs
2.3. Low CO2 Purity in Flue Gases and Inefficient Capture Rates
2.4. Solvent Degradation and Environmental Concerns
2.5. Scalability and Infrastructure Requirements
2.6. Uncertain Long-Term Storage Solutions
3. CO2 from Flue Gases
3.1. Post-Combustion Route (PCCC)
3.1.1. Absorption via Fluid Absorbents
3.1.2. Adsorption on Suitable Materials
3.1.3. Calcium Looping (CaL)
3.1.4. Membrane Separation
3.1.5. Cryogenic CO2 Separation
3.2. Pre-Combustion
3.3. Oxy-Fuel Combustion
3.4. Chemical Looping Combustion (CLC)
4. Direct Air Capture (DAC) Approach to Capture Airborne CO2
5. Storing the Captured CO2 (CCS)
5.1. Deep Saline Aquifers
5.2. Depleted Oil and Gas Reservoirs (DOGR)
5.3. Enhanced Oil Recovery (EOR)
5.4. Mineralizing the CO2 Underground
5.5. Coal Seams
5.6. Global Status of CCS Facilities
6. Utilizing the Captured CO2 (CCU)
6.1. Direct Utilization of CO2
6.2. Bulk Chemicals
6.2.1. Formic Acid
6.2.2. Urea
6.3. Fuels
6.3.1. Methanol
6.3.2. Methane
6.4. Algae Biomass
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IPCC. 2023: Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Core Writing Team, Lee, H., Romero, J., Eds.; IPCC: Geneva, Switzerland, 2023. [Google Scholar] [CrossRef]
- Cuartas, J.; Mccoy, D.C.; Torres, I.; Burghardt, L.; Shonkoff, J.P.; Yoshikawa, H. The Developmental Consequences of Early Exposure to Climate Change-Related Risks. Child Dev. Perspect. 2024, 18, 145–154. [Google Scholar] [CrossRef]
- Global Carbon Project 2024. Available online: https://globalcarbonbudget.org/gcb-2024/ (accessed on 5 October 2024).
- European Commission. Communication from the Commission to the European Parliament: The European Green Deal. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52019DC0640 (accessed on 15 October 2024).
- Chandran Govindaraju, V.G.R.; Tang, C.F. The Dynamic Links between CO2 Emissions, Economic Growth and Coal Consumption in China and India. Appl. Energy 2013, 104, 310–318. [Google Scholar] [CrossRef]
- Olabi, A.G.; Wilberforce, T.; Elsaid, K.; Sayed, E.T.; Maghrabie, H.M.; Abdelkareem, M.A. Large Scale Application of Carbon Capture to Process Industries—A Review. J. Clean. Prod. 2022, 362, 132300. [Google Scholar] [CrossRef]
- Raganati, F.; Ammendola, P. CO2 Post-Combustion Capture: A Critical Review of Current Technologies and Future Directions. Energy Fuels 2024, 38, 13858–13905. [Google Scholar] [CrossRef]
- Vasudevan, S.; Farooq, S.; Karimi, I.A.; Saeys, M.; Quah, M.C.G.; Agrawal, R. Energy Penalty Estimates for CO2 Capture: Comparison between Fuel Types and Capture-Combustion Modes. Energy 2016, 103, 709–714. [Google Scholar] [CrossRef]
- Sun, N.; Tang, Z.; Wei, W.; Snape, C.E.; Sun, Y. Solid Adsorbents for Low-Temperature CO2 Capture with Low-Energy Penalties Leading to More Effective Integrated Solutions for Power Generation and Industrial Processes. Front. Energy Res. 2015, 3, 9. [Google Scholar] [CrossRef]
- Kheirinik, M.; Ahmed, S.; Rahmanian, N. Comparative Techno-Economic Analysis of Carbon Capture Processes: Pre-Combustion, Post-Combustion, and Oxy-Fuel Combustion Operations. Sustainability 2021, 13, 13567. [Google Scholar] [CrossRef]
- Garcia, J.A.; Villen-Guzman, M.; Rodriguez-Maroto, J.M.; Paz-Garcia, J.M. Technical Analysis of CO2 Capture Pathways and Technologies. J. Environ. Chem. Eng. 2022, 10, 108470. [Google Scholar] [CrossRef]
- Karayil, A.; Elseragy, A.; Aliyu, A.M. An Assessment of CO2 Capture Technologies towards Global Carbon Net Neutrality. Energies 2024, 17, 1460. [Google Scholar] [CrossRef]
- Zhang, Z.; Vo, D.-N.; Kum, J.; Hong, S.-H.; Lee, C.-H. Enhancing Energy Efficiency of Chemical Absorption-Based CO2 Capture Process with Advanced Waste-Heat Recovery Modules at a High Capture Rate. Chem. Eng. J. 2023, 472, 144918. [Google Scholar] [CrossRef]
- Rubin, E.S.; Chen, C.; Rao, A.B. Cost and Performance of Fossil Fuel Power Plants with CO2 Capture and Storage. Energy Policy 2007, 35, 4444–4454. [Google Scholar] [CrossRef]
- Obi, D.; Onyekuru, S.; Orga, A. Review of Recent Process Developments in the Field of Carbon Dioxide (CO2) Capture from Power Plants Flue Gases and the Future Perspectives. Int. J. Sustain. Energy 2024, 43, 2317137. [Google Scholar] [CrossRef]
- Bravo, J.; Drapanauskaite, D.; Sarunac, N.; Romero, C.; Jesikiewicz, T.; Baltrusaitis, J. Optimization of Energy Requirements for CO2 Post-Combustion Capture Process through Advanced Thermal Integration. Fuel 2021, 283, 118940. [Google Scholar] [CrossRef]
- Madejski, P.; Chmiel, K.; Subramanian, N.; Kuś, T. Methods and Techniques for CO2 Capture: Review of Potential Solutions and Applications in Modern Energy Technologies. Energies 2022, 15, 887. [Google Scholar] [CrossRef]
- Rezaei, S.; Liu, A.; Hovington, P. Emerging Technologies in Post-Combustion Carbon Dioxide Capture & Removal. Catal. Today 2023, 423, 114286. [Google Scholar] [CrossRef]
- Osman, A.I.; Hefny, M.; Abdel Maksoud, M.I.A.; Elgarahy, A.M.; Rooney, D.W. Recent Advances in Carbon Capture Storage and Utilisation Technologies: A Review. Environ. Chem. Lett. 2021, 19, 797–849. [Google Scholar] [CrossRef]
- Mondal, M.K.; Balsora, H.K.; Varshney, P. Progress and Trends in CO2 Capture/Separation Technologies: A Review. Energy 2012, 46, 431–441. [Google Scholar] [CrossRef]
- Yagmur Goren, A.; Erdemir, D.; Dincer, I. Comprehensive Review and Assessment of Carbon Capturing Methods and Technologies: An Environmental Research. Environ. Res. 2024, 240, 117503. [Google Scholar] [CrossRef]
- Car, A.; Stropnik, C.; Yave, W.; Peinemann, K.V. Pebax®/Polyethylene Glycol Blend Thin Film Composite Membranes for CO2 Separation: Performance with Mixed Gases. Sep. Purif. Technol. 2008, 62, 110–117. [Google Scholar] [CrossRef]
- Figueroa, J.D.; Fout, T.; Plasynski, S.; McIlvried, H.; Srivastava, R.D. Advances in CO2 Capture Technology—The U.S. Department of Energy’s Carbon Sequestration Program. Int. J. Greenh. Gas Control 2008, 2, 9–20. [Google Scholar] [CrossRef]
- Giannaris, S.; Janowczyk, D.; Ruffini, J.; Hill, K.; Jacobs, B.; Bruce, C.; Feng, Y.; Srisang, W. SaskPower’s Boundary Dam Unit 3 Carbon Capture Facility—TheJourney to Achieving Reliability. In Proceedings of the 15th International Conference on Greenhouse Gas Control Technologies, GHGT-15, Abu Dhabi, UAE, 15 March 2021. [Google Scholar]
- SaskPower—Boundary Dam Power Station. Available online: https://www.saskpower.com/our-power-future/our-electricity/electrical-system/system-map/boundary-dam-power-station (accessed on 31 December 2024).
