Biosensors for Detecting Food Contaminants—An Overview
Abstract
:1. Introduction
2. Biosensors for Detecting Food Contaminates
2.1. Heavy Metals
2.2. Pesticides
2.3. Allergens
2.4. Mycotoxins
2.5. Foodborne Pathogens
3. Strengths and Limitations of Biosensors for Detecting Food Contaminants
4. Conclusions
Funding
Conflicts of Interest
References
- Mali, H.; Shah, C.; Patel, D.H.; Trivedi, U.; Subramanian, R.B. Bio-Catalytic System of Metallohydrolases for Remediation of Neurotoxin Organophosphates and Applications with a Future Vision. J. Inorg. Biochem. 2022, 231, 111771. [Google Scholar] [CrossRef]
- Renz, H.; Allen, K.J.; Sicherer, S.H.; Sampson, H.A.; Lack, G.; Beyer, K.; Oettgen, H.C. Food Allergy. Nat. Rev. Dis. Primers. 2018, 4, 17098. [Google Scholar] [CrossRef] [PubMed]
- Kulawik, P.; Rathod, N.B.; Ozogul, Y.; Ozogul, F.; Zhang, W. Recent Developments in the Use of Cold Plasma, High Hydrostatic Pressure, and Pulsed Electric Fields on Microorganisms and Viruses in Seafood. Crit. Rev. Food Sci. Nutr. 2022, 63, 9716–9730. [Google Scholar] [CrossRef] [PubMed]
- Pan, M.; Yin, Z.; Liu, K.; Du, X.; Liu, H.; Wang, S. Carbon-Based Nanomaterials in Sensors for Food Safety. Nanomaterials 2019, 9, 1330. [Google Scholar] [CrossRef] [PubMed]
- Viswanathan, S.; Radecka, H.; Radecki, J. Electrochemical Biosensors for Food Analysis. Monatsh. Chem. 2009, 140, 891–899. [Google Scholar] [CrossRef]
- Song, M.; Khan, I.M.; Wang, Z. Research Progress of Optical Aptasensors Based on Aunps in Food Safety. Food Anal. Methods 2021, 14, 2136–2151. [Google Scholar] [CrossRef]
- Liang, S.; Sutham, P.; Wu, K.; Mallikarjunan, K.; Wang, J.P. Giant Magnetoresistance Biosensors for Food Safety Applications. Sensors 2022, 22, 5663. [Google Scholar] [CrossRef]
- Scognamiglio, V.; Arduini, F.; Palleschi, G.; Rea, G. Biosensing technology for sustainable food safety. TrAC Trend. Anal. Chem. 2014, 62, 1–10. [Google Scholar] [CrossRef]
- Thakur, M.S.; Ragavan, K.V. Biosensors in food processing. J. Food Sci. Technol. 2013, 50, 625–641. [Google Scholar] [CrossRef] [PubMed]
- Odobašić, A.; Šestan, I.; Begić, S. Biosensors for Determination of Heavy Metals in Waters; IntechOpen: London, UK, 2019. [Google Scholar] [CrossRef]
- Kazemi-Darsanaki, R.; Azizzadeh, A.; Nourbakhsh, M.; Raeisi, G.; Azizollahi Aliabadi, M. Biosensors: Functions and applications. J. Biol. Today’s World 2013, 2, 53–61. [Google Scholar] [CrossRef]
- Najeeb, J.; Ali, J.; Ali, M.A.; Aslam, M.F.; Raza, A. Biosensors: Their fundamentals, designs, types and most recent impactful application: A review. J. Biosens. Bioelectron. 2017, 8, 235. [Google Scholar]
- Dhal, S.B.; Kar, D. Leveraging artificial intelligence and advanced food processing techniques for enhanced food safety, quality, and security: A comprehensive review. Discov. Appl. Sci. 2025, 7, 75. [Google Scholar] [CrossRef]
- Hassan, M.M.; Xu, Y.; Sayada, J.; Zareef, M.; Shoaib, M.; Chen, X.; Li, H.; Chen, Q. Progress of machine learning-based biosensors for the monitoring of food safety: A review. Biosens. Bioelectron. 2025, 267, 116782. [Google Scholar] [CrossRef]
- Mostajabodavati, S.; Mousavizadegan, M.; Hosseini, M.; Mohammadimasoudi, M.; Mohammadi, J. Machine learning-assisted liquid crystal-based aptasensor for the specific detection of whole-cell Escherichia coli in water and food. Food Chem. 2024, 448, 139113. [Google Scholar] [CrossRef] [PubMed]
- Lv, M.; Liu, Y.; Geng, J.; Kou, X.; Xin, Z.; Yang, D. Engineering nanomaterials-based biosensors for food safety detection. Biosens. Bioelectron. 2018, 106, 122–128. [Google Scholar] [CrossRef] [PubMed]
- Mishra, G.K.; Barfidokht, A.; Tehrani, F.; Mishra, R.K. Food safety analysis using electrochemical biosensors. Foods 2018, 7, 141. [Google Scholar] [CrossRef]
- Nath, S. Advancements in food quality monitoring: Integrating biosensors for precision detection. Sustain. Food Technol. 2024, 2, 976–992. [Google Scholar] [CrossRef]
- Arugula, M.A.; Simonian, A. Novel trends in affinity biosensors: Current challenges and perspectives. Meas. Sci. Technol. 2014, 25, 032001–032022. [Google Scholar] [CrossRef]
- Hassan, M.M.; Xu, Y.; Zareef, M.; Li, H.; Rong, Y.; Chen, Q. Recent advances of nanomaterial-based optical sensor for the detection of benzimidazole fungicides in food: A review. Crit. Rev. Food Sci. Nutr. 2023, 63, 2851–2872. [Google Scholar] [CrossRef]
- Rotariu, L.; Lagarde, F.; Jaffrezic-Renault, N.; Bala, C. Electrochemical biosensors for fast detection of food contaminants–trends and perspective. TrAC Trends Anal. Chem. 2016, 79, 80–87. [Google Scholar] [CrossRef]
- Marazuela, M.D.; Moreno-Bondi, M.C. Fiber-optic biosensors—An overview. Anal. Bioanal. Chem. 2002, 372, 664–682. [Google Scholar] [CrossRef]
- Gautam, P.; Suniti, S.; Prachi, K.; Amrita, D.; Madathil, B.; Nair, A.N. A review on recent advances in biosensors for detection of water contamination. Int. J. Environ. Sci. 2012, 2, 1565–1574. [Google Scholar]
- Wang, Y.; Xu, H.; Zhang, J.; Li, G. Electrochemical sensors for clinical analysis. Sensors 2008, 8, 2043–2081. [Google Scholar] [CrossRef] [PubMed]
- Martinkova, P.; Kostelnik, A.; Valek, T.; Pohanka, M. Main streams in the construction of biosensors and their applications. Int. J. Electrochem. Sci. 2017, 12, 7386–7403. [Google Scholar] [CrossRef]
- Monosik, R.; Stredansky, M.; Sturdik, E. Biosensors—Classification, characterization and new trends. Acta Chim. Slovaca 2012, 5, 109–120. [Google Scholar] [CrossRef]
- Dzyadevych, S.V.; Jaffrezic-Renault, N. Conductometric biosensors. In Biological Identification; Schaudies, R.P., Ed.; Woodhead Publishing: Cambridge, UK, 2014; Volume 6, pp. 153–193. [Google Scholar]
- Jaffrezic-Renault, N.; Dzyadevych, S.V. Conductometric microbiosensors for environmental monitoring. Sensors 2008, 8, 2569–2588. [Google Scholar] [CrossRef]
- Eivazzadeh-Keihan, R.; Pashazadeh-Panahi, P.; Baradaran, B.; de la Guardia, M.; Hejazi, M.; Sohrabi, H.; Mokhtarzadeh, A.; Maleki, A. Recent progress in optical and electrochemical biosensors for sensing of Clostridium botulinum neurotoxin. TrAC Trends Anal. Chem. 2018, 103, 184–197. [Google Scholar] [CrossRef]
- Bosch, M.E.; Sanchez, A.J.R.; Rojas, F.S.; Ojeda, C.B. Recent development in optical fibre biosensors. Sensors 2007, 7, 797–859. [Google Scholar] [CrossRef]
- Wijaya, E.; Lenaerts, C.; Maricot, S.; Hastanin, J.; Habraken, S.; Vilcot, J.-P. Surface plasmon resonance-based biosensors: From the development of different SPR structures to novel surface functionalization strategies. Curr. Opin. Solid State Mater. Sci. 2011, 15, 208–224. [Google Scholar] [CrossRef]
- Asal, M.; Ozen, O.; Sahinler, M.; Polatoglu, I. Recent developments in enzyme, DNA and immuno-based biosensors. Sensors 2018, 18, 1924. [Google Scholar] [CrossRef]
- Pohanka, M. The piezoelectric biosensors: Principles and applications, a review. Int. J. Electrochem. Sci. 2017, 12, 496–506. [Google Scholar] [CrossRef]
- Perumal, V.; Hashim, U. Advances in biosensors: Principle, architecture and applications. J. Appl. Biomed. 2014, 12, 1–5. [Google Scholar] [CrossRef]
- Ferrigno, P.K. Non-antibody protein-based biosensors. Essays Biochem. 2016, 60, 19–25. [Google Scholar]
- Sharma, S.; Byrne, H.; O’Kennedy, R.J. Antibodies and antibody-derived analytical biosensors. Essays Biochem. 2016, 60, 9–18. [Google Scholar]
- Peltoma, R.; Benito-Peña, E.; Moreno-Bondi, M.C. Bioinspired recognition elements for mycotoxin sensors. Anal. Bioanal. Chem. 2018, 410, 747–771. [Google Scholar] [CrossRef] [PubMed]