- Lau, H.C. The Contribution of Carbon Capture and Storage to the Decarbonization of Coal-Fired Power Plants in Selected Asian Countries. Energy Fuels 2023, 37, 15919–15934. [Google Scholar] [CrossRef]
- Spigarelli, B.P.; Kawatra, S.K. Opportunities and Challenges in Carbon Dioxide Capture. J. CO2 Util. 2013, 1, 69–87. [Google Scholar] [CrossRef]
- Yang, H.; Xu, Z.; Fan, M.; Gupta, R.; Slimane, R.B.; Bland, A.E.; Wright, I. Progress in Carbon Dioxide Separation and Capture: A Review. J. Environ. Sci. 2008, 20, 14–27. [Google Scholar] [CrossRef] [PubMed]
- El Hadri, N.; Quang, D.V.; Goetheer, E.L.V.; Abu Zahra, M.R.M. Aqueous Amine Solution Characterization for Post-Combustion CO2 Capture Process. Appl. Energy 2017, 185, 1433–1449. [Google Scholar] [CrossRef]
- Rao, A.B.; Rubin, E.S. A Technical, Economic, and Environmental Assessment of Amine-Based CO2 Capture Technology for Power Plant Greenhouse Gas Control. Environ. Sci. Technol. 2002, 36, 4467–4475. [Google Scholar] [CrossRef] [PubMed]
- Lv, B.; Guo, B.; Zhou, Z.; Jing, G. Mechanisms of CO2 Capture into Monoethanolamine Solution with Different CO2 Loading during the Absorption/Desorption Processes. Environ. Sci. Technol. 2015, 49, 10728–10735. [Google Scholar] [CrossRef] [PubMed]
- Caplow, M. Kinetics of Carbamate Formation and Breakdown. J. Am. Chem. Soc. 1968, 90, 6795–6803. [Google Scholar] [CrossRef]
- Danckwerts, P.V. The Reaction of CO2 with Ethanolamines. Chem. Eng. Sci. 1979, 34, 443–446. [Google Scholar] [CrossRef]
- Kittel, J.; Idem, R.; Gelowitz, D.; Tontiwachwuthikul, P.; Parrain, G.; Bonneau, A. Corrosion in MEA Units for CO2 Capture: Pilot Plant Studies. Energy Procedia 2009, 1, 791–797. [Google Scholar] [CrossRef]
- Leung, D.Y.C.; Caramanna, G.; Maroto-Valer, M.M. An Overview of Current Status of Carbon Dioxide Capture and Storage Technologies. Renew. Sustain. Energy Rev. 2014, 39, 426–443. [Google Scholar] [CrossRef]
- He, X.; He, H.; Barzagli, F.; Amer, M.W.; Li, C.; Zhang, R. Analysis of the Energy Consumption in Solvent Regeneration Processes Using Binary Amine Blends for CO2 Capture. Energy 2023, 270, 126903. [Google Scholar] [CrossRef]
- Kumari, M.; Vega, F.; Gallego Fernández, L.M.; Prasad Shadangi, K.; Kumar, N. Liquid Amine Functional, Aqueous Blends and the CO2 Absorption Capacity: Molecular Structure, Size, Interaction Parameter and Mechanistic Aspects. J. Mol. Liq. 2023, 384, 122288. [Google Scholar] [CrossRef]
- Valluri, S.; Kawatra, S.K. Use of Frothers to Improve the Absorption Efficiency of Dilute Sodium Carbonate Slurry for Post Combustion CO2 Capture. Fuel Process. Technol. 2021, 212, 106620. [Google Scholar] [CrossRef]
- Yu, W.; Wang, T.; Park, A.-H.A.; Fang, M. Review of Liquid Nano-Absorbents for Enhanced CO2 Capture. Nanoscale 2019, 11, 17137–17156. [Google Scholar] [CrossRef] [PubMed]
- Sibhat, M.; Zhu, Q.; Tsegay, G.; Yao, G.; Yin, G.; Zhou, Y.; Zhao, J. Enhancement Technologies of Ammonia-Based Carbon Capture: A Review of Developments and Challenges. Int. J. Greenh. Gas Control 2024, 136, 104196. [Google Scholar] [CrossRef]
- Qu, Y.; Zhao, Y.; Li, D.; Sun, J. Task-Specific Ionic Liquids for Carbon Dioxide Absorption and Conversion into Value-Added Products. Curr. Opin. Green Sustain. Chem. 2022, 34, 100599. [Google Scholar] [CrossRef]
- Liu, F.; Shen, Y.; Shen, L.; Sun, C.; Chen, L.; Wang, Q.; Li, S.; Li, W. Novel Amino-Functionalized Ionic Liquid/Organic Solvent with Low Viscosity for CO2 Capture. Environ. Sci. Technol. 2020, 54, 3520–3529. [Google Scholar] [CrossRef]
- Zhang, R.; Ke, Q.; Zhang, Z.; Zhou, B.; Cui, G.; Lu, H. Tuning Functionalized Ionic Liquids for CO2 Capture. Int. J. Mol. Sci. 2022, 23, 11401. [Google Scholar] [CrossRef] [PubMed]
- Soo, X.Y.D.; Lee, J.J.C.; Wu, W.-Y.; Tao, L.; Wang, C.; Zhu, Q.; Bu, J. Advancements in CO2 Capture by Absorption and Adsorption: A Comprehensive Review. J. CO2 Util. 2024, 81, 102727. [Google Scholar] [CrossRef]
- Cui, X.; Ye, H.; Dong, H. A Novel Rectisol Process for H2s Enrichment and CO2 Capture: Process Optimization and Thermodynamic Analysis; SSRN: Rochester, NY, USA, 2024. [Google Scholar]
- Ban, Z.H.; Keong, L.K.; Mohd Shariff, A. Physical Absorption of CO2 Capture: A Review. Adv. Mater. Res. 2014, 917, 134–143. [Google Scholar] [CrossRef]
- Yang, S.; Qian, Y.; Yang, S. Development of a Full CO2 Capture Process Based on the Rectisol Wash Technology. Ind. Eng. Chem. Res. 2016, 55, 6186–6193. [Google Scholar] [CrossRef]
- Sharma, I.; Hoadley, A.F.A.; Mahajani, S.M.; Ganesh, A. Multi-Objective Optimisation of a RectisolTM Process for Carbon Capture. J. Clean. Prod. 2016, 119, 196–206. [Google Scholar] [CrossRef]
- Kapetaki, Z.; Brandani, P.; Brandani, S.; Ahn, H. Process Simulation of a Dual-Stage Selexol Process for 95% Carbon Capture Efficiency at an Integrated Gasification Combined Cycle Power Plant. Int. J. Greenh. Gas Control 2015, 39, 17–26. [Google Scholar] [CrossRef]
- Chen, W.H.; Chen, S.M.; Hung, C.I. Carbon Dioxide Capture by Single Droplet Using Selexol, Rectisol and Water as Absorbents: A Theoretical Approach. Appl. Energy 2013, 111, 731–741. [Google Scholar] [CrossRef]
- Acid Gas Treating. In Handbook of Natural Gas Transmission and Processing; Elsevier: Amsterdam, The Netherlands, 2006; pp. 261–294.
- Burr, B.; Lyddon, L. A Comparison of Physical Solvents for Acid Gas Removal. Gas Processors’ Association Convention, Grapevine, TX. 2008. Available online: https://www.bre.com/PDF/A-Comparison-of-Physical-Solvents-for-Acid-Gas-Removal-REVISED.pdf (accessed on 16 October 2024).
- Hakka, L.E.; Ouimet, M.A. Method for Recovery of CO2 from Gas Streams. U.S. Patent US7056482B2, 6 June 2006. [Google Scholar]
- Ouimet, M.A. Process for the Recovery of Carbon Dioxide from a Gas Stream. U.S. Patent US7601315B2, 13 October 2009. [Google Scholar]
- Ben-Mansour, R.; Habib, M.A.; Bamidele, O.E.; Basha, M.; Qasem, N.A.A.; Peedikakkal, A.; Laoui, T.; Ali, M. Carbon Capture by Physical Adsorption: Materials, Experimental Investigations and Numerical Modeling and Simulations—A Review. Appl. Energy 2016, 161, 225–255. [Google Scholar] [CrossRef]
- Abd, A.A.; Naji, S.Z.; Hashim, A.S.; Othman, M.R. Carbon Dioxide Removal through Physical Adsorption Using Carbonaceous and Non-Carbonaceous Adsorbents: A Review. J. Environ. Chem. Eng. 2020, 8, 104142. [Google Scholar] [CrossRef]
- Clausse, M.; Bonjour, J.; Meunier, F. Adsorption of Gas Mixtures in TSA Adsorbers under Various Heat Removal Conditions. Chem. Eng. Sci. 2004, 59, 3657–3670. [Google Scholar] [CrossRef]
- Krishna, R. Adsorptive Separation of CO2/CH4/CO Gas Mixtures at High Pressures. Microporous Mesoporous Mater. 2012, 156, 217–223. [Google Scholar] [CrossRef]
- Chue, K.T.; Kim, J.N.; Yoo, Y.J.; Cho, S.H.; Yang, R.T. Comparison of Activated Carbon and Zeolite 13X for CO2 Recovery from Flue Gas by Pressure Swing Adsorption. Ind. Eng. Chem. Res. 1995, 34, 591–598. [Google Scholar] [CrossRef]
- Zhao, R.; Deng, S.; Wang, S.; Zhao, L.; Zhang, Y.; Liu, B.; Li, H.; Yu, Z. Thermodynamic Research of Adsorbent Materials on Energy Efficiency of Vacuum-Pressure Swing Adsorption Cycle for CO2 Capture. Appl. Therm. Eng. 2018, 128, 818–829. [Google Scholar] [CrossRef]
- Grande, C.A.; Ribeiro, R.P.L.; Oliveira, E.L.G.; Rodrigues, A.E. Electric Swing Adsorption as Emerging CO2 Capture Technique. Energy Procedia 2009, 1, 1219–1225. [Google Scholar] [CrossRef]
- Verougstraete, B.; Gholami, M.; Gomez-Rueda, Y.; Pérez-Botella, E.; Schoukens, M.; Van Assche, T.R.C.; Denayer, J.F.M. Advancements and Challenges in Electric Heating for Enhanced Temperature Swing Adsorption Processes. Sep. Purif. Technol. 2025, 353, 128522. [Google Scholar] [CrossRef]
- Grande, C.; Rodrigues, A. Electric Swing Adsorption for CO2 Removal from Flue Gases. Int. J. Greenh. Gas Control 2007, 2, 194–202. [Google Scholar] [CrossRef]
- Chowdhury, S.; Balasubramanian, R. Highly Efficient, Rapid and Selective CO2 Capture by Thermally Treated Graphene Nanosheets. J. CO2 Util. 2016, 13, 50–60. [Google Scholar] [CrossRef]
- Wang, Y.; Guan, C.; Wang, K.; Guo, C.X.; Li, C.M. Nitrogen, Hydrogen, Carbon Dioxide, and Water Vapor Sorption Properties of Three-Dimensional Graphene. J. Chem. Eng. Data 2011, 56, 642–645. [Google Scholar] [CrossRef]
- Malini, K.; Selvakumar, D.; Kumar, N.S. Activated Carbon from Biomass: Preparation, Factors Improving Basicity and Surface Properties for Enhanced CO2 Capture Capacity—A Review. J. CO2 Util. 2023, 67, 102318. [Google Scholar] [CrossRef]
- Serafin, J.; Dziejarski, B. Activated Carbons—Preparation, Characterization and Their Application in CO2 Capture: A Review. Environ. Sci. Pollut. Res. 2024, 31, 40008–40062. [Google Scholar] [CrossRef]
- Ghaemi, A.; Karimi Dehnavi, M.; Khoshraftar, Z. Exploring Artificial Neural Network Approach and RSM Modeling in the Prediction of CO2 Capture Using Carbon Molecular Sieves. Case Stud. Chem. Environ. Eng. 2023, 7, 100310. [Google Scholar] [CrossRef]
- Wei, Y.; Zhao, T.; Wang, J.; Chen, Y.; Wang, Q.; Liu, X.; Zhao, Y. Ultramicroporous Carbon Molecular Sieve for Air Purification by Selective Adsorption Low-Concentration CO2 and VOC Molecules. Ind. Eng. Chem. Res. 2023, 62, 7635–7641. [Google Scholar] [CrossRef]
- Jena, K.K.; Panda, A.P.; Verma, S.; Mani, G.K.; Swain, S.K.; Alhassan, S.M. MWCNTs-ZnO-SiO2 Mesoporous Nano-Hybrid Materials for CO2 Capture. J. Alloys Compd. 2019, 800, 279–285. [Google Scholar] [CrossRef]
- Hsu, C.-Y.; Rheima, A.M.; Mohammed, M.S.; Kadhim, M.M.; Mohammed, S.H.; Abbas, F.H.; Abed, Z.T.; Mahdi, Z.M.; Abbas, Z.S.; Hachim, S.K.; et al. Application of Carbon Nanotubes and Graphene-Based Nanoadsorbents in Water Treatment. Bionanoscience 2023, 13, 1418–1436. [Google Scholar] [CrossRef]
- Zhao, M.; Yang, Y.; Gu, X.-S. MOF Based CO2 Capture: Adsorption and Membrane Separation. Inorg. Chem. Commun. 2023, 152, 110722. [Google Scholar] [CrossRef]
- Gebremariam, S.K.; Dumée, L.F.; Llewellyn, P.L.; AlWahedi, Y.F.; Karanikolos, G.N. Metal-Organic Framework Hybrid Adsorbents for Carbon Capture—A Review. J. Environ. Chem. Eng. 2023, 11, 109291. [Google Scholar] [CrossRef]
- Tao, Z.; Tian, Y.; Wu, W.; Liu, Z.; Fu, W.; Kung, C.-W.; Shang, J. Development of Zeolite Adsorbents for CO2 Separation in Achieving Carbon Neutrality. NPJ Mater. Sustain. 2024, 2, 20. [Google Scholar] [CrossRef]
- Deng, Z.; Gopalan, A.; Sarkisov, L. In Silico Engineering of Ion-Exchanged Zeolites for High-Performance Carbon Capture in PSA Processes. Chem. Eng. J. 2023, 459. [Google Scholar] [CrossRef]
- Reddy, K.S.K.; Varghese, A.M.; Ogungbenro, A.E.; Karanikolos, G.N. Aminosilane-Modified Ordered Hierarchical Nanostructured Silica for Highly-Selective Carbon Dioxide Capture at Low Pressure. ACS Appl. Eng. Mater. 2023, 1, 720–733. [Google Scholar] [CrossRef]
- Alves, A.A.; De Oliveira Notório Ribeiro, J.; Vasconcelos, W.L. Development of Silica-Based Monoliths for the Capture of CO2. Mater. Res. 2019, 22, e20190285. [Google Scholar] [CrossRef]
- Wang, S.; Yan, S.; Ma, X.; Gong, J. Recent Advances in Capture of Carbon Dioxide Using Alkali-Metal-Based Oxides. Energy Environ. Sci. 2011, 4, 3805. [Google Scholar] [CrossRef]
- González-Varela, D.; Hernández-Fontes, C.; Wang, N.; Pfeiffer, H. State of the Art and Perspectives of the CO2 Chemisorption in Ceramics with Its Simultaneous or Subsequent Chemical Transformation. Carbon Capture Sci. Technol. 2023, 7, 100101. [Google Scholar] [CrossRef]
- Duan, X.; Song, G.; Lu, G.; Wang, Y.; Sun, J.; Chen, A.; Xie, X. Chemisorption and Regeneration of Amine-Based CO2 Sorbents in Direct Air Capture. Mater. Today Sustain. 2023, 23, 100453. [Google Scholar] [CrossRef]
- Huhe, F.; King, J.; Chuang, S.S.C. Amine-Based Sorbents for CO2 Capture from Air and Flue Gas—A Short Review and Perspective. Res. Chem. Intermed. 2023, 49, 791–817. [Google Scholar] [CrossRef]
- Emissions Reduction Alberta. Available online: https://www.eralberta.ca/projects/details/veloxotherm-carbon-capture/ (accessed on 23 November 2024).
- Shimizu, T.; Hirama, T.; Hosoda, H.; Kitano, K.; Inagaki, M.; Tejima, K. A Twin Fluid-Bed Reactor for Removal of CO2 from Combustion Processes. Chem. Eng. Res. Des. 1999, 77, 62–68. [Google Scholar] [CrossRef]
- Liu, H.; Lu, H.; Hu, H. CO2 Capture and Mineral Storage: State of the Art and Future Challenges. Renew. Sustain. Energy Rev. 2024, 189, 113908. [Google Scholar] [CrossRef]
- Erans, M.; Manovic, V.; Anthony, E.J. Calcium Looping Sorbents for CO2 Capture. Appl. Energy 2016, 180, 722–742. [Google Scholar] [CrossRef]
- Alonso, M.; Rodríguez, N.; Grasa, G.; Abanades, J.C. Modelling of a Fluidized Bed Carbonator Reactor to Capture CO2 from a Combustion Flue Gas. Chem. Eng. Sci. 2009, 64, 883–891. [Google Scholar] [CrossRef]
- Blamey, J.; Anthony, E.J.; Wang, J.; Fennell, P.S. The Calcium Looping Cycle for Large-Scale CO2 Capture. Prog. Energy Combust. Sci. 2010, 36, 260–279. [Google Scholar] [CrossRef]
- Mantripragada, H.C.; Rubin, E.S. Calcium Looping Cycle for CO2 Capture: Performance, Cost And Feasibility Analysis. Energy Procedia 2014, 63, 2199–2206. [Google Scholar] [CrossRef]
- Romano, M.C. Modeling the Carbonator of a Ca-Looping Process for CO2 Capture from Power Plant Flue Gas. Chem. Eng. Sci. 2012, 69, 257–269. [Google Scholar] [CrossRef]
- Hanak, D.P.; Anthony, E.J.; Manovic, V. A Review of Developments in Pilot-Plant Testing and Modelling of Calcium Looping Process for CO2 Capture from Power Generation Systems. Energy Environ. Sci. 2015, 8, 2199–2249. [Google Scholar] [CrossRef]
- Martínez, I.; Grasa, G.; Parkkinen, J.; Tynjälä, T.; Hyppänen, T.; Murillo, R.; Romano, M.C. Review and Research Needs of Ca-Looping Systems Modelling for Post-Combustion CO2 Capture Applications. Int. J. Greenh. Gas Control 2016, 50, 271–304. [Google Scholar] [CrossRef]
- Abanades, J.C.; Anthony, E.J.; Wang, J.; Oakey, J.E. Fluidized Bed Combustion Systems Integrating CO2 Capture with CaO. Environ. Sci. Technol. 2005, 39, 2861–2866. [Google Scholar] [CrossRef] [PubMed]
- Atsonios, K.; Grammelis, P.; Antiohos, S.K.; Nikolopoulos, N.; Kakaras, E. Integration of Calcium Looping Technology in Existing Cement Plant for CO2 Capture: Process Modeling and Technical Considerations. Fuel 2015, 153, 210–223. [Google Scholar] [CrossRef]
- Project—CaLby2030—Europe. Available online: https://www.calby2030.eu/overview-of-the-project.html (accessed on 11 November 2024).
- Calby2030 Project. Available online: https://www.calby2030.eu/project/demonstration-sites.html (accessed on 31 December 2024).
- Arias, B.; Alvarez Criado, Y.; Méndez, A.; Marqués, P.; Finca, I.; Abanades, J.C. Pilot Testing of Calcium Looping at TRL7 with CO2 Capture Efficiencies toward 99%. Energy Fuels 2024, 38, 14757–14764. [Google Scholar] [CrossRef] [PubMed]
- Kárászová, M.; Sedláková, Z.; Izák, P. Gas Permeation Processes in Biogas Upgrading: A Short Review. Chem. Pap. 2015, 69, 1277–1283. [Google Scholar] [CrossRef]
- Baker, R.W.; Freeman, B.; Kniep, J.; Wei, X.; Merkel, T. CO2 Capture from Natural Gas Power Plants Using Selective Exhaust Gas Recycle Membrane Designs. Int. J. Greenh. Gas Control 2017, 66, 35–47. [Google Scholar] [CrossRef]
- Pospiech, B.; Kujawski, W. Ionic Liquids as Selective Extractants and Ion Carriers of Heavy Metal Ions from Aqueous Solutions Utilized in Extraction and Membrane Separation. Rev. Chem. Eng. 2015, 31, 179–191. [Google Scholar] [CrossRef]
- Van der Bruggen, B. Desalination by Distillation and by Reverse Osmosis—Trends towards the Future. Membr. Technol. 2003, 2003, 6–9. [Google Scholar] [CrossRef]
- Vakharia, V.; Salim, W.; Wu, D.; Han, Y.; Chen, Y.; Zhao, L.; Ho, W.S.W. Scale-up of Amine-Containing Thin-Film Composite Membranes for CO2 Capture from Flue Gas. J. Memb. Sci. 2018, 555, 379–387. [Google Scholar] [CrossRef]
- Luis, P.; Van der Bruggen, B.; Van Gerven, T. Non-Dispersive Absorption for CO2 Capture: From the Laboratory to Industry. J. Chem. Technol. Biotechnol. 2011, 86, 769–775. [Google Scholar] [CrossRef]
- Sasikumar, B.; Arthanareeswaran, G.; Ismail, A.F. Recent Progress in Ionic Liquid Membranes for Gas Separation. J. Mol. Liq. 2018, 266, 330–341. [Google Scholar] [CrossRef]
- de Montigny, D.; Tontiwachwuthikul, P.; Chakma, A. Using Polypropylene and Polytetrafluoroethylene Membranes in a Membrane Contactor for CO2 Absorption. J. Memb. Sci. 2006, 277, 99–107. [Google Scholar] [CrossRef]
- Guerrero, G.; Venturi, D.; Peters, T.; Rival, N.; Denonville, C.; Simon, C.; Henriksen, P.P.; Hägg, M.-B. Influence of Functionalized Nanoparticles on the CO2/N2 Separation Properties of PVA-Based Gas Separation Membranes. Energy Procedia 2017, 114, 627–635. [Google Scholar] [CrossRef]
- Solimando, X.; Lherbier, C.; Babin, J.; Arnal-Herault, C.; Romero, E.; Acherar, S.; Jamart-Gregoire, B.; Barth, D.; Roizard, D.; Jonquieres, A. Pseudopeptide Bioconjugate Additives for CO2 Separation Membranes. Polym. Int. 2016, 65, 1464–1473. [Google Scholar] [CrossRef]
- Nikolaeva, D.; Azcune, I.; Tanczyk, M.; Warmuzinski, K.; Jaschik, M.; Sandru, M.; Dahl, P.I.; Genua, A.; Loïs, S.; Sheridan, E.; et al. The Performance of Affordable and Stable Cellulose-Based Poly-Ionic Membranes in CO2/N2 and CO2/CH4 Gas Separation. J. Memb. Sci. 2018, 564, 552–561. [Google Scholar] [CrossRef]
- Lasseuguette, E.; Ferrari, M.-C.; Brandani, S. Humidity Impact on the Gas Permeability of PIM-1 Membrane for Post-Combustion Application. Energy Procedia 2014, 63, 194–201. [Google Scholar] [CrossRef]
- Rodrigues, M.A.; Ribeiro, J.d.S.; Costa, E.d.S.; de Miranda, J.L.; Ferraz, H.C. Nanostructured Membranes Containing UiO-66 (Zr) and MIL-101 (Cr) for O2/N2 and CO2/N2 Separation. Sep. Purif. Technol. 2018, 192, 491–500. [Google Scholar] [CrossRef]
- Ying, Y.; Cheng, Y.; Peh, S.B.; Liu, G.; Shah, B.B.; Zhai, L.; Zhao, D. Plasticization Resistance-Enhanced CO2 Separation at Elevated Pressures by Mixed Matrix Membranes Containing Flexible Metal-Organic Framework Fillers. J. Memb. Sci. 2019, 582, 103–110. [Google Scholar] [CrossRef]
- Chen, T.; Yu, B.; Zhao, Y.; Li, Y.; Lin, Y.S. Carbon Dioxide Permeation through Ceramic-Carbonate Dual-Phase Membrane-Effects of Sulfur Dioxide. J. Memb. Sci. 2017, 540, 477–484. [Google Scholar] [CrossRef]
- Eiberger, J.; Wilkner, K.; Reetz, C.; Sebold, D.; Jordan, N.; De Graaff, M.; Meulenberg, W.A.; Stöver, D.; Bram, M. Influence of Coal Power Plant Exhaust Gas on the Structure and Performance of Ceramic Nanostructured Gas Separation Membranes. Int. J. Greenh. Gas Control 2015, 43, 46–56. [Google Scholar] [CrossRef]
- Kim, K.; Hong, S.; Kim, J.; Lee, H. Preparation and Performance Evaluation of Composite Hollow Fiber Membrane for SO2 Separation. AIChE J. 2014, 60, 2298–2306. [Google Scholar] [CrossRef]
- Zhao, L.; Chen, Y.; Wang, B.; Sun, C.; Chakraborty, S.; Ramasubramanian, K.; Dutta, P.K.; Ho, W.S.W. Multilayer Polymer/Zeolite Y Composite Membrane Structure for CO2 Capture from Flue Gas. J. Memb. Sci. 2016, 498, 1–13. [Google Scholar] [CrossRef]
- Choi, S.H.; Kim, J.H.; Lee, Y. Pilot-Scale Multistage Membrane Process for the Separation of CO2 from LNG-Fired Flue Gas. Sep. Purif. Technol. 2013, 110, 170–180. [Google Scholar] [CrossRef]