- Pfeiffer, F.; Mayer, G. Selection and biosensor application of aptamers for small molecules. Front. Chem. 2016, 4, 25. [Google Scholar] [CrossRef] [PubMed]
- Chauhan, R.; Singh, J.; Sachdev, T.; Basu, T.; Malhotra, B.D. Recent advances in mycotoxins detection. Biosens. Bioelectron. 2016, 81, 532–545. [Google Scholar] [CrossRef] [PubMed]
- Cornelis, R.; Crews, H.; Caruso, J.; Heumann, K. Handbook of Elemental Speciation: Techniques and Methodology; John Wiley & Sons, Ltd.: Chichester, UK, 2003; ISBN 0-471-49214-0. [Google Scholar]
- Gu, M.B.; Mitchell, R.J.; Kim, B.C. Whole-cell-based biosensors for environmental biomonitoring and application. Adv. Biochem. Engin./Biotechnol. 2004, 87, 269–305. [Google Scholar]
- Shakya, A.K.; Singh, S. State of the art in fiber optics sensors for heavy metals detection. Opt. Laser Technol. 2022, 153, 108246. [Google Scholar] [CrossRef]
- Umapathi, R.; Park, B.; Sonwal, S.; Rani, G.M.; Cho, Y.; Huh, Y.S. Advances in optical-sensing strategies for the on-site detection of pesticides in agricultural foods. Trends Food Sci. Technol. 2022, 119, 69–89. [Google Scholar] [CrossRef]
- Loguercio, L.F.; Thesing, A.; Demingos, P.; de Albuquerque, C.D.; Rodrigues, R.S.; Brolo, A.G.; Santos, J.F. Efficient acetylcholinesterase immobilization for improved electrochemical performance in polypyrrole nanocomposite-based biosensors for carbaryl pesticide. Sens. Actuators B Chem. 2021, 339, 129875. [Google Scholar] [CrossRef]
- Fu, L.; Cherayil, B.J.; Shi, H.; Wang, Y.; Zhu, Y.; Fu, L.; Cherayil, B.J.; Shi, H.; Wang, Y.; Zhu, Y. Detection and quantification methods for food allergens. In Food Allergy: From Molecular Mechanisms to Control Strategies; Springer: Singapore, 2019; pp. 69–91. [Google Scholar]
- Pilolli, R.; Monaci, L.; Visconti, A. Advances in biosensor development based on integrating nanotechnology and applied to food-allergen management. TrAC Trends Anal. Chem. 2013, 47, 12–26. [Google Scholar] [CrossRef]
- Majdinasab, M.; Ben Aissa, S.; Marty, J.L. Advances in colorimetric strategies for mycotoxins detection: Toward rapid industrial monitoring. Toxins 2020, 13, 13. [Google Scholar] [CrossRef]
- Sergeyeva, T.; Yarynka, D.; Dubey, L.; Dubey, I.; Piletska, E.; Linnik, R.M.; Antonyuk, T.; Ternovska, O.; Brovko, S. Piletsky Sensor based on molecularly imprinted polymer membranes and smartphone for detection of Fusarium contamination in cereals. Sensors 2020, 20, 4304. [Google Scholar] [CrossRef]
- Jia, Y.; Zhao, S.; Li, D.; Yang, J.; Yang, L. Portable chemiluminescence optical fiber aptamer-based biosensors for analysis of multiple mycotoxins. Food Control 2023, 144, 109361. [Google Scholar] [CrossRef]
- Mahnashi, M.H.; Mahmoud, A.M.; Alhazzani, K.; Alanazi, A.; Algahtani, M.M.; Alaseem, A.M.; Alqahtani, Y.S.; El-Wekil, M.M. Enhanced molecular imprinted electrochemical sensing of histamine based on signal reporting nanohybrid. Microchem. J. 2021, 168, 106439. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, Y.; Zhang, Y.; Wang, X.; Zhang, C.; Cheng, N. Intelligent Biosensors Promise Smarter Solutions in Food Safety 4.0. Foods 2024, 13, 235. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Si, S. Aptamer biosensing platform based on carbon nanotube long-range energy transfer for sensitive, selective and multicolor fluorescent heavy metal ion analysis. Anal. Methods 2013, 5, 2947–2953. [Google Scholar] [CrossRef]
- Guo, W.; Zhang, C.; Ma, T.; Liu, X.; Chen, Z.; Li, S.; Deng, Y. Advances in aptamer screening and aptasensors’ detection of heavy metal ions. J. Nanobiotechnology 2021, 19, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Peng, X.; Fu, H.; Huang, C.; Li, Y.; Liu, Z. Recent advances in the development of electrochemical aptasensors for detection of heavy metals in food. Biosens. Bioelectron. 2020, 147, 111777. [Google Scholar] [CrossRef]
- Sawan, S.; Errachid, A.; Maalouf, R.; Jaffrezic-Renault, N. Aptamers functionalized metal and metal oxide nanoparticles: Recent advances in heavy metal monitoring. TrAC Trends Anal. Chem. 2022, 157, 116748. [Google Scholar] [CrossRef]
- Sasaki, K.; Yongvongsoontorn, N.; Tawarada, K.; Ohnishi, Y.; Arakane, T.; Kayama, F.; Abe, K.; Oguma, S.; Ohmura, N. Cadmium purification and quantification using immunochromatography. J. Agric. Food Chem. 2009, 57, 4514–4519. [Google Scholar] [CrossRef]
- Liu, G.L.; Wang, J.F.; Li, Z.Y.; Liang, S.Z.; Wang, X.N. Immunoassay for cadmium detection and quantification. Biomed. Environ. Sci. 2009, 22, 188–193. [Google Scholar] [CrossRef]
- Liu, G.; Wang, J.; Li, Z.; Liang, S.; Liu, S.; Wang, X. Development of direct competitive enzyme-linked immunosorbent assay for the determination cadmium residue in farm produce. Appl. Biochem. Biotechnol. 2009, 159, 708–717. [Google Scholar] [CrossRef]
- Cui, L.; Wu, J.; Ju, H. Electrochemical sensing of heavy metal ions with inorganic, organic and bio-materials. Biosens. Bioelectron. 2015, 63, 276–286. [Google Scholar] [CrossRef] [PubMed]
- Soldatkin, O.O.; Kucherenko, I.S.; Pyeshkova, V.M.; Kukla, A.L.; Jaffrezic-Renault, N.; El’Skaya, A.V.; Dzyadevych, S.V.; Soldatkin, A.P. Novel conductometric biosensor based on three-enzyme system for selective determination of heavy metal ions. Bioelectrochemistry 2012, 83, 25–30. [Google Scholar] [CrossRef]
- Moyo, M.; Okonkwoa, J.O.; Agyei, N.M. An amperometric biosensor based on horseradish peroxidase immobilized onto maize tassel-multiwalled carbon nanotubes modified glassy carbon electrode for determination of heavy metal ions in aqueous solution. Enzyme Microb. Technol. 2014, 56, 28–34. [Google Scholar] [CrossRef] [PubMed]
- Syshchyk, O.; Skryshevsky, V.A.; Soldatkin, O.O.; Soldatkin, A.P. Enzyme biosensor systems based on porous silicon photoluminescence for detection of glucose, urea, and heavy metals. Biosens. Bioelectron. 2015, 66, 89–94. [Google Scholar] [CrossRef]
- Wu, Q.; Bi, H.-M.; Han, X.-J. Research progress of electrochemical detection of heavy metal ions. Chin. J. Anal. Chem. 2021, 49, 330–340. [Google Scholar] [CrossRef]
- Cesarino, I.; Moraes, F.C.; Lanza, M.R.; Machado, S.A. Electrochemical detection of carbamate pesticides in fruit and vegetables with a biosensor based on acetylcholinesterase immobilised on a composite of polyaniline-carbon nanotubes. Food Chem. 2012, 135, 873–879. [Google Scholar] [CrossRef]
- Zhang, Y.; Arugula, M.A.; Wales, M.; Wild, J.; Simonian, A.L. A novel layerby-layer assembled multienzyme/CNT biosensor for discriminative detection between organophosphorus and nonorganophosphrus pesticides. Biosens. Bioelectron. 2014, 67, 287–295. [Google Scholar] [CrossRef] [PubMed]
- Hossain, M.I.; Hasnat, M.A. Recent advancements in non-enzymatic electrochemical sensor development for the detection of organophosphorus pesticides in food and environment. Heliyon 2023, 9, e19299. [Google Scholar] [CrossRef]
- Čadková, M.; Metelka, R.; Holubová, L.; Horák, D.; Dvořáková, V.; Bílková, Z.; Korecká, L. Magnetic beads-based electrochemical immunosensor for monitoring allergenic food proteins. Anal. Biochem. 2015, 484, 4–8. [Google Scholar] [CrossRef]
- Pilolli, R.; Monaci, L. Challenging the limit of detection for egg allergen detection in red wines by surface plasmon resonance biosensor. Food Anal. Methods 2016, 9, 2754–2761. [Google Scholar] [CrossRef]
- de Champdorè, M.; Bazzicalupo, P.; De Napoli, L.; Montesarchio, D.; Di Fabio, G.; Cocozza, I.; Parracino, A.; Rossi, M.; D’Auria, S. A new competitive fluorescence assay for the detection of patulin toxin. Anal. Chem. 2007, 79, 751–757. [Google Scholar] [CrossRef] [PubMed]