- Krull, F.F.; Fritzmann, C.; Melin, T. Liquid Membranes for Gas/Vapor Separations. J. Memb. Sci. 2008, 325, 509–519. [Google Scholar] [CrossRef]
- Chen, G.; Wang, T.; Zhang, G.; Liu, G.; Jin, W. Membrane Materials Targeting Carbon Capture and Utilization. Adv. Membr. 2022, 2, 100025. [Google Scholar] [CrossRef]
- Hou, R.; Fong, C.; Freeman, B.D.; Hill, M.R.; Xie, Z. Current Status and Advances in Membrane Technology for Carbon Capture. Sep. Purif. Technol. 2022, 300, 121863. [Google Scholar] [CrossRef]
- Sreedhar, I.; Vaidhiswaran, R.; Kamani, B.M.; Venugopal, A. Process and Engineering Trends in Membrane Based Carbon Capture. Renew. Sustain. Energy Rev. 2017, 68, 659–684. [Google Scholar] [CrossRef]
- Siagian, U.W.R.; Raksajati, A.; Himma, N.F.; Khoiruddin, K.; Wenten, I.G. Membrane-Based Carbon Capture Technologies: Membrane Gas Separation vs. Membrane Contactor. J. Nat. Gas Sci. Eng. 2019, 67, 172–195. [Google Scholar] [CrossRef]
- Zhao, S.; Feron, P.H.M.; Deng, L.; Favre, E.; Chabanon, E.; Yan, S.; Hou, J.; Chen, V.; Qi, H. Status and Progress of Membrane Contactors in Post-Combustion Carbon Capture: A State-of-the-Art Review of New Developments. J. Memb. Sci. 2016, 511, 180–206. [Google Scholar] [CrossRef]
- Scholes, C.A. Challenges for CO2 Capture by Membranes. In Advances in Carbon Capture; Elsevier: Amsterdam, The Netherlands, 2020; pp. 357–377. [Google Scholar]
- Adhikari, B.; Orme, C.J.; Stetson, C.; Klaehn, J.R. Techno-Economic Analysis of Carbon Dioxide Capture from Low Concentration Sources Using Membranes. Chem. Eng. J. 2023, 474, 145876. [Google Scholar] [CrossRef]
- National Energy Technology Laboratory NETL. Carbon Capture and Storage Database. Available online: https://netl.doe.gov/carbon-management/carbon-storage/worldwide-ccs-database (accessed on 22 November 2024).
- MTR Carbon Capture. Available online: https://mtrccs.com/news/completion-of-the-worlds-largest-membrane-based-carbon-capture-plant/ (accessed on 22 November 2024).
- Font-Palma, C.; Cann, D.; Udemu, C. Review of Cryogenic Carbon Capture Innovations and Their Potential Applications. J. Carbon Res. 2021, 7, 58. [Google Scholar] [CrossRef]
- McGlashan, N.R.; Marquis, A.J. Simultaneous Removal of CO2, SO2, and NOx from Flue Gas by Liquid Phase Dehumidification at Cryogenic Temperatures and Low Pressure. Proc. Inst. Mech. Eng. Part A J. Power Energy 2008, 222, 31–45. [Google Scholar] [CrossRef]
- Ali, A.; Maqsood, K.; Syahera, N.; Shariff, A.B.M.; Ganguly, S. Energy Minimization in Cryogenic Packed Beds during Purification of Natural Gas with High CO2 Content. Chem. Eng. Technol. 2014, 37, 1675–1685. [Google Scholar] [CrossRef]
- Göttlicher, G.; Pruschek, R. Comparison of CO2 Removal Systems for Fossil-Fuelled Power Plant Processes. Energy Convers. Manag. 1997, 38, 173–178. [Google Scholar] [CrossRef]
- Clodic, D.; Younes, M. Procede D’extraction du Dioxyde de Carbone par Anti-Sublimation en vue de son Stockage. France Patent FR2820052A1, 2 August 2002. [Google Scholar]
- Pan, X.; Clodic, D.; Toubassy, J. CO2 capture by antisublimation process and its technical economic analysis. Greenh. Gases Sci. Technol. 2013, 3, 8–20. [Google Scholar] [CrossRef]
- Wilson, M.; Morris, T.; Gale, J.; Eds, K.T. Test Results of CO2 Capture by Anti-Sublimation Capture Efficiency and Energy Consumption for Boiler Plants. Greenh. Gas Control. Technol. 2005, II, 1775–1780. [Google Scholar]
- Song, C.F.; Kitamura, Y.; Li, S.H.; Ogasawara, K. Design of a Cryogenic CO2 Capture System Based on Stirling Coolers. Int. J. Greenh. Gas Control 2012, 7, 107–114. [Google Scholar] [CrossRef]
- Song, C.; Liu, Q.; Ji, N.; Deng, S.; Zhao, J.; Kitamura, Y. Advanced Cryogenic CO2 capture Process Based on Stirling Coolers by Heat Integration. Appl. Therm. Eng. 2017, 114, 887–895. [Google Scholar] [CrossRef]
- Hu, J.Y.; Dai, W.; Luo, E.C.; Wang, X.T.; Huang, Y. Development of High Efficiency Stirling-Type Pulse Tube Cryocoolers. Cryogenics (Guildf). 2010, 50, 603–607. [Google Scholar] [CrossRef]
- Fazlollahi, F.; Saeidi, S.; Safdari, M.S.; Sarkari, M.; Klemeš, J.J.; Baxter, L.L. Effect of Operating Conditions on Cryogenic Carbon Dioxide Removal. Energy Technol. 2017, 5, 1588–1598. [Google Scholar] [CrossRef]
- Jensen, M.J.; Russell, C.S.; Bergeson, D.; Hoeger, C.D.; Frankman, D.J.; Bence, C.S.; Baxter, L.L. Prediction and Validation of External Cooling Loop Cryogenic Carbon Capture (CCC-ECL) for Full-Scale Coal-Fired Power Plant Retrofit. Int. J. Greenh. Gas Control 2015, 42, 200–212. [Google Scholar] [CrossRef]
- Tuinier, M.J.; van Sint Annaland, M.; Kramer, G.J.; Kuipers, J.A.M. Cryogenic CO2 Capture Using Dynamically Operated Packed Beds. Chem. Eng. Sci. 2010, 65, 114–119. [Google Scholar] [CrossRef]
- Willson, P.; Lychnos, G.; Clements, A.; Michailos, S.; Font-Palma, C.; Diego, M.E.; Pourkashanian, M.; Howe, J. Evaluation of the Performance and Economic Viability of a Novel Low Temperature Carbon Capture Process. Int. J. Greenh. Gas Control 2019, 86, 1–9. [Google Scholar] [CrossRef]
- Tuinier, M.J.; Van Sint Annaland, M.; Kuipers, J.A.M. A Novel Process for Cryogenic CO2 Capture Using Dynamically Operated Packed Beds-An Experimental and Numerical Study. Int. J. Greenh. Gas Control 2011, 5, 694–701. [Google Scholar] [CrossRef]
- National Carbon Capture Center. Available online: https://nationalcarboncapturecenter.com/2024/03/21/national-carbon-capture-center-announces-first-cryogenic-carbon-capture-testing/ (accessed on 3 November 2024).
- Jansen, D.; Gazzani, M.; Manzolini, G.; Dijk, E.V.; Carbo, M. Pre-Combustion CO2 Capture. Int. J. Greenh. Gas Control 2015, 40, 167–187. [Google Scholar] [CrossRef]
- Osman, A.I.; Abu-Dahrieh, J.K.; Cherkasov, N.; Fernandez-Garcia, J.; Walker, D.; Walton, R.I.; Rooney, D.W.; Rebrov, E. A Highly Active and Synergistic Pt/Mo2C/Al2O3 Catalyst for Water-Gas Shift Reaction. Mol. Catal. 2018, 455, 38–47. [Google Scholar] [CrossRef]
- Cao, M.; Zhao, L.; Xu, D.; Ciora, R.; Liu, P.K.T.; Manousiouthakis, V.I.; Tsotsis, T.T. A Carbon Molecular Sieve Membrane-Based Reactive Separation Process for Pre-Combustion CO2 Capture. J. Memb. Sci. 2020, 605, 118028. [Google Scholar] [CrossRef]
- Osman, A.I.; Deka, T.J.; Baruah, D.C.; Rooney, D.W. Critical Challenges in Biohydrogen Production Processes from the Organic Feedstocks. Biomass Convers. Biorefinery 2023, 13, 8383–8401. [Google Scholar] [CrossRef]
- Wang, T. An Overview of IGCC Systems. In Integrated Gasification Combined Cycle (IGCC) Technologies; Elsevier: Amsterdam, The Netherlands, 2017; pp. 1–80. [Google Scholar]
- Joshi, M.M.; Lee, S. Integrated Gasification Combined Cycle—A Review of IGCC Technology. Energy Sources 1996, 18, 537–568. [Google Scholar] [CrossRef]
- Batorshin, V.A.; Suchkov, S.I.; Tugov, A.N. Integrated Gasification Combined Cycle (IGCC) Units: History, State-of-the Art, Development Prospects (Review). Therm. Eng. 2023, 70, 418–429. [Google Scholar] [CrossRef]
- Hossein Sahraei, M.; McCalden, D.; Hughes, R.; Ricardez-Sandoval, L.A. A Survey on Current Advanced IGCC Power Plant Technologies, Sensors and Control Systems. Fuel 2014, 137, 245–259. [Google Scholar] [CrossRef]
- IGCC Power Plant Nakoso Power Station. Available online: https://power.mhi.com/products/igcc (accessed on 28 October 2024).
- Jazan IGCC. Available online: https://acwapower.com/en/projects/jazan-igcc/ (accessed on 17 October 2024).
- Stanger, R.; Wall, T.; Spörl, R.; Paneru, M.; Grathwohl, S.; Weidmann, M.; Scheffknecht, G.; McDonald, D.; Myöhänen, K.; Ritvanen, J.; et al. Oxyfuel Combustion for CO2 Capture in Power Plants. Int. J. Greenh. Gas Control 2015, 40, 55–125. [Google Scholar] [CrossRef]
- Richter, W.F.; Chen, S.L. CO2 Recovery via Coal Combustion in Mixtures of Oxygen and Recycled Flue Gas. Combust. Sci. Technol. 1989, 67, 1–16. [Google Scholar] [CrossRef]
- Chen, L.; Yong, S.Z.; Ghoniem, A.F. Oxy-Fuel Combustion of Pulverized Coal: Characterization, Fundamentals, Stabilization and CFD Modeling. Prog. Energy Combust. Sci. 2012, 38, 156–214. [Google Scholar] [CrossRef]
- Yang, C.; Kim, Y.; Bang, B.; Jeong, S.; Moon, J.; Mun, T.Y.; Jo, S.; Lee, J.; Lee, U. Oxy-CFB Combustion Technology for Use in Power-Generation Applications. Fuel 2020, 267, 117206. [Google Scholar] [CrossRef]
- Wall, T.; Liu, Y.; Spero, C.; Elliott, L.; Khare, S.; Rathnam, R.; Zeenathal, F.; Moghtaderi, B.; Buhre, B.; Sheng, C.; et al. An Overview on Oxyfuel Coal Combustion-State of the Art Research and Technology Development. Chem. Eng. Res. Des. 2009, 87, 1003–1016. [Google Scholar] [CrossRef]
- Toftegaard, M.B.; Brix, J.; Jensen, P.A.; Glarborg, P.; Jensen, A.D. Oxy-Fuel Combustion of Solid Fuels. Prog. Energy Combust. Sci. 2010, 36, 581–625. [Google Scholar] [CrossRef]
- Buhre, B.J.P.; Elliott, L.K.; Sheng, C.D.; Gupta, R.P.; Wall, T.F. Oxy-Fuel Combustion Technology For Coal-Fired Power Generation. Prog. Energy Combust. Sci. 2005, 31, 283–307. [Google Scholar] [CrossRef]
- Go, E.S.; Kim, B.-S.; Ling, J.L.J.; Oh, S.S.; Park, H.J.; Lee, S.H. In-Situ Desulfurization Using Porous Ca-Based Materials for the Oxy-CFB Process: A Computational Study. Environ. Res. 2023, 225, 115582. [Google Scholar] [CrossRef] [PubMed]
- Duan, L.; Zhou, W.; Li, H.; Chen, X.; Zhao, C. Sulfur Fate during Bituminous Coal Combustion in an Oxy-Fired Circulating Fluidized Bed Combustor. Korean J. Chem. Eng. 2011, 28, 1952–1955. [Google Scholar] [CrossRef]
- Ndibe, C.; Spörl, R.; Maier, J.; Scheffknecht, G. Experimental Study of NO and NO2 Formation in a PF Oxy-Fuel Firing System. Fuel 2013, 107, 749–756. [Google Scholar] [CrossRef]
- Yuan, Y.; Wang, L.; Zhuang, Y.; Wu, Y.; Bi, X. Energy and Economic Assessment of Oxy-Fuel Combustion CO2 Capture in Coal-Fired Power Plants. Energies 2024, 17, 4626. [Google Scholar] [CrossRef]
- Wohlthan, M.; Thaler, B.; Helf, A.; Keller, F.; Kaub, V.; Span, R.; Gräbner, M.; Pirker, G. Oxyfuel Combustion Based Carbon Capture Onboard Ships. Int. J. Greenh. Gas Control 2024, 137, 104234. [Google Scholar] [CrossRef]
- NET Power, La Porte Scale-up Project. Available online: https://netpower.com/first-utility-scale-project/ (accessed on 29 December 2024).
- NET Power, La Porte Test Facility. Available online: https://netpower.com/la-porte-test-facility/ (accessed on 16 November 2024).
- Global CCS Institute. Available online: https://www.globalccsinstitute.com/news-media/insights/china-begins-operations-at-the-worlds-largest-oxy-fuel-combustion-ccus-project-in-cement-sector/ (accessed on 22 November 2024).
- Frauenhofer UMSICHT Institute. Available online: https://www.umsicht-suro.fraunhofer.de/en/press-and-media/press-releases/2022/oxyfuel-combustion-biogas-CO2-separation.html (accessed on 20 November 2024).
- Lewis, W.K.; Gilliland, E.R. Production of Pure Carbon Dioxide. U.S. Patent US2665972A, 12 January 1954. [Google Scholar]
- Nandy, A.; Loha, C.; Gu, S.; Sarkar, P.; Karmakar, M.K.; Chatterjee, P.K. Present Status and Overview of Chemical Looping Combustion Technology. Renew. Sustain. Energy Rev. 2016, 59, 597–619. [Google Scholar] [CrossRef]
- Daneshmand-Jahromi, S.; Sedghkerdar, M.H.; Mahinpey, N. A Review of Chemical Looping Combustion Technology: Fundamentals, and Development of Natural, Industrial Waste, and Synthetic Oxygen Carriers. Fuel 2023, 341, 127626. [Google Scholar] [CrossRef]
- Marx, F.; Dieringer, P.; Ströhle, J.; Epple, B. Design of a 1 MWth Pilot Plant for Chemical Looping Gasification of Biogenic Residues. Energies 2021, 14, 2581. [Google Scholar] [CrossRef]
- Alalwan, H.A.; Augustine, L.J.; Hudson, B.G.; Abeysinghe, J.P.; Gillan, E.G.; Mason, S.E.; Grassian, V.H.; Cwiertny, D.M. Linking Solid-State Reduction Mechanisms to Size-Dependent Reactivity of Metal Oxide Oxygen Carriers for Chemical Looping Combustion. ACS Appl. Energy Mater. 2021, 4, 1163–1172. [Google Scholar] [CrossRef]
- Jin, H.; Okamoto, T.; Ishida, M. Development of a Novel Chemical-Looping Combustion: Synthesis of a Looping Material with a Double Metal Oxide of CoO-NiO. Energy Fuels 1998, 12, 1272–1277. [Google Scholar] [CrossRef]
- Feng, X.; Li, Z.; Lin, S.; Tian, S.; Li, K. Enhanced Performance of Red Mud for Chemical-Looping Combustion of Coal by the Modification of Transition Metal Oxides. J. Energy Inst. 2022, 102, 22–31. [Google Scholar] [CrossRef]
- Ma, J.; Hu, J.; Kang, H.; Han, Z.; Guo, Q. Behavior of Selenium during Chemical-Looping Gasification of Coal Using Copper-Based Oxygen Carrier. Atmosphere 2022, 13, 547. [Google Scholar] [CrossRef]
- Rasi, N.M.; Hyla, A.S.; Ponnurangam, S.; Mahinpey, N. Effects of Support and Oxygen Vacancies on the Energetics of NiO Reduction with H2 for the Chemical Looping Combustion (CLC) Reaction; A DFT Study. Phys. Chem. Chem. Phys. 2021, 23, 12795–12806. [Google Scholar] [CrossRef]
- Daneshmand-Jahromi, S.; Karami, D.; Mahinpey, N. Novel Synthesis of High-Surface-Area Alumina Using Toluene-Dimethylformamide as Synthetic Media. J. Environ. Chem. Eng. 2022, 10, 107204. [Google Scholar] [CrossRef]
- Czakiert, T.; Krzywanski, J.; Zylka, A.; Nowak, W. Chemical Looping Combustion: A Brief Overview. Energies 2022, 15, 1563. [Google Scholar] [CrossRef]
- Thorne, R.J.; Bouman, E.A.; Sundseth, K.; Aranda, A.; Czakiert, T.; Pacyna, J.M.; Pacyna, E.G.; Krauz, M.; Celińska, A. Environmental Impacts of a Chemical Looping Combustion Power Plant. Int. J. Greenh. Gas Control 2019, 86, 101–111. [Google Scholar] [CrossRef]
- Haugen, N.E.L.; Li, Z.; Gouraud, V.; Bertholin, S.; Li, W.; Larring, Y.; Luo, K.; Szlęk, A.; Flach, T.A.; Langørgen, Ø.; et al. Building the World’s Largest Chemical Looping Combustion (CLC) Unit. Int. J. Greenh. Gas Control 2023, 129, 103975. [Google Scholar] [CrossRef]
- Baek, J.-I.; Choun, M.; Kim, U.; Lee, G.; Kim, D.; Ryu, H.-J. The K-CLC Project—Development of 3 MWth CLC Steam Generation System towards a Clean Power Plant. In Proceedings of the 16th International Conference on Greenhouse Gas Control Technologies, GHGT-16, Lyon, France, 23 October 2022. [Google Scholar]
- Zhao, H.; Tian, X.; Ma, J.; Chen, X.; Su, M.; Zheng, C.; Wang, Y. Chemical Looping Combustion of Coal in China: Comprehensive Progress, Remaining Challenges, and Potential Opportunities. Energy Fuels 2020, 34, 6696–6734. [Google Scholar] [CrossRef]
- Trends in CO2. Available online: https://gml.noaa.gov/ccgg/trends/ (accessed on 29 November 2024).
- House, K.Z.; Baclig, A.C.; Ranjan, M.; Van Nierop, E.A.; Wilcox, J.; Herzog, H.J. Economic and Energetic Analysis of Capturing CO2 from Ambient Air. Proc. Natl. Acad. Sci. USA 1998, 108, 20428–20433. [Google Scholar] [CrossRef]
- Sodiq, A.; Abdullatif, Y.; Aissa, B.; Ostovar, A.; Nassar, N.; El-Naas, M.; Amhamed, A. A Review on Progress Made in Direct Air Capture of CO2. Environ. Technol. Innov. 2023, 29, 102991. [Google Scholar] [CrossRef]
- Sinha, A.; Realff, M.J. A Parametric Study of the Techno-Economics of Direct CO2 Air Capture Systems Using Solid Adsorbents. AIChE J. 2019, 65, 16607. [Google Scholar] [CrossRef]
- Zeeshan, M.; Kidder, M.K.; Pentzer, E.; Getman, R.B.; Gurkan, B. Direct Air Capture of CO2: From Insights into the Current and Emerging Approaches to Future Opportunities. Front. Sustain. 2023, 4, 1167713. [Google Scholar] [CrossRef]
- Beaumont, M.L.L. Making Direct Air Capture Affordable; Technology, Market and Regulatory Approaches. Front. Clim. 2022, 4, 756013. [Google Scholar] [CrossRef]
- Sweden Government Carbon Tax Policy. Available online: https://www.government.se/government-policy/taxes-and-tariffs/swedens-carbon-tax (accessed on 31 December 2024).