- Rejeb, I.B.; Arduini, F.; Amine, A.; Gargouri, M.; Palleschi, G. Development of a bio-electrochemical assay for AFB1 detection in olive oil. Biosens. Bioelectron. 2009, 24, 1962–1968. [Google Scholar] [CrossRef]
- Vidal, J.C.; Bonel, L.; Ezquerra, A.; Duato, P.; Castillo, J.R. An electrochemical immunosensor for ochratoxin A determination in wines based on a monoclonal antibody and paramagnetic microbeads. Anal. Bioanal. Chem. 2012, 403, 1585–1593. [Google Scholar] [CrossRef] [PubMed]
- Alarcon, S.H.; Micheli, L.; Palleschi, G.; Compagnone, D. Development of an electrochemical immunosensor for ochratoxin A. Anal. Lett. 2004, 37, 1545–1558. [Google Scholar] [CrossRef]
- Liu, X.; Yang, Z.; Zhang, Y.; Yu, R. A novel electrochemical immunosensor for ochratoxin A with hapten immobilization on thionine/gold nanoparticle modified glassy carbon electrode. Anal. Methods 2013, 5, 1481–1486. [Google Scholar] [CrossRef]
- Varriale, A.; Staiano, M.; Iozzino, L.; Severino, L.; Anastasio, A.; Cortesi, M.L.; D’Auria, S. FCS-based sensing for the detection of ochratoxin and neomycin in food. Prot. Pept. Lett. 2009, 16, 1425–1428. [Google Scholar] [CrossRef]
- Ron, I.; Bhattacharyya, I.M.; Samanta, S.; Tiwari, V.S.; Greental, D.; Shima-Edelstein, R.; Pikhay, E.; Roizin, Y.; Akabayov, B.; Shalev, G. Label-free and specific detection of active Botulinum neurotoxin in 0.5 μL drops with the meta-nano-channel field-effect biosensor. Sens. Actuators B Chem. 2023, 393, 134171. [Google Scholar] [CrossRef]
- Grabka, M.; Jasek, K.; Witkiewicz, Z. Surface Acoustic Wave Immunosensor for Detection of Botulinum Neurotoxin. Sensors 2023, 23, 7688. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Wang, L.; Hu, Q.; Wang, R.; Li, Y.; Kidd, M. Rapid and sensitive detection of Campylobacter jejuni in poultry products using a nanoparticle-based piezoelectric immunosensor integrated with magnetic immunoseparation. J. Food Prot. 2018, 81, 1321–1330. [Google Scholar] [CrossRef] [PubMed]
- Masdor, N.A.; Altintas, Z.; Shukor, M.Y.; Tothill, I.E. Subtractive inhibition assay for the detection of Campylobacter jejuni in chicken samples using surface plasmon resonance. Sci. Rep. 2019, 9, 13642. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.S.; Kim, Y.J.; Chon, J.W.; Kim, D.H.; Yim, J.H.; Kim, H.; Seo, K.H. Two-stage label-free aptasensing platform for rapid detection of Cronobacter sakazakii in powdered infant formula. Sens. Actuators B Chem. 2017, 239, 94–99. [Google Scholar] [CrossRef]
- Shukla, S.; Lee, G.; Song, X.; Park, J.H.; Cho, H.; Lee, E.J.; Kim, M. Detection of Cronobacter sakazakii in powdered infant formula using an immunoliposome-based immunomagnetic concentration and separation assay. Sci. Rep. 2016, 6, 34721. [Google Scholar] [CrossRef]
- Rodriguez-Emmenegger, C.; Avramenko, O.A.; Brynda, E.; Skvor, J.; Alles, A.B. Poly(HEMA) brushes emerging as a new platform for direct detection of food pathogen in milk samples. Biosens. Bioelectron. 2011, 26, 4545–4551. [Google Scholar] [CrossRef]
- Dou, W.; Tang, W.; Zhao, G. A disposable electrochemical immunosensor arrays using 4-channel screen-printed carbon electrode for simultaneous detection of Escherichia coli O157:H7 and Enterobacter sakazakii. Electrochim. Acta 2013, 97, 79–85. [Google Scholar] [CrossRef]
- Liu, L.; Chao, Y.; Cao, W.; Wang, Y.; Luo, C.; Pang, X.; Fan, D.; Wei, Q. A label-free amperometric immunosensor for detection of zearalenone based on trimetallic Au-core/AgPt-shell nanorattles and mesoporous carbon. Anal. Chim. Acta 2014, 847, 29–36. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Wang, Q.; Cai, Z.; Ma, M. Simultaneous, rapid and sensitive detection of three food-borne pathogenic bacteria using multicolor quantum dot probes based on multiplex fluoroimmunoassay in food samples. LWT Food Sci. Technol. 2015, 61, 368–376. [Google Scholar] [CrossRef]
- Zaraee, N.; Bhuiya, A.M.; Gong, E.S.; Geib, M.T.; Ünlü, N.L.; Ozkumur, A.Y.; Ünlü, M.S. Highly Sensitive and Label-free Digital Detection of Whole Cell E. coli with Interferometric Reflectance Imaging. arXiv 2019, arXiv:1911.06950. [Google Scholar]
- Hao, N.; Zhang, X.; Zhou, Z.; Hua, R.; Zhang, Y.; Liu, Q.; Qian, J.; Henan, L.; Wang, K. AgBr nanoparticles/3D nitrogen-doped graphene hydrogel for fabricating all-solid-state luminol-electrochemiluminescence Escherichia coli aptasensors. Biosens. Bioelectron. 2017, 97, 377–383. [Google Scholar] [CrossRef]
- Shang, Q.; Su, Y.; Liang, Y.; Lai, W.; Jiang, J.; Wu, H.; Zhang, C. Ultrasensitive cloth-based microfluidic chemiluminescence detection of Listeria monocytogenes hlyA gene by hemin/G-quadruplex DNAzyme and hybridization chain reaction signal amplification. Anal. Bioanal. Chem. 2020, 412, 3787–3797. [Google Scholar] [CrossRef] [PubMed]
- Baskaran, N.; Sakthivel, R.; Karthik, C.S.; Lin, Y.-C.; Liu, X.; Wen, H.-W.; Yang, W.; Chung, R.-J. Polydopamine-modified 3D flower-like ZnMoO4 integrated MXene-based label-free electrochemical immunosensor for the food-borne pathogen Listeria monocytogenes detection in milk and seafood. Talanta 2024, 282, 127008. [Google Scholar] [CrossRef]
- Cheng, C.; Peng, Y.; Bai, J.; Zhang, X.; Liu, Y.; Fan, X.; Ning, B.; Gao, Z. Rapid detection of Listeria monocytogenes in milk by self-assembled electrochemical immunosensor. Sens. Actuators B Chem. 2014, 190, 900–906. [Google Scholar] [CrossRef]
- Liu, H.; Zhou, X. Paper-based bipolar electrode electrochemiluminescence (pBPE-ECL) analysis system for sensitive detection of pathogenic bacteria. Anal. Chem. 2016, 88, 10191–10197. [Google Scholar] [CrossRef]
- Ren, J.; He, F.; Yi, S.; Cui, X. A new MSPQC for rapid growth and detection of Mycobacterium tuberculosis. Biosens. Bioelectron. 2008, 24, 403–409. [Google Scholar] [CrossRef] [PubMed]
- He, F.; Xiong, Y.; Liu, J.; Tong, F.; Yan, D. Construction of Au-IDE/CFP10-ESAT6 aptamer/DNA-AuNPsMSPQC for rapid detection of Mycobacterium tuberculosis. Biosens. Bioelectron. 2016, 77, 799–804. [Google Scholar] [CrossRef]
- Mudgal, N.; Yupapin, P.; Ali, J.; Singh, G. BaTiO3-Graphene-Affinity Layer–Based Surface Plasmon Resonance (SPR) Biosensor for Pseudomonas Bacterial Detection. Plasmonics 2020, 15, 1221–1229. [Google Scholar] [CrossRef]
- Zhang, P.; Chen, Y.P.; Wang, W.; Shen, Y.; Guo, J.S. Surface plasmon resonance for water pollutant detection and water process analysis. TrAC Trends Anal. Chem. 2016, 85, 153–165. [Google Scholar] [CrossRef]
- Kim, G.; Moon, J.; Moh, C.; Lim, J. A microfuidic nano-biosensor for the detection of pathogenic Salmonella. Biosens. Bioelectron. 2014, 67, 243–247. [Google Scholar] [CrossRef]
- Duan, N.; Wu, S.; Ma, X.; Xia, Y.; Wang, Z. A universal fuorescent aptasensor based on AccuBlue dye for the detection of pathogenic bacteria. Anal. Biochem. 2014, 454, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Oh, S.Y.; Heo, N.S.; Shukla, S.; Cho, H.J.; Vilian, A.E.; Kim, J.; Huh, Y.S. Development of gold nanoparticle-aptamer-based LSPR sensing chips for the rapid detection of Salmonella Typhimurium in pork meat. Sci. Rep. 2017, 7, 10130. [Google Scholar] [CrossRef]
- Sheikhzadeh, E.; CHamsaz, M.; Turner, A.P.F.; Jager, E.W.H.; Beni, V. Label-free impedimetric biosensor for Salmonella Typhimurium detection based on poly [pyrrole-co-3-carboxyl-pyrrole] copolymer supported aptamer. Biosens. Bioelectron. 2016, 80, 194–200. [Google Scholar] [CrossRef] [PubMed]