- Brown, M.A.; Li, Y.; Soni, A. Are All Jobs Created Equal? Regional Employment Impacts of a U.S. Carbon Tax. Appl. Energy 2020, 262, 114354. [Google Scholar] [CrossRef]
- Chai, S.; Huo, W.; Li, Q.; Ji, Q.; Shi, X. Effects of Carbon Tax on Energy Transition, Emissions and Economy amid Technological Progress. Appl. Energy 2025, 377, 124578. [Google Scholar] [CrossRef]
- McQueen, N.; Gomes, K.V.; McCormick, C.; Blumanthal, K.; Pisciotta, M.; Wilcox, J. A Review of Direct Air Capture (DAC): Scaling up Commercial Technologies and Innovating for the Future. Prog. Energy 2021, 3, 032001. [Google Scholar] [CrossRef]
- Lively, R.P.; Realff, M.J. On Thermodynamic Separation Efficiency: Adsorption Processes. AIChE J. 2016, 62, 3699–3705. [Google Scholar] [CrossRef]
- Wilson, S.M.W.; Tezel, F.H. Direct Dry Air Capture of CO2 Using VTSA with Faujasite Zeolites. Ind. Eng. Chem. Res. 2020, 59, 8783–8794. [Google Scholar] [CrossRef]
- Climeworks Orca Plant. Available online: https://climeworks.com/plant-orca (accessed on 1 November 2024).
- Climeworks Mammoth Plant. Available online: https://climeworks.com/plant-mammoth (accessed on 1 November 2024).
- Sanz-Pérez, E.S.; Murdock, C.R.; Didas, S.A.; Jones, C.W. Direct Capture of CO2 from Ambient Air. Chem. Rev. 2016, 116, 11840–11876. [Google Scholar] [CrossRef] [PubMed]
- Veltman, K.; Singh, B.; Hertwich, E.G. Human and Environmental Impact Assessment of Postcombustion CO2 Capture Focusing on Emissions from Amine-Based Scrubbing Solvents to Air. Environ. Sci. Technol. 2010, 44, 1496–1502. [Google Scholar] [CrossRef]
- Zeman, F.S.; Lackner, K.S. Capturing Carbon Dioxide Directly from the Atmosphere. World Resour. Rev. 2004, 16, 157–172. [Google Scholar]
- Bachu, S. Sequestration of CO2 in Geological Media: Criteria and Approach for Site Selection in Response to Climate Change. Energy Convers. Manag. 2000, 41, 953–970. [Google Scholar] [CrossRef]
- Michael, K.; Golab, A.; Shulakova, V.; Ennis-King, J.; Allinson, G.; Sharma, S.; Aiken, T. Geological Storage of CO2 in Saline Aquifers-A Review of the Experience from Existing Storage Operations. Int. J. Greenh. Gas Control 2010, 4, 659–667. [Google Scholar] [CrossRef]
- Hamza, A.; Hussein, I.A.; Al-Marri, M.J.; Mahmoud, M.; Shawabkeh, R.; Aparicio, S. CO2 Enhanced Gas Recovery and Sequestration in Depleted Gas Reservoirs: A Review. J. Pet. Sci. Eng. 2021, 196, 107685. [Google Scholar] [CrossRef]
- Godec, M.L.; Kuuskraa, V.A.; Dipietro, P. Opportunities for Using Anthropogenic CO2 for Enhanced Oil Recovery and CO2 Storage. Energy Fuels 2013, 27, 4183–4189. [Google Scholar] [CrossRef]
- Zhang, S.; DePaolo, D.J. Rates of CO2 Mineralization in Geological Carbon Storage. Acc. Chem. Res. 2017, 50, 2075–2084. [Google Scholar] [CrossRef]
- Rigby, S.P.; Alsayah, A. Storage Sites for Carbon Dioxide in the North Sea and Their Particular Characteristics. Energies 2023, 17, 211. [Google Scholar] [CrossRef]
- Briones-Hidrovo, A.; Copa Rey, J.R.; Cláudia Dias, A.; Tarelho, L.A.C.; Beauchet, S. Assessing a Bio-Energy System with Carbon Capture and Storage (BECCS) through Dynamic Life Cycle Assessment and Land-Water-Energy Nexus. Energy Convers. Manag. 2022, 268, 116014. [Google Scholar] [CrossRef]
- Shukla, P.R.; Skea, J.; Slade, R.; van Diemen, R.; Haughey, E.; Malley, J.; Pathak, M.; Pereira, J.P. (Eds.) Technical Summary. In Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems; Cambridge University Press: Cambridge, UK, 2019. [Google Scholar] [CrossRef]
- Snæbjörnsdóttir, S.Ó.; Sigfússon, B.; Marieni, C.; Goldberg, D.; Gislason, S.R.; Oelkers, E.H. Carbon Dioxide Storage through Mineral Carbonation. Nat. Rev. Earth Environ. 2020, 1, 90–102. [Google Scholar] [CrossRef]
- De Silva, G.P.D.; Ranjith, P.G.; Perera, M.S.A. Geochemical Aspects of CO2 Sequestration in Deep Saline Aquifers: A Review. Fuel 2015, 155, 128–143. [Google Scholar] [CrossRef]
- Wang, Y.; Vuik, C.; Hajibeygi, H. Analysis of Hydrodynamic Trapping Interactions during Full-Cycle Injection and Migration of CO2 in Deep Saline Aquifers. Adv. Water Resour. 2022, 159, 104073. [Google Scholar] [CrossRef]
- Szulczewski, M.L.; Hesse, M.A.; Juanes, R. Carbon Dioxide Dissolution in Structural and Stratigraphic Traps. J. Fluid Mech. 2013, 736, 287–315. [Google Scholar] [CrossRef]
- Liu, L.C.; Li, Q.; Zhang, J.T.; Cao, D. Toward a Framework of Environmental Risk Management for CO2 Geological Storage in China: Gaps and Suggestions for Future Regulations. Mitig. Adapt. Strateg. Glob. Chang. 2016, 21, 191–207. [Google Scholar] [CrossRef]
- Carles, P.; Bachaud, P.; Lasseur, E.; Berne, P.; Bretonnier, P. Confining Properties of Carbonated Dogger Caprocks (Parisian Basin) for CO2 Storage Purpose. Oil Gas Sci. Technol.—Rev. l’Institut Français du Pétrole 2010, 65, 461–472. [Google Scholar] [CrossRef]
- Rathnaweera, T.D.; Ranjith, P.G.; Perera, M.S.A.; Lashin, A.; Al Arifi, N. Non-Linear Stress-Strain Behaviour of Reservoir Rock under Brine Saturation: An Experimental Study. Meas. J. Int. Meas. Confed. 2015, 71, 56–72. [Google Scholar] [CrossRef]
- Rathnaweera, T.D.; Ranjith, P.G.; Perera, M.S.A.; Yang, S.Q. Determination of Effective Stress Parameters for Effective CO2 Permeability in Deep Saline Aquifers: An Experimental Study. J. Nat. Gas Sci. Eng. 2015, 24, 64–79. [Google Scholar] [CrossRef]
- Burnside, N.M.; Naylor, M. Review and Implications of Relative Permeability of CO2/Brine Systems and Residual Trapping of CO2. Int. J. Greenh. Gas Control 2014, 23, 1–11. [Google Scholar] [CrossRef]
- Altman, S.J.; Aminzadeh, B.; Balhoff, M.T.; Bennett, P.C.; Bryant, S.L.; Cardenas, M.B.; Chaudhary, K.; Cygan, R.T.; Deng, W.; Dewers, T.; et al. Chemical and Hydrodynamic Mechanisms for Long-Term Geological Carbon Storage. J. Phys. Chem. C 2014, 118, 15103–15113. [Google Scholar] [CrossRef]
- Kumar, S.; Foroozesh, J.; Edlmann, K.; Rezk, M.G.; Lim, C.Y. A Comprehensive Review of Value-Added CO2 Sequestration in Subsurface Saline Aquifers. J. Nat. Gas Sci. Eng. 2020, 81, 103437. [Google Scholar] [CrossRef]
- Holtz, M.H. Residual Gas Saturation to Aquifer Influx: A Calculation Method for 3-D Computer Reservoir Model Construction. In Proceedings of the SPE Gas Technology Symposium, SPE, Calgary, AB, Canada, 30 April 2002. [Google Scholar]
- Zhang, D.; Song, J. Mechanisms for Geological Carbon Sequestration. Procedia IUTAM 2014, 10, 319–327. [Google Scholar] [CrossRef]
- Wilkin, R.T.; Digiulio, D.C. Geochemical Impacts to Groundwater from Geologic Carbon Sequestration: Controls on PH and Inorganic Carbon Concentrations from Reaction Path and Kinetic Modeling. Environ. Sci. Technol. 2010, 44, 4821–4827. [Google Scholar] [CrossRef]
- Bachu, S.; Gunter, W.D. Acid-Gas Injection in the Alberta Basin, Canada: A CO2-Storage Experience. Geol. Soc. London Spec. Publ. 2004, 233, 225–234. [Google Scholar] [CrossRef]
- Equinor|Deutschland|CO2 Management—Equinor.de. Available online: https://www.equinor.de/co2-management (accessed on 15 October 2024).
- Carbon Capture and Sequestration Technologies @ MIT. Available online: https://sequestration.mit.edu/tools/projects/sleipner.html (accessed on 28 October 2024).
- Wei, B.; Wang, B.; Li, X.; Aishan, M.; Ju, Y. CO2 Storage in Depleted Oil and Gas Reservoirs: A Review. Adv. Geo-Energy Res. 2023, 9, 76–93. [Google Scholar] [CrossRef]
- Carroll, S.A.; Iyer, J.; Walsh, S.D.C. Influence of Chemical, Mechanical, and Transport Processes on Wellbore Leakage from Geologic CO2 Storage Reservoirs. Acc. Chem. Res. 2017, 50, 1829–1837. [Google Scholar] [CrossRef] [PubMed]
- Bai, M.; Song, K.; Li, Y.; Sun, J.; Reinicke, K.M. Development of a Novel Method to Evaluate Well Integrity during CO2 Underground Storage. SPE J. 2015, 20, 628–641. [Google Scholar] [CrossRef]
- Ozotta, O.; Ostadhassan, M.; Liu, K.; Liu, B.; Kolawole, O.; Hadavimoghaddam, F. Reassessment of CO2 Sequestration in Tight Reservoirs and Associated Formations. J. Pet. Sci. Eng. 2021, 206, 109071. [Google Scholar] [CrossRef]
- Offshore CCS Planned by 2025 at Project Greensand. Available online: https://wintershalldea.com/en/newsroom/offshore-ccs-planned-2025-project-greensand (accessed on 22 November 2024).
- Moomba CCS | Beach Energy. Available online: https://beachenergy.com.au/moomba-ccs/ (accessed on 22 November 2024).
- Alvarado, V.; Manrique, E. Enhanced Oil Recovery: An Update Review. Energies 2010, 3, 1529–1575. [Google Scholar] [CrossRef]
- Gbadamosi, A.O.; Kiwalabye, J.; Junin, R.; Augustine, A. A Review of Gas Enhanced Oil Recovery Schemes Used in the North Sea. J. Pet. Explor. Prod. Technol. 2018, 8, 1373–1387. [Google Scholar] [CrossRef]
- Hascakir, B. Introduction to Thermal Enhanced Oil Recovery (EOR) Special Issue. J. Pet. Sci. Eng. 2017, 154, 438–441. [Google Scholar] [CrossRef]
- Pothula, G.K.; Vij, R.K.; Bera, A. An Overview of Chemical Enhanced Oil Recovery and Its Status in India. Pet. Sci. 2023, 20, 2305–2323. [Google Scholar] [CrossRef]
- Rellegadla, S.; Prajapat, G.; Agrawal, A. Polymers for Enhanced Oil Recovery: Fundamentals and Selection Criteria. Appl. Microbiol. Biotechnol. 2017, 101, 4387–4402. [Google Scholar] [CrossRef]
- Negin, C.; Ali, S.; Xie, Q. Most Common Surfactants Employed in Chemical Enhanced Oil Recovery. Petroleum 2017, 3, 197–211. [Google Scholar] [CrossRef]
- Lee, H.S.; Cho, J.H.; Lee, Y.W.; Lee, K.S. Compositional Modeling of Impure CO2 Injection for Enhanced Oil Recovery and CO2 Storage. Appl. Sci. 2021, 11, 7907. [Google Scholar] [CrossRef]
- Claridge, E.L. Prediction of Recovery in Unstable Miscible Flooding. Soc. Pet. Eng. J. 1972, 12, 143–155. [Google Scholar] [CrossRef]
- Kumar, N.; Augusto Sampaio, M.; Ojha, K.; Hoteit, H.; Mandal, A. Fundamental Aspects, Mechanisms and Emerging Possibilities of CO2 Miscible Flooding in Enhanced Oil Recovery: A Review. Fuel 2022, 330, 125633. [Google Scholar] [CrossRef]
- Zhang, N.; Wei, M.; Bai, B. Statistical and Analytical Review of Worldwide CO2 Immiscible Field Applications. Fuel 2018, 220, 89–100. [Google Scholar] [CrossRef]
- Coutinho, R. Petrobras Santos Basin-Salt Oil Field CCUS. In Proceedings of the CSLF: 2023 Technical Group Mid-Year Meeting, Warsaw, Poland, 13–14 June 2023. [Google Scholar]
- Gunter, W.; Perkins, E.; Hutcheon, I. Aquifer Disposal of Acid Gases: Modelling of Water–Rock Reactions for Trapping of Acid Wastes. Appl. Geochem. 2000, 15, 1085–1095. [Google Scholar] [CrossRef]
- Cross, W.; Iddings, J.P.; Pirsson, L.V.; Washington, H.S. Modifications of the” Quantitative System of Classification of Igneous Rocks. J. Geol. 1912, 20, 550–561. [Google Scholar] [CrossRef]
- Kim, K.; Kim, D.; Na, Y.; Song, Y.; Wang, J. A Review of Carbon Mineralization Mechanism during Geological CO2 Storage. Heliyon 2023, 9, e23135. [Google Scholar] [CrossRef] [PubMed]
- Carbon Removal Solutions to Fight Climate Change. Available online: https://climeworks.com/blog/carbon-removal-solutions (accessed on 1 November 2024).
- Metz, B.; Davidson, O.; De Coninck, H.C.; Loos, M.; Meyer, L. IPCC Special Report on Carbon Dioxide Capture and Storage; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar]
- Shi, J.Q.; Durucan, S. CO2 Storage in Deep Unminable Coal Seams. Oil Gas Sci. Technol. 2005, 60, 547–558. [Google Scholar] [CrossRef]
- Stanton, R.; Flores, R.; Warwick, P.D.; Gluskoter, H.; Stricker, G.D. Coal Bed Sequestration of Carbon Dioxide. In Proceedings of the 1st National Conference on Carbon Sequestration, Washington, DC, USA, 14–17 May 2001; pp. 14–17. [Google Scholar]
- Fujioka, M.; Yamaguchi, S.; Nako, M. CO2-ECBM Field Tests in the Ishikari Coal Basin of Japan. Int. J. Coal Geol. 2010, 82, 287–298. [Google Scholar] [CrossRef]
- Hadi Mosleh, M.; Turner, M.; Sedighi, M.; Vardon, P.J. Carbon Dioxide Flow and Interactions in a High Rank Coal: Permeability Evolution and Reversibility of Reactive Processes. Int. J. Greenh. Gas Control 2018, 70, 57–67. [Google Scholar] [CrossRef]
- Zhang, Y.; Lebedev, M.; Al-Yaseri, A.; Yu, H.; Xu, X.; Iglauer, S. Characterization of Nanoscale Rockmechanical Properties and Microstructures of a Chinese Sub-Bituminous Coal. J. Nat. Gas Sci. Eng. 2018, 52, 106–116. [Google Scholar] [CrossRef]
- Li, L.; Yang, D.; Liu, W.; Zhang, X.; Zhao, L.; Zhu, X. Experimental Study on the Porosity and Permeability Change of High-Rank Coal under Cyclic Loading and Unloading. ACS Omega 2022, 7, 30197–30207. [Google Scholar] [CrossRef] [PubMed]
- Niu, Q.; Cao, L.; Sang, S.; Zhou, X.; Wang, Z. Anisotropic Adsorption Swelling and Permeability Characteristics with Injecting CO2 in Coal. Energy Fuels 2018, 32, 1979–1991. [Google Scholar] [CrossRef]
- Global Status of CCS 2024 Report at a Glance. Available online: https://www.globalccsinstitute.com/resources/global-status-report (accessed on 28 November 2024).
- Bradshaw, J.; Bachu, S.; Bonijoly, D.; Burruss, R.; Holloway, S.; Christensen, N.P.; Mathiassen, O.M. CO2 Storage Capacity Estimation: Issues and Development of Standards. Int. J. Greenh. Gas Control 2007, 1, 62–68. [Google Scholar] [CrossRef]
- Bachu, S.; Bonijoly, D.; Bradshaw, J.; Burruss, R.; Holloway, S.; Christensen, N.P.; Mathiassen, O.M. CO2 Storage Capacity Estimation: Methodology and Gaps. Int. J. Greenh. Gas Control 2007, 1, 430–443. [Google Scholar] [CrossRef]
- IEA, Putting CO2 to Use Creating Value from Emissions. Available online: https://www.iea.org/reports/putting-co2-to-use (accessed on 20 November 2024).
- Dziejarski, B.; Krzyżyńska, R.; Andersson, K. Current Status of Carbon Capture, Utilization, and Storage Technologies in the Global Economy: A Survey of Technical Assessment. Fuel 2023, 342, 127776. [Google Scholar] [CrossRef]
- Theofanidis, S.A.; Antzaras, A.N.; Lemonidou, A.A. CO2 as a Building Block: From Capture to Utilization. Curr. Opin. Chem. Eng. 2023, 39, 100902. [Google Scholar] [CrossRef]
- Chauvy, R.; De Weireld, G. CO2 Utilization Technologies in Europe: A Short Review. Energy Technol. 2020, 8, 627. [Google Scholar] [CrossRef]
- Rumayor, M.; Dominguez-Ramos, A.; Irabien, A. Environmental and Economic Assessment of the Formic Acid Electrochemical Manufacture Using Carbon Dioxide: Influence of the Electrode Lifetime. Sustain. Prod. Consum. 2019, 18, 72–82. [Google Scholar] [CrossRef]
- Meunier, N.; Chauvy, R.; Mouhoubi, S.; Thomas, D.; De Weireld, G. Alternative Production of Methanol from Industrial CO2. Renew. Energy 2020, 146, 1192–1203. [Google Scholar] [CrossRef]
- Bellotti, D.; Rivarolo, M.; Magistri, L.; Massardo, A.F. Feasibility Study of Methanol Production Plant from Hydrogen and Captured Carbon Dioxide. J. CO2 Util. 2017, 21, 132–138. [Google Scholar] [CrossRef]
- Chauvy, R.; Dubois, L.; Lybaert, P.; Thomas, D.; De Weireld, G. Production of Synthetic Natural Gas from Industrial Carbon Dioxide. Appl. Energy 2020, 260, 114249. [Google Scholar] [CrossRef]
- Xu, Y.; Lin, L.; Xiao, M.; Wang, S.; Smith, A.T.; Sun, L.; Meng, Y. Synthesis and Properties of CO2-Based Plastics: Environmentally-Friendly, Energy-Saving and Biomedical Polymeric Materials. Prog. Polym. Sci. 2018, 80, 163–182. [Google Scholar] [CrossRef]
- Inoue, S.; Koinuma, H.; Tsuruta, T. Copolymerization of Carbon Dioxide and Epoxide. J. Polym. Sci. Part B Polym. Lett. 1969, 7, 287–292. [Google Scholar] [CrossRef]
- Artz, J.; Müller, T.E.; Thenert, K.; Kleinekorte, J.; Meys, R.; Sternberg, A.; Bardow, A.; Leitner, W. Sustainable Conversion of Carbon Dioxide: An Integrated Review of Catalysis and Life Cycle Assessment. Chem. Rev. 2018, 118, 434–504. [Google Scholar] [CrossRef] [PubMed]
- Devkota, S.; Karmacharya, P.; Maharjan, S.; Khatiwada, D.; Uprety, B. Decarbonizing Urea: Techno-Economic and Environmental Analysis of a Model Hydroelectricity and Carbon Capture Based Green Urea Production. Appl. Energy 2024, 372, 123789. [Google Scholar] [CrossRef]
- Fu, L.; Ren, Z.; Si, W.; Ma, Q.; Huang, W.; Liao, K.; Huang, Z.; Wang, Y.; Li, J.; Xu, P. Research Progress on CO2 Capture and Utilization Technology. J. CO2 Util. 2022, 66, 102260. [Google Scholar] [CrossRef]
- Wang, W.; Rao, L.; Wu, X.; Wang, Y.; Zhao, L.; Liao, X. Supercritical Carbon Dioxide Applications in Food Processing. Food Eng. Rev. 2021, 13, 570–591. [Google Scholar] [CrossRef]
- Market Insights—Bottled Water Market. Available online: https://www.marketresearchstore.com/market-insights/bottled-water-market-z39681 (accessed on 2 January 2025).