- Bagheryan, Z.; Raoof, J.B.; Golabi, M.; Turner, A.P.; Beni, V. Diazonium-based impedimetric aptasensor for the rapid label-free detection of Salmonella Typhimurium in food sample. Biosens. Bioelectron. 2016, 80, 566–573. [Google Scholar] [CrossRef]
- Ozalp, V.C.; Bayramoglu, G.; Erdem, Z.; Arica, M.Y. Pathogen detection in complex samples by quartz crystal microbalance sensor coupled to aptamer functionalized core–shell type magnetic separation. Anal. Chim. Acta 2015, 853, 533–540. [Google Scholar] [CrossRef] [PubMed]
- Farka, Z.; Juřík, T.; Pastucha, M.; Skládal, P. Enzymatic precipitation enhanced surface plasmon resonance immunosensor for the detection of Salmonella in powdered milk. Anal. Chem. 2016, 88, 11830–11836. [Google Scholar] [CrossRef]
- Zelada-Guillén, G.A.; Sebastián-Avila, J.L.; Blondeau, P.; Riu, J.; Rius, F.X. Label-free detection of Staphylococcus aureus in skin using real-time potentiometric biosensors based on carbon nanotubes and aptamers. Biosens. Bioelectron. 2012, 31, 226–232. [Google Scholar] [CrossRef]
- Arora, S.; Ahmed, D.N.; Khubber, S.; Siddiqui, S. Detecting food borne pathogens using electrochemical biosensors: An overview. IJCS 2018, 6, 1031–1039. [Google Scholar]
- Pohanka, M. QCM immunosensor for the determination of Staphylococcus aureus antigen. Chem. Pap. 2020, 74, 451–458. [Google Scholar] [CrossRef]
- Noi, K.; Iijima, M.; Kuroda, S.I.; Ogi, H. Ultrahigh-sensitive wireless QCM with bio-nanocapsules. Sens. Actuators B Chem. 2019, 293, 59–62. [Google Scholar] [CrossRef]
- Vásquez, G.; Rey, A.; Rivera, C.; Iregui, C.; Orozco, J. Amperometric biosensor based on a single antibody of dual function for rapid detection of Streptococcus agalactiae. Biosens. Bioelectron. 2017, 87, 453–458. [Google Scholar] [CrossRef] [PubMed]
- Arachchillaya, B.P.A.P. Development and Evaluation of a Paper Based Biochemical Sensor for Realtime Detection of Food Pathogen; Bachelor Project; Asian Institute of Technology: Khlong Luang, Thailand, 2018. [Google Scholar]
- Jiang, H.; Sun, Z.; Guo, Q.; Weng, X. Microfluidic Thread-Based Electrochemical Aptasensor for Rapid Detection of Vibrio parahaemolyticus. Biosens. Bioelectron. 2021, 182, 113191. [Google Scholar] [CrossRef] [PubMed]
- Jin, X.; Gong, L.; Liang, J.; Wang, Z.; Wang, K.; Yang, T.; Zeng, H. Polydopamine-Enhanced Vertically-Ordered Mesoporous Silica Film Anti-Fouling Electrochemical Aptasensor for Indicator-Free Vibrio parahaemolyticus Discrimination Using Stable Inherent Au Signal. Sens. Actuators B Chem. 2024, 407, 135485. [Google Scholar] [CrossRef]
- Tian, L.; Li, Y.; Wang, H.; Li, X.; Gao, Q.; Liu, Y.; Liu, Y.; Wang, Q.; Ma, C.; Shi, C. A pH Ultra-Sensitive Hydrated Iridium Oxyhydroxide Films Electrochemical Sensor for Label-Free Detection of Vibrio parahaemolyticus. Anal. Biochem. 2024, 693, 115597. [Google Scholar] [CrossRef] [PubMed]
- Sha, Y.; Zhang, X.; Li, W.; Wu, W.; Wang, S.; Guo, Z.; Zhou, J.; Su, X. A label-free multi-functionalized graphene oxide based electrochemiluminscence immunosensor for ultrasensitive and rapid detection of Vibrio parahaemolyticus in seawater and seafood. Talanta 2016, 147, 220–225. [Google Scholar] [CrossRef]
- Li, J.; Lin, X.; Wu, J.; Ying, D.; Duan, N.; Wang, Z.; Wu, S. Multifunctional Magnetic Composite Nanomaterial for Colorimetric-SERS Dual-Mode Detection and Photothermal Sterilization of Vibrio parahaemolyticus. Chem. Eng. J. 2023, 477, 147113. [Google Scholar] [CrossRef]
- Xu, C.; Xie, J.; Yu, L.; Shu, B.; Liu, X.; Chen, S.; Li, Q.; Qi, S.; Zhao, S. Sensitive Colorimetric Detection of Vibrio vulnificus Based on Target-Induced Shielding against the Peroxidase-Mimicking Activity of CeO2@PtRu Nanozyme. Food Chem. 2024, 454, 139757. [Google Scholar] [CrossRef] [PubMed]
- Baek, S.H.; Kim, M.W.; Park, C.Y.; Choi, C.S.; Kailasa, S.K.; Park, J.P.; Park, T.J. Development of a rapid and sensitive electrochemical biosensor for detection of human norovirus via novel specific binding peptides. Biosens. Bioelectron. 2019, 123, 223–229. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.; Tang, D. Recent advances in photoelectrochemical biosensors for analysis of mycotoxins in food. TrAC Trends Anal. Chem. 2020, 124, 115814. [Google Scholar] [CrossRef]
- Oladoye, P.O.; Olowe, O.M.; Asemoloye, M.D. Phytoremediation technology and food security impacts of heavy metal contaminated soils: A review of literature. Chemosphere 2022, 288, 132555. [Google Scholar] [CrossRef] [PubMed]
- Parker, G.H.; Gillie, C.E.; Miller, J.V.; Badger, D.E.; Kreider, M.L. Human health risk assessment of arsenic, cadmium, lead, and mercury ingestion from baby foods. Toxicol. Rep. 2022, 9, 238–249. [Google Scholar] [CrossRef]
- Chailapakul, O.; Korsrisakul, S.; Siangproh, W.; Grudpan, K. Fast and simultaneous detection of heavy metals using a simple and reliable microchip-electrochemistry route: An alternative approach to food analysis. Talanta 2008, 74, 683–689. [Google Scholar] [CrossRef] [PubMed]
- Yuan, M.; Qian, S.; Cao, H.; Yu, J.; Ye, T.; Wu, X.; Chen, L.; Xu, F. An ultra-sensitive electrochemical aptasensor for simultaneous quantitative detection of Pb2+ and Cd2+ in fruit and vegetable. Food Chem. 2022, 382, 132173. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Liu, M.; Wang, X.; Wu, Z.; Yang, L.; Xia, S.; Chen, L.; Zhao, J. p-Benzoquinone-mediated amperometric biosensor developed with Psychrobacter sp. for toxicity testing of heavy metals. Biosens. Bioelectron. 2013, 41, 557–562. [Google Scholar] [CrossRef]
- Gammoudi, I.; Raimbault, V.; Tarbague, H.; Morote, F.; Grauby-Heywang, C.; Othmane, A.; Kalfat, R.; Moynet, D.; Rebiere, D.; Dejous, C.; et al. Enhanced bio-inspired microsensor based on microfluidic/ bacterial/love wave hybrid structure for continuous control of heavy metals toxicity in liquid medium. Sens. Actuators B Chem. 2014, 198, 278–284. [Google Scholar] [CrossRef]
- Ghica, M.E.; Carvalho, R.C.; Amine, A.; Brett, C.M.A. Glucose oxidase enzyme inhibition sensors for heavy metals at carbon film electrodes modified with cobalt and copper hexacyanoferrate. Sens. Actuators B Chem. 2013, 178, 270–278. [Google Scholar] [CrossRef]
- Magar, H.S.; Ghica, M.E.; Abbas, M.N.; Brett, C.M. Highly sensitive choline oxidase enzyme inhibition biosensor for lead ions based on multiwalled carbon nanotube modified glassy carbon electrodes. Electroanalysis 2017, 29, 1741–1748. [Google Scholar] [CrossRef]
- Wang, N.; Lin, M.; Dai, H.; Ma, H. Functionalized gold nanoparticles/reduced graphene oxide nanocomposites for ultrasensitive electrochemical sensing of mercury ions based on thymine–mercury–thymine structure. Biosens. Bioelectron. 2016, 79, 320–326. [Google Scholar] [CrossRef] [PubMed]
- Dai, X.; Wu, S.; Li, S. Progress on electrochemical sensors for the determination of heavy metal ions from contaminated water. J. Chin. Adv. Mater. Soc. 2018, 6, 91–111. [Google Scholar] [CrossRef]
- Tao, H.C.; Peng, Z.W.; Li, P.S.; Yu, T.A.; Su, J. Optimizing cadmium and mercury specificity of CadRbased E-coli biosensors by redesign of CadR. Biotechnol. Lett. 2013, 35, 1253–1258. [Google Scholar] [CrossRef] [PubMed]
- Amaro, F.; Turkewitz, A.P.; Martin-Gonzalez, A.; Gutierrez, J.C. Functional GFP metallothionein fusion protein from Tetrahymena thermophila: A potential whole-cell biosensor for monitoring heavy metal pollution and a cell model to study metallothionein overproduction effects. Biometals 2014, 27, 195–205. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.; Lim, J.W.; Kim, H.J.; Lee, S.K.; Lee, S.J.; Kim, T. Chemostat-like microfluidic platform for highly sensitive detection of heavy metal ions using microbial biosensors. Biosens. Bioelectron. 2015, 65, 257–264. [Google Scholar] [CrossRef] [PubMed]
- Long, F.; Zhu, A.; Shi, H.; Wang, H.; Liu, J. Rapid on-site/in-situ detection of heavy metal ions in environmental water using a structure-switching DNA optical biosensor. Sci. Rep. 2013, 3, 2308. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Pu, H.; Sun, D.W. DNA functionalized metal and metal oxide nanoparticles: Principles and recent advances in food safety detection. Crit. Rev. Food Sci. Nutr. 2021, 61, 2277–2296. [Google Scholar] [CrossRef] [PubMed]
- Lake, R.J.; Yang, Z.; Zhang, J.; Lu, Y. DNAzymes as activity-based sensors for metal ions: Recent applications, demonstrated advantages, current challenges, and future directions. Acc. Chem. Res. 2019, 52, 3275–3286. [Google Scholar] [CrossRef]
- Tang, S.; Tong, P.; Li, H.; Tang, J.; Zhang, L. Ultrasensitive electrochemical detection of Pb²⁺ based on rolling circle amplification and quantum dots tagging. Biosens Bioelectron. 2013, 42, 608–611. [Google Scholar] [CrossRef] [PubMed]
- Miao, P.; Tang, Y.; Wang, L. DNA modified Fe3O4@ Au magnetic nanoparticles as selective probes for simultaneous detection of heavy metal ions. ACS Appl. Mater. Interfaces 2017, 9, 3940–3947. [Google Scholar] [CrossRef]
- Wen, S.-H.; Wang, Y.; Yuan, Y.-H.; Liang, R.-P.; Qiu, J.-D. Electrochemical sensor for arsenite detection using graphene oxide assisted generation of prussian blue nanoparticles as enhanced signal label. Anal. Chim. Acta 2018, 1002, 82–89. [Google Scholar] [CrossRef]
- Shi, J.-J.; Zhu, J.-C.; Zhao, M.; Wang, Y.; Yang, P.; He, J. Ultrasensitive photoelectrochemical aptasensor for lead ion detection based on sensitization effect of CdTe QDs on MoS2-CdS: Mn nanocomposites by the formation of G-quadruplex structure. Talanta 2018, 183, 237–244. [Google Scholar] [CrossRef]
- Lee, C.-S.; Yu, S.H.; Kim, T.H. A “turn-on” electrochemical aptasensor for ultrasensitive detection of Cd2+ using duplexed aptamer switch on electrochemically reduced graphene oxide electrode. Microchem. J. 2020, 159, 105372. [Google Scholar] [CrossRef]
- Gumpu, M.B.; Krishnan, U.M.; Rayappan, J.B.B. Design and development of amperometric biosensor for the detection of lead and mercury ions in water matrix—A permeability approach. Anal. Bioanal. Chem. 2017, 409, 4257–4266. [Google Scholar] [CrossRef] [PubMed]
- European Food Safety Authority. Scientific Topic: Pesticides | European Food Safety Authority. Available online: https://www.efsa.europa.eu/en/topics/topic/pesticides (accessed on 2 January 2025).
- Yadav, I.C.; Devi, N.L. Pesticides Classification and Its Impact on Environment. Environ. Eng. Sci. 2017, 6, 140–158. [Google Scholar]
- Hu, H.; Yang, L. Development of enzymatic electrochemical biosensors for organophosphorus pesticide detection. J. Environ. Sci. Health Part B 2021, 56, 168–180. [Google Scholar] [CrossRef]
- Tun, W.S.T.; Saenchoopa, A.; Daduang, S.; Daduang, J.; Kulchat, S.; Patramanon, R. Electrochemical biosensor based on cellulose nanofibers/graphene oxide and acetylcholinesterase for the detection of chlorpyrifos pesticide in water and fruit juice. RSC Adv. 2023, 13, 9603–9614. [Google Scholar] [CrossRef]
- Guerrero-Esteban, T.; Gutiérrez-Sánchez, C.; Martínez-Periñán, E.; Revenga-Parra, M.; Pariente, F.; Lorenzo, E. Sensitive glyphosate electrochemiluminescence immunosensor based on electrografted carbon nanodots. Sens. Actuators B Chem. 2021, 330, 129389. [Google Scholar] [CrossRef]
- Ba Hashwan, S.S.; Khir, M.H.B.M.; Al-Douri, Y.; Ahmed, A.Y. Recent progress in the development of biosensors for chemicals and pesticides detection. IEEE Access 2020, 8, 82514–82527. [Google Scholar] [CrossRef]
- Bucur, B.; Munteanu, F.-D.; Marty, J.-L.; Vasilescu, A. Advances in enzyme-based biosensors for pesticide detection. Biosensors 2018, 8, 27. [Google Scholar] [CrossRef]
- Mirres, A.C.d.M.; Silva, B.E.P.d.M.d.; Tessaro, L.; Galvan, D.; de Andrade, J.C.; Aquino, A.; Joshi, N.; Conte-Junior, C.A. Recent advances in nanomaterial-based biosensors for pesticide detection in foods. Biosensors 2022, 12, 572. [Google Scholar] [CrossRef] [PubMed]
- Tsounidi, D.; Soulis, D.; Manoli, F.; Klinakis, A.; Tsekenis, G. AChE-based electrochemical biosensor for pesticide detection in vegetable oils: Matrix effects and synergistic inhibition of the immobilized enzyme. Anal. Bioanal. Chem. 2023, 415, 615–625. [Google Scholar] [CrossRef] [PubMed]
- Surribas, A.; Barthelmebs, L.; Noguer, T. Monoclonal antibody-based immunosensor for the electrochemical detection of chlortoluron herbicide in groundwaters. Biosensors 2021, 11, 513. [Google Scholar] [CrossRef]
- Liu, B.; Tang, Y.; Yang, Y.; Wu, Y. Design an aptamer-based sensitive lateral flow biosensor for rapid determination of isocarbophos pesticide in foods. Food Control 2021, 129, 108208. [Google Scholar] [CrossRef]
- Taghizadeh-Behbahani, M.; Shamsipur, M.; Hemmateenejad, B. Detection and discrimination of antibiotics in food samples using a microfluidic paper-based optical tongue. Talanta 2022, 241, 123242. [Google Scholar] [CrossRef]
- Li, H.; Huang, X.; Huang, J.; Bai, M.; Hu, M.; Guo, Y.; Sun, X. Fluorescence assay for detecting four organophosphorus pesticides using fluorescently labeled aptamer. Sensors 2022, 22, 5712. [Google Scholar] [CrossRef]
- Dong, J.; Yang, H.; Li, Y.; Liu, A.; Wei, W.; Liu, S. Fluorescence sensor for organophosphorus pesticide detection based on the alkaline phosphatase-triggered reaction. Anal. Chim. Acta 2020, 1131, 102–108. [Google Scholar] [CrossRef] [PubMed]
- Poudyal, D.C.; Dhamu, V.N.; Samson, M.; Muthukumar, S.; Prasad, S. Portable pesticide electrochem-sensor: A label-free detection of glyphosate in human urine. Langmuir 2022, 38, 1781–1790. [Google Scholar] [CrossRef]
- Chen, C.; Zhou, J.; Li, Z.; Xu, Y.; Ran, T.; Gen, J. Wearable electrochemical biosensors for in situ pesticide analysis from crops. J. Electrochem. Soc. 2023, 170, 117512. [Google Scholar] [CrossRef]
- Dhamu, V.N.; Poudyal, D.C.; Muthukumar, S.; Prasad, S. A highly sensitive electrochemical sensor system to detect and distinguis. J. Electrochem. Soc. 2021, 168, 057531. [Google Scholar] [CrossRef]
- Verma, N.; Bhardwaj, A. Biosensor Technology for Pesticides—A review. Appl. Biochem. Biotechnol. 2015, 175, 3093–3119. [Google Scholar] [CrossRef]
- Marrazza, G. Piezoelectric biosensors for organophosphate and carbamate pesticides: A review. Biosensors 2014, 4, 301–317. [Google Scholar] [CrossRef] [PubMed]
- Arduini, F.; Cinti, S.; Caratelli, V.; Amendola, L.; Palleschi, G.; Moscone, D. Origami Multiple Paper-Based Electrochemical Biosensors for Pesticide Detection. Biosens. Bioelectron. 2019, 126, 346–354. [Google Scholar] [CrossRef]
- Pérez-Fernández, B.; Costa-García, A.; Muñiz, A.d.l.E. Electrochemical (Bio)Sensors for Pesticides Detection Using Screen-Printed Electrodes. Biosensors 2020, 10, 32. [Google Scholar] [CrossRef]
- Tran, H.; Yougnia, R.; Reisberg, S.; Piro, B.; Serradji, N.; Nguyen, T.; Tran, L.; Dong, C.; Pham, M. A label-free electrochemical immunosensor for direct, signal-on and sensitive pesticide detection. Biosens. Bioelectron. 2012, 31, 62–68. [Google Scholar] [CrossRef]
- Liu, R.; Guan, G.; Wang, S.; Zhang, Z. Core-shell nanostructured molecular imprinting fluorescent chemosensor for selective detection of atrazine herbicide. Analyst 2011, 136, 184–190. [Google Scholar] [CrossRef] [PubMed]
- Boro, R.C.; Kaushal, J.; Nangia, Y.; Wangoo, N.; Bhasin, A.; Suri, C.R. Gold nanoparticles catalyzed chemiluminescence immunoassay for detection of herbicide 2,4-dichlorophenoxyacetic acid. Analyst 2011, 136, 2125–2130. [Google Scholar] [CrossRef]
- Shakhih, M.F.M.; Rosslan, A.S.; Noor, A.M. Review-enzymatic and non-enzymatic electrochemical sensor for lactate detection in human. Biofluids J. Electrochem. Soc. 2021, 168, 067502. [Google Scholar] [CrossRef]
- Hassan, M.H.; Vyas, C.; Grieve, B. Recent advances in enzymatic and non-enzymatic electrochemical glucose sensing. Sensors 2021, 21, 4672. [Google Scholar] [CrossRef] [PubMed]
- Sanati, A.; Jalali, M.; Raeissi, K. A review on recent advancements in electrochemical biosensing using carbonaceous nanomaterials. Mikrochim. Acta 2019, 186, 773. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Li, H.; Hassan, M.M. Fabricating an acetylcholinesterase modulated UCNPs-Cu2+ fluorescence biosensor for ultrasensitive detection of organophosphorus pesticides-diazinon in food. J. Agric. Food Chem. 2019, 67, 4071–4079. [Google Scholar] [CrossRef]
- Itsoponpan, T.; Thanachayanont, C.; Hasin, P. Sponge-like CuInS2 microspheres on reduced graphene oxide as an electrocatalyst to construct an immobilized acetylcholinesterase electrochemical biosensor for chlorpyrifos detection in vegetables. Sens. Actuators B Chem. 2021, 337, 129775. [Google Scholar] [CrossRef]
- Wang, X.; Lu, X.; Chen, J. Development of Biosensor Technologies for Analysis of Environmental Contaminants. Trends Environ. Anal. Chem. 2014, 2, 25–32. [Google Scholar] [CrossRef]
- Liu, Z.; Xia, X.; Zhou, G.; Ge, L.; Li, F. Acetylcholinesterase-Catalyzed Silver Deposition for Ultrasensitive Electrochemical Biosensing of Organophosphorus Pesticides. Analyst 2020, 145, 2339–2344. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.; Wang, G.; Chu, G.; An, X.; Guo, Y.; Sun, X. The Development of a Novel Biosensor Based on Gold Nanocages/Graphene Oxide-Chitosan Modified Acetylcholinesterase for Organophosphorus Pesticide Detection. New J. Chem. 2019, 43, 13816–13826. [Google Scholar] [CrossRef]
- Aghoutane, Y.; Bari, N.E.; Laghrari, Z. Electrochemical detection of fenthion insecticide in olive oils by a sensitive non-enzymatic biomimetic sensor enhanced with Metal Nanoparticles. Chem. Process. 2021, 5, 64. [Google Scholar]
- Silva, L.M.C.; Melo, A.F.; Salgado, A. Biosensors for environmental applications. In Environmental Biosensors; Somerset, V., Ed.; InTech: London, UK, 2011; ISBN ISBN 978-9-53307-486-3. [Google Scholar]
- Hashemi Goradel, N.; Mirzaei, H.; Sahebkar, A.; Poursadeghiyan, M.; Masoudifar, A.; Malekshahi, Z.V.; Negahdari, B. Biosensors for the Detection of Environmental and Urban Pollutions. J. Cell. Biochem. 2018, 119, 207–212. [Google Scholar] [CrossRef] [PubMed]
- Hondred, J.A.; Breger, J.C.; Alves, N.J.; Trammell, S.A.; Walper, S.A.; Medintz, I.L.; Claussen, J.C. Printed Graphene Electrochemical Biosensors Fabricated by Inkjet Maskless Lithography for Rapid and Sensitive Detection of Organophosphates. ACS Appl. Mater. Interfaces 2018, 10, 11125–11134. [Google Scholar] [CrossRef]
- Borah, H.; Dutta, R.R.; Gogoi, S.; Medhi, T.; Puzari, P. Glutathione-S-Transferase-Catalyzed Reaction of Glutathione for Electrochemical Biosensing of Temephos, Fenobucarb and Dimethoate. Anal. Methods 2017, 9, 4044–4051. [Google Scholar] [CrossRef]
- Borah, H.; Gogoi, S.; Kalita, S.; Puzari, P. A Broad Spectrum Amperometric Pesticide Biosensor Based on Glutathione S-Transferase Immobilized on Graphene Oxide-Gelatin Matrix. J. Electroanal. Chem. 2018, 828, 116–123. [Google Scholar] [CrossRef]
- Prabhakaran, D.C.; Riotte, J.; Sivry, Y.; Subramanian, S. Electroanalytical Detection of Cr(VI) and Cr(III) Ions Using a Novel Microbial Sensor. Electroanalysis 2017, 29, 1222–1231. [Google Scholar] [CrossRef]
- Pabbi, M.; Mittal, S.K. An Electrochemical Algal Biosensor Based on Silica Coated ZnO Quantum Dots for Selective Determination of Acephate. Anal. Methods 2017, 9, 1672–1680. [Google Scholar] [CrossRef]
- Dasriya, V.; Joshi, R.; Ranveer, S.; Dhundale, V.; Kumar, N.; Raghu, H.V. Rapid detection of pesticide in milk, cereal and cereal based food and fruit juices using paper strip-based sensor. Sci. Rep. 2021, 11, 18855. [Google Scholar] [CrossRef] [PubMed]
- Zamora-Sequeira, R.; Starbird-Pérez, R.; Rojas-Carillo, O.; Vargas-Villalobos, S. What are the main sensor methods for quantifying pesticides in agricultural activities? A review. Molecules 2019, 24, 2659. [Google Scholar] [CrossRef] [PubMed]
- Bucur, B.; Purcarea, C.; Andreescu, S.; Vasilescu, A. Addressing the selectivity of enzyme biosensors: Solutions and perspectives. Sensors 2021, 21, 3038. [Google Scholar] [CrossRef]
- NDA. Opinion of the scientific panel on dietetic products, nutrition and allergies (NDA) on a request from the Commission relating to the evaluation of allergenic foods for labelling purposes. EFSA J. 2004, 32, 1–197. [Google Scholar]
- Wang, J.; Sampson, H.A. Treatments for food allergy: How close are we? Immunol. Res. 2012, 54, 83–94. [Google Scholar] [CrossRef]
- Turner, P.J.; Bognanni, A.; Arasi, S.; Ansotegui, I.J.; Schnadt, S.; La Vieille, S.; O’B. Hourihane, J.; Zuberbier, T.; Eigenmann, P.; Ebisawa, M.; et al. Time to ACT-UP: Update on precautionary allergen labelling (PAL). World Allergy Organ. J. 2024, 17, 100972. [Google Scholar] [CrossRef] [PubMed]
- Codex Alimentarius General Standard for Labelling of Pre-Packaged Foods (CODEX STAN 1-1985). 2010, pub WHO/FAO Rome. Available online: https://www.fao.org/fao-who-codexalimentarius/sh-proxy/es/?lnk=1&url=https%253A%252F%252Fworkspace.fao.org%252Fsites%252Fcodex%252FStandards%252FCXS%2B1-1985%252FCXS_001e.pdf (accessed on 20 January 2025).
- European Commission. Commission Notice of 13 July 2017 Relating to the provision of information on substances or products causing allergies or intolerances as listed in Annex II to Regulation (EU) No 1169/2011 of the European Parliament and of the Council on the provision of food information to consumers. Off. J. Eur. Union 2017, 5.C428/01. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52017XC1213(01) (accessed on 20 January 2025).
- FALCPA. Food Allergen Labeling and Consumer Protection Act of 2004 (PublicLaw 108-282, Title II). 21 USC 301. Available online: https://public4.pagefreezer.com/browse/FDA/23-11-2021T07:28/https://www.fda.gov/food/allergens/food-allergen-labeling-and-consumer-protection-act-2004-falcpa (accessed on 20 January 2025).
- US Congress. S.578—FASTER Act of 2021. Available online: https://www.congress.gov/bill/117th-congress/senate-bill/578 (accessed on 20 January 2025).
- FDA Issues Guidances on Food Allergen Labeling Requirements. 2022. Available online: https://www.fda.gov/food/hfp-constituent-updates/fda-issues-guidances-food-allergen-labeling-requirements (accessed on 20 January 2025).
- Food Allergen Labelling, Government of Canada. 13 April 2022. Available online: https://www.canada.ca/en/health-canada/services/food-nutrition/food-labelling/allergen-labelling.html (accessed on 20 January 2025).
- FSANZ Australia New Zealand Food Standards Code Pub Commonwealth of Australia. 2023. Available online: http://www.foodstandards.gov.au/code/Pages/default.aspx (accessed on 20 January 2025).
- Food Sanitation Act (Act No. 233, 24 February 1947). Available online: https://www.cas.go.jp/jp/seisaku/hourei/data/fsa.pdf (accessed on 20 January 2025).
- MFDS Korea Food & Drug Administration: Foods Labeling System Pub Ministry of Food and Drug Safety, Seoul. 2003. Available online: https://www.mfds.go.kr/eng/wpge/m_14/de011005l001.do (accessed on 20 January 2025).
- Tammineedi, C.V.; Choudhary, R. Recent advances in processing for reducing dairy and food allergenicity. Int. J. Food Sci. Nutr. Eng. 2014, 4, 36–42. [Google Scholar]
- Nwaru, B.I.; Hickstein, L.; Panesar, S.S.; Roberts, G.; Muraro, A.; Sheikh, A. Prevalence of common food allergies in Europe: A systematic review and meta-analysis. Allergy 2014, 69, 992–1007. [Google Scholar] [CrossRef] [PubMed]
- Radauer, C.; Bublin, M.; Wagner, S.; Mari, A.; Breiteneder, H. Allergens are distributed into few protein families and possess a restricted number of biochemical functions. J. Allergy Clin. Immunol. 2008, 121, 847–852. [Google Scholar] [CrossRef]
- Hosu, O.; Selvolini, G.; Marrazza, G. Recent advances of immunosensors for detecting food allergens Curr. Opin. Electrochem. 2018, 10, 149–156. [Google Scholar] [CrossRef]
- Boye, J.; Danquah, A.; Lam, C.; Thang Zhao, X. Food Allergens. In Food Biochemistry and Food Processing; John Wiley & Sons, Inc.: Hoboken, NJ, USA; Wiley-Backell: Hoboken, NJ, USA, 2012; pp. 798–819. [Google Scholar]
- Zhang, M.; Wu, P.; Wu, J.; Ping, J.; Wu, J. Advanced DNA-based methods for the detection of peanut allergens in processed food. TrAC Trends Anal. Chem. 2019, 114, 278–292. [Google Scholar] [CrossRef]
- Khanmohammadi, V.; Aghaie, G.; Qazvini, H.; Afkhami, B. Electrochemical biosensors for the detection of lung cancer biomarkers: A review. Talanta 2020, 206, 120251. [Google Scholar] [CrossRef] [PubMed]
- Khedri, R.; Rafatpanah, A. Detection of food-born allergens with aptamer-based biosensors. TRAC Trends Anal. Chem. 2018, 103, 126–136. [Google Scholar] [CrossRef]
- Gupta, B.; Raza, V.; Kim, B. Advances in nanomaterial-based electrochemical biosensors for the detection of microbial toxins, pathogenic bacteria in food matrices. J. Hazard. Mater. 2021, 401, 123379. [Google Scholar] [CrossRef] [PubMed]
- Aydin, A.; Sezginturk, A. Advances in immunosensor technology. Adv. Clin. Chem. 2021, 102, 1–62. [Google Scholar]
- Chinnappan, R.; AlZabn, K.; Lopata, A.-S.; Zourob, A. Aptameric biosensor for the sensitive detection of major shrimp allergen, tropomyosin. Food Chem. 2020, 314, 126133. [Google Scholar] [CrossRef] [PubMed]
- Fang, L.; Jia, S.; Kang, Z. Recent progress in immunosensors for pesticides. Biosens. Bioelectron 2020, 164, 112255. [Google Scholar] [CrossRef] [PubMed]
- Figueroa-Miranda, W.; Zhang, N.; Lo, T.; Elling, O. Mayer Polyethylene glycol-mediated blocking and monolayer morphology of an electrochemical aptasensor for malaria biomarker detection in human serum. Bioelectrochemistry 2020, 136, 107589. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, Y.; Cao, X. Highly sensitive sandwich electrochemical sensor based on DNA-scaffolded bivalent split aptamer signal probe. Sens. Actuators B Chem. 2020, 311, 127920. [Google Scholar] [CrossRef]
- Sundhoro, M.; Agnihotra, S.R.; Amberger, B.; Augustus, K.; Khan, N.D.; Barnes, A.; BelBruno, J.; Mendecki, L. An electrochemical molecularly imprinted polymer sensor for rapid and selective food allergen detection. Food Chem. 2021, 344, 128648. [Google Scholar] [CrossRef]
- Freitas, M.; Neves, M.M.P.S.; Nouws, H.P.A.; Delerue-Matos, C. Electrochemical Immunosensor for the Simultaneous Determination of Two Main Peanut Allergenic Proteins (Ara h 1 and Ara h 6) in Food Matrices. Foods 2021, 10, 1718. [Google Scholar] [CrossRef] [PubMed]
- Freire, F.D.C.O.; da Rocha, M.E. Impact of mycotoxins on human health. Fungal Metab. 2017, 1, 239–261. [Google Scholar] [CrossRef]
- Hussein, H.S.; Brasel, J.M. Toxicity, metabolism, and impact of mycotoxins on humans and animals. Toxicology 2001, 167, 101–134. [Google Scholar] [CrossRef]
- Nabok, A.; Al-Rubaye, A.; Al-Jawdah, A.; Tsargorodska, A.; Marty, J.-L.; Catanante, G.; Szekacs, A.; Takacs, E. Novel optical biosensing technologies for detection of mycotoxins. Opt. Laser Technol. 2019, 109, 212–221. [Google Scholar] [CrossRef]
- Byrne, B.; Stack, E.; Gilmartin, N.; O’Kennedy, R. Antibody-based sensors: Principles, problems and potential for detection of pathogens and associated toxins. Sensors 2009, 9, 4407–4445. [Google Scholar] [CrossRef]
- Krska, R.; Schubert-Ullrich, P.; Molinelli, A.; Sulyok, M.; MacDonald, S.; Crews, C. Mycotoxin analysis: An update. Food Addit. Contam. Part A 2008, 25, 152–163. [Google Scholar] [CrossRef]
- Zhang, L.; Dou, X.W.; Zhang, C.; Logrieco, A.F.; Yang, M.H. A review of current methods for analysis of mycotoxins in herbal medicines. Toxins 2018, 10, 65. [Google Scholar] [CrossRef] [PubMed]
- Yousefi, S.; Saraji, M. Optical aptasensor based on silver nanoparticles for the colorimetric detection of adenosine. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2019, 213, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Dey, D.; Goswami, T. Optical biosensors: A revolution towards quantum nanoscale electronics device fabrication. BioMed Res. Int. 2011, 2011, 348218. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Chen, L.; Zhang, W.; Chou, S.Y. Pattern transfer fidelity of nanoimprint lithography on six-inch wafers. Nanotechnology 2002, 14, 33. [Google Scholar] [CrossRef]
- Turner, D.C.; Chang, C.; Fang, K.; Brandow, S.L.; Murphy, D.B. Selective adhesion of functional microtubules to patterned silane surfaces. Biophys. J. 1995, 69, 2782–2789. [Google Scholar] [CrossRef] [PubMed]
- Damborský, P.; Švitel, J.; Katrlík, J. Optical biosensors. Essays Biochem. 2016, 60, 91–100. [Google Scholar] [PubMed]
- Santos, A.; Vaz, A.; Rodrigues, P.; Veloso, A.; Venâncio, A.; Peres, A. Thin films sensor devices for mycotoxins detection in foods: Applications and challenges. Chemosensors 2019, 7, 3. [Google Scholar] [CrossRef]
- Alahi, M.; Eshrat, E.; Mukhopadhyay, S.C. Detection methodologies for pathogen and toxins: A review. Sensors 2017, 17, 1885. [Google Scholar] [CrossRef] [PubMed]
- Kaminiaris, M.D.; Mavrikou, S.; Georgiadou, M.; Paivana, G.; Tsitsigiannis, D.I.; Kintzios, S. An impedance based electrochemical immunosensor for aflatoxin B1 monitoring in pistachio matrices. Chemosensors 2020, 8, 121. [Google Scholar] [CrossRef]
- Jusoh, N.S.; Awaludin, N.; Salam, F.; Kadir, A.; Said, N. Label-free electrochemical Immunosensor development for mycotoxins detection in grain corn. Malays. J. Anal. Sci. 2022, 26, 1205–1215. [Google Scholar]
- Goryacheva, I.Y.; Saeger, S.D.; Eremin, S.A.; Peteghem, C.V. Immunochemical methods for rapid mycotoxin detection: Evolution from single to multiple analyte screening: A review. Food Addit Contam. 2007, 24, 1169–1183. [Google Scholar] [CrossRef] [PubMed]
- Garden, S.R.; Strachan, N.J. Novel colorimetric immunoassay for the detection of aflatoxin B1. Anal. Chim. Acta 2001, 444, 187–191. [Google Scholar] [CrossRef]
- Puiu, M.; Istrate, O.; Rotariu, L.; Bala, C. Kinetic approach of aflatoxin B1–acetylcholinesterase interaction: A tool for developing surface plasmon resonance biosensors. Anal. Biochem. 2012, 421, 587–594. [Google Scholar] [CrossRef]
- Moscone, D.; Arduini, F.; Amine, A.; Arduini, F.; Amine, A. A rapid enzymatic method for aflatoxin B detection. In Microbial Toxins; Humana Press: Totowa, NJ, USA, 2011; pp. 217–235. [Google Scholar] [CrossRef]
- Stepurska, K.V.; Soldatkin, O.O.; Kucherenko, I.S.; Arkhypova, V.M.; Dzyadevych, S.V.; Soldatkin, A.P. Feasibility of application of conductometric biosensor based on acetylcholinesterase for the inhibitory analysis of toxic compounds of different nature. Anal. Chim. Acta 2015, 854, 161–168. [Google Scholar] [CrossRef] [PubMed]
- Soldatkin, O.O.; Burdak, O.S.; Sergeyeva, T.A.; Arkhypova, V.M.; Dzyadevych, S.V.; Soldatkin, A.P. Acetylcholinesterase-based conductometric biosensor for determination of aflatoxin B1. Sens. Actuators B Chem. 2013, 188, 999–1003. [Google Scholar] [CrossRef]
- Egbunike, G.N.; Ikegwuonu, F.I. Effect of aflatoxicosis on acetylcholinesterase activity in the brain and adenohypophysis of the male rat. Neurosci. Lett. 1984, 52, 171–174. [Google Scholar] [CrossRef] [PubMed]
- Moon, J.; Byun, J.; Kim, H.; Lim, E.-K.; Jeong, J.; Jung, J.; Kang, T. On-site detection of aflatoxin B1 in grains by a palm-sized surface plasmon resonance sensor. Sensors 2018, 18, 598. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Zhao, Y.; Zhang, Z.; Zhang, P.; Li, J.; Yang, R.; Yang, C.; Zho, L. A fiber-optic biosensor for specific identification of dead Escherichia coli O157:H7. Sens. Actuators B Chem. 2014, 196, 161–167. [Google Scholar] [CrossRef]
- Panini, N.V.; Salinas, E.; Messina, G.A.; Raba, J. Modified paramagnetic beads in a microfluidic system for the determination of zearalenone in feedstuffs samples. Food Chem. 2011, 125, 791–796. [Google Scholar] [CrossRef]
- Mirasoli, M.; Buragina, A.; Dolci, L.S.; Simoni, P.; Anfossi, L.; Giraudi, G.; Roda, A. Chemiluminescence-based biosensor for fumonisins quantitative detection in maize samples. Biosens Bioelectron. 2012, 32, 283–287. [Google Scholar] [CrossRef]
- Lu, L.; Gunasekaran, S. Dual-channel ITO-microfluidic electrochemical immunosensor for simultaneous detection of two mycotoxins. Talanta 2019, 194, 709–716. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Huang, Z.; He, Q.; Deng, S.; Li, L.; Li, Y. Development of an immunochromatographic strip test for the rapid detection of deoxynivalenol in wheat and maize. Food Chem. 2010, 119, 834–839. [Google Scholar] [CrossRef]
- Romanazzo, D.; Ricci, F.; Volpe, G.; Elliott, C.T.; Vesco, S.; Kroeger, K.; Moscone, D.; Stroka, J.; Egmond, H.V.; Vehniäinene, M.; et al. Development of a recombinant Fab-fragment based electrochemical immunosensor for deoxynivalenol detection in food samples. Biosens. Bioelectron. 2010, 25, 2615–2621. [Google Scholar] [CrossRef]
- Pennacchio, A.; Ruggiero, G.; Staiano, M.; Piccialli, G.; Oliviero, G.; Lewkowicz, A.; Synak, A.; Bojarski, P.; D’Auria, S. A surface plasmon resonance based biochip for the detection of patulin toxin. Opt. Mater. 2014, 36, 1670–1675. [Google Scholar] [CrossRef]
- Funari, R.; Ventura, B.D.; Carrieri, R.; Morra, L.; Lahoz, E.; Gesuele, F.; Altucci, C.; Velotta, R. Detection of parathion and patulin by quartz-crystal microbalance functionalized by the photonics immobilization technique. Biosens. Bioelectron. 2014, 67, 224–229. [Google Scholar] [CrossRef] [PubMed]
- Ivnitski, D.; Abdel-Hamid, I.; Atanasov, P.; Wilkins, E. Biosensors for detection of pathogenic bacteria. Biosens. Bioelectron 1999, 14, 599–624. [Google Scholar] [CrossRef]
- Banerjee, P.; Bhunia, A.K. Cell-based biosensor for rapid screening of pathogens and toxins. Biosens. Bioelectron. 2010, 26, 99–106. [Google Scholar] [CrossRef] [PubMed]
- Panwar, S.; Duggirala, K.S.; Yadav, P.; Debnath, N.; Yadav, A.K.; Kumar, A. Advanced diagnostic methods for identification of bacterial foodborne pathogens: Contemporary and upcoming challenges. Crit. Rev. Biotechnol. 2023, 43, 982–1000. [Google Scholar] [CrossRef]
- Korsak, D.; Mackiw, E.; Rozynek, E.; Zylowska, M. Prevalence of Campylobacter spp. in retail chicken, turkey, pork, and beef meat in Poland between 2009 and 2013. J. Food Prot. 2015, 78, 1024–1028. [Google Scholar] [CrossRef]
- Torso, L.M.; Voorhees, R.E.; Forest, S.A.; Gordon, A.Z.; Silvestri, S.A.; Kissler, B.; Schlackman, J.; Sandt, C.H.; Toma, P.; Bachert, J.; et al. Escherichia coli O157:H7 outbreak associated with restaurant beef grinding. J. Food Prot. 2015, 78, 1272–1279. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Lin, C.-W.; Wang, J.; Oh, D.H. Advances in rapid detection methods for foodborne pathogens. J. Microbiol. Biotechnol. 2014, 24, 297–312. [Google Scholar] [CrossRef] [PubMed]
- Senturk, E.; Aktop, S.; Sanlibaba, P.; Tezel, B.U. Biosensors: A novel approach to detect food-borne pathogens. Appl. Microbiol. Open Access 2018, 4, 1–8. [Google Scholar] [CrossRef]
- Arora, P.; Sindhu, A.; Dilbaghi, N.; Chaudhury, A. Biosensors as in novative tools for the detection of food borne pathogens. Biosens. Bioelectron. 2011, 28, 1–12. [Google Scholar] [CrossRef]
- Chai, Y.; Horikawa, S.; Li, S.; Wikle, H.C.; Chin, B.A. A surface-scanning coil detector for real-time, in-situ detection of bacteria on fresh food surfaces. Biosens. Bioelectron. 2013, 50, 311–317. [Google Scholar] [CrossRef] [PubMed]
- Pilevar, M.; Kim, K.T.; Lee, W.H. Recent advances in biosensors for detecting viruses in water and wastewater. J. Hazard. Mater. 2021, 410, 124656. [Google Scholar] [CrossRef] [PubMed]
- Cossettini, A.; Vidic, J.; Maifreni, M.; Marino, M.; Pinamonti, D.; Manzano, M. Rapid detection of Listeria monocytogenes, Salmonella, Campylobacter spp., and Escherichia coli in food using biosensors. Food Control 2022, 137, 108962. [Google Scholar] [CrossRef]
- Servarayan, K.L.; Krishnamoorthy, G.; Sundaram, E.; Karuppusamy, M.; Murugan, M.; Piraman, S.; Vasantha, V.S. Optical immunosensor for the detection of Listeria monocytogenes in food matrixes. ACS Omega 2023, 8, 15979–15989. [Google Scholar] [CrossRef]
- Pathirana, S.T.; Barbaree, J.; Chin, B.A.; Hartell, M.G.; Neely, W.C.; Vodyanoy, V. Rapid and sensitive biosensor for Salmonella. Biosens. Bioelectron. 2000, 15, 135–141. [Google Scholar] [CrossRef]
- Gertie, C.A.M.; Bokken, R.J.; Corbee, F.; van Knapen, A.; Bergwerff, A. Immunochemical detection of Salmonella group B, D and E using an optical surface plasmon resonance biosensor. FEMS Microbiol. Lett. 2003, 222, 75–82. [Google Scholar] [CrossRef]
- Ko, S.; Sheila, A.; Grant, A. A novel FRET-based optical fiber biosensor for rapid detection of Salmonella typhimurium. Biosens. Bioelectron. 2006, 21, 1283–1290. [Google Scholar] [CrossRef]
- Liu, J.; Jasim, I.; Shen, Z.; Zhao, L.; Dweik, M.; Zhang, S.; Almasri, M. A microfluidic based bio-sensor for rapid detection of Salmonella in food products. PLoS ONE 2019, 14, e0216873. [Google Scholar]
- Mahari, S.; Roberts, A.; Gandhi, S. Probe-free nanosensor for the detection of Salmonella using gold nanorods as an electroactive modulator. Food Chem. 2022, 390, 133219. [Google Scholar] [CrossRef]
- Eissa, S.; Zourob, M. Ultrasensitive peptide-based multiplexed electrochemical biosensor for the simultaneous detection of Listeria monocytogenes and Staphylococcus aureus. Microchim. Acta 2020, 187, 1. [Google Scholar] [CrossRef]
- Saini, K.; Kaushal, A.; Gupta, S.; Kumar, D. PlcA-based nanofabricated electrochemical DNA biosensor for the detection of Listeria monocytogenes in raw milk samples. 3Biotech 2020, 10, 1. [Google Scholar] [CrossRef]
- Kaushal, S.; Priyadarshi, N.; Pinnaka, A.K.; Soni, S.; Deep, A.; Singhal, N.K. Glycoconjugates coated gold nanorods based novel biosensor for optical detection and photothermal ablation of food borne bacteria. Sens. Actuators B Chem. 2019, 289, 207–215. [Google Scholar] [CrossRef]
- Du, J.; Yu, Z.; Hu, Z.; Chen, J.; Zhao, J.; Bai, Y. A low pH-based rapid and direct colorimetric sensing of bacteria using unmodified gold nanoparticles