- Grand View Research—Sparkling Water Market. Available online: https://www.grandviewresearch.com/industry-analysis/sparkling-water-market (accessed on 2 January 2025).
- Recode Project. Available online: https://recodeh2020.eu (accessed on 11 November 2024).
- Rumayor, M.; Dominguez-Ramos, A.; Irabien, A. Formic Acid Manufacture: Carbon Dioxide Utilization Alternatives. Appl. Sci. 2018, 8, 914. [Google Scholar] [CrossRef]
- Mishra, A.; Kim, D.; Altahtamouni, T.; Kasak, P.; Popelka, A.; Park, H.; Han, D.S. A Comparative Study on Carbon Neutral Hydrogen Carrier Production: Formic Acid from CO2 vs. Ammonia. J. CO2 Util. 2024, 82, 102756. [Google Scholar] [CrossRef]
- Pérez-Fortes, M.; Schöneberger, J.C.; Boulamanti, A.; Harrison, G.; Tzimas, E. Formic Acid Synthesis Using CO2 as Raw Material: Techno-Economic and Environmental Evaluation and Market Potential. Int. J. Hydrogen Energy 2016, 41, 16444–16462. [Google Scholar] [CrossRef]
- Jogunola, O.; Salmi, T.; Waärnå, J.; Mikkola, J.P.; Tirronen, E. Kinetics of Methyl Formate Hydrolysis in the Absence and Presence of a Complexing Agent. Ind. Eng. Chem. Res. 2011, 50, 267–276. [Google Scholar] [CrossRef]
- Onishi, N.; Himeda, Y. Toward Methanol Production by CO2 Hydrogenation beyond Formic Acid Formation. Acc. Chem. Res. 2024, 57, 2816–2825. [Google Scholar] [CrossRef] [PubMed]
- Gorbunov, D.N.; Nenasheva, M.V.; Terenina, M.V.; Kardasheva, Y.S.; Kardashev, S.V.; Naranov, E.R.; Bugaev, A.L.; Soldatov, A.V.; Maximov, A.L.; Karakhanov, E.A. Transformations of Carbon Dioxide under Homogeneous Catalysis Conditions (A Review). Pet. Chem. 2022, 62, 1–39. [Google Scholar] [CrossRef]
- Inoue, Y.; Izumida, H.; Sasaki, Y.; Hashimoto, H. Catalytic Fixation of Carbon Dioxide to Formic Acid by Transition-Metal Complexes Under Mild Conditions. Chem. Lett. 1976, 5, 863–864. [Google Scholar] [CrossRef]
- Tanaka, R.; Yamashita, M.; Nozaki, K. Catalytic Hydrogenation of Carbon Dioxide Using Ir(III)-Pincer Complexes. J. Am. Chem. Soc. 2009, 131, 14168–14169. [Google Scholar] [CrossRef] [PubMed]
- COufourier, S.; Gaignard Gaillard, Q.; Lohier, J.F.; Poater, A.; Gaillard, S.; Renaud, J.L. Hydrogenation of CO2, Hydrogenocarbonate, and Carbonate to Formate in Water Using Phosphine Free Bifunctional Iron Complexes. ACS Catal. 2020, 10, 2108–2116. [Google Scholar] [CrossRef]
- Jeletic, M.S.; Mock, M.T.; Appel, A.M.; Linehan, J.C. A Cobalt-Based Catalyst for the Hydrogenation of CO2 under Ambient Conditions. J. Am. Chem. Soc. 2013, 135, 11533–11536. [Google Scholar] [CrossRef] [PubMed]
- Ogo, S.; Kabe, R.; Hayashi, H.; Harada, R.; Fukuzumi, S. Mechanistic Investigation of CO2 Hydrogenation by Ru(Ii) and Ir(Iii) Aqua Complexes under Acidic Conditions: Two Catalytic Systems Differing in the Nature of the Rate Determining Step. Dalt. Trans. 2006, 39, 4657–4663. [Google Scholar] [CrossRef]
- Hayashi, H.; Ogo, S.; Fukuzumi, S. Aqueous Hydrogenation of Carbon Dioxide Catalysed by Water-Soluble Ruthenium Aqua Complexes under Acidic Conditions. Chem. Commun. 2004, 23, 2714–2715. [Google Scholar] [CrossRef] [PubMed]
- Alfian, M.; Purwanto, W.W. Multi-Objective Optimization of Green Urea Production. Energy Sci. Eng. 2019, 7, 292–304. [Google Scholar] [CrossRef]
- Driver, J.G.; Owen, R.E.; Makanyire, T.; Lake, J.A.; McGregor, J.; Styring, P. Blue Urea: Fertilizer with Reduced Environmental Impact. Front. Energy Res. 2019, 7, 88. [Google Scholar] [CrossRef]
- Milani, D.; Kiani, A.; Haque, N.; Giddey, S.; Feron, P. Green Pathways for Urea Synthesis: A Review from Australia’s Perspective. Sustain. Chem. Clim. Action 2022, 1, 100008. [Google Scholar] [CrossRef]
- SUN to LIQUID Project. Available online: https://www.sun-to-liquid.eu (accessed on 11 November 2024).
- Methanol Institute. Available online: https://www.methanol.org/methanol-price-supply-demand/ (accessed on 1 January 2025).
- Godin, J.; Liu, W.; Ren, S.; Xu, C.C. Advances in Recovery and Utilization of Carbon Dioxide: A Brief Review. J. Environ. Chem. Eng. 2021, 9, 105644. [Google Scholar] [CrossRef]
- Khadzhiev, S.N.; Kolesnichenko, N.V.; Ezhova, N.N. Slurry Technology in Methanol Synthesis (Review). Pet. Chem. 2016, 56, 77–95. [Google Scholar] [CrossRef]
- Bozzano, G.; Manenti, F. Efficient Methanol Synthesis: Perspectives, Technologies and Optimization Strategies. Prog. Energy Combust. Sci. 2016, 56, 71–105. [Google Scholar] [CrossRef]
- Dalena, F.; Senatore, A.; Marino, A.; Gordano, A.; Basile, M.; Basile, A. Methanol Production and Applications: An Overview. In Methanol; Elsevier: Amsterdam, The Netherlands, 2018; pp. 3–28. [Google Scholar]
- Saeidi, S.; Najari, S.; Hessel, V.; Wilson, K.; Keil, F.J.; Concepción, P.; Suib, S.L.; Rodrigues, A.E. Recent Advances in CO2 Hydrogenation to Value-Added Products—Current Challenges and Future Directions. Prog. Energy Combust. Sci. 2021, 85, 100905. [Google Scholar] [CrossRef]
- Ren, M.; Zhang, Y.; Wang, X.; Qiu, H. Catalytic Hydrogenation of CO2 to Methanol: A Review. Catalysts 2022, 12, 403. [Google Scholar] [CrossRef]
- Turner, J.; Sverdrup, G.; Mann, M.K.; Maness, P.C.; Kroposki, B.; Ghirardi, M.; Evans, R.J.; Blake, D. Renewable Hydrogen Production. Int. J. Energy Res. 2008, 32, 379–407. [Google Scholar] [CrossRef]
- Carbon Recycling International. Available online: https://carbonrecycling.com (accessed on 11 November 2024).
- Liu, H.; Xu, S.; Zhou, G.; Huang, G.; Huang, S.; Xiong, K. CO2 Hydrogenation to Methane over Co/KIT-6 Catalyst: Effect of Reduction Temperature. Chem. Eng. J. 2018, 351, 65–73. [Google Scholar] [CrossRef]
- Garcia, J.A.; Villen-Guzman, M.; Rodriguez-Maroto, J.M.; Paz-Garcia, J.M. Comparing CO2 Storage and Utilization: Enhancing Sustainability through Renewable Energy Integration. Sustainability 2024, 16, 6639. [Google Scholar] [CrossRef]
- Krótki, A.; Chwoła, T.; Więcław-Solny, L.; Tatarczuk, A.; Spietz, T.; Dobras, S.; Zdeb, J. Advancements in CO2 Hydrogenation—Investigating a CNG Pilot Plant in Poland. Fuel 2025, 381, 133599. [Google Scholar] [CrossRef]
- Alami, A.H.; Alasad, S.; Ali, M.; Alshamsi, M. Investigating Algae for CO2 Capture and Accumulation and Simultaneous Production of Biomass for Biodiesel Production. Sci. Total Environ. 2021, 759, 143529. [Google Scholar] [CrossRef] [PubMed]
- Moreira, D.; Pires, J.C.M. Atmospheric CO2 Capture by Algae: Negative Carbon Dioxide Emission Path. Bioresour. Technol. 2016, 215, 371–379. [Google Scholar] [CrossRef] [PubMed]
- Iglina, T.; Iglin, P.; Pashchenko, D. Industrial CO2 Capture by Algae: A Review and Recent Advances. Sustainability 2022, 14, 3801. [Google Scholar] [CrossRef]
- Doucha, J.; Straka, F.; Lívanský, K. Utilization of Flue Gas for Cultivation of Microalgae (Chlorella sp.) in an Outdoor Open Thin-Layer Photobioreactor. J. Appl. Phycol. 2005, 17, 403–412. [Google Scholar] [CrossRef]
- AlgaeCytes Homepage. Available online: https://algaecytes.com (accessed on 5 January 2025).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thiedemann, T.M.; Wark, M. A Compact Review of Current Technologies for Carbon Capture as Well as Storing and Utilizing the Captured CO2. Processes 2025, 13, 283. https://doi.org/10.3390/pr13010283
Thiedemann TM, Wark M. A Compact Review of Current Technologies for Carbon Capture as Well as Storing and Utilizing the Captured CO2. Processes. 2025; 13(1):283. https://doi.org/10.3390/pr13010283
Chicago/Turabian StyleThiedemann, Tim M., and Michael Wark. 2025. "A Compact Review of Current Technologies for Carbon Capture as Well as Storing and Utilizing the Captured CO2" Processes 13, no. 1: 283. https://doi.org/10.3390/pr13010283
APA StyleThiedemann, T. M., & Wark, M. (2025). A Compact Review of Current Technologies for Carbon Capture as Well as Storing and Utilizing the Captured CO2. Processes, 13(1), 283. https://doi.org/10.3390/pr13010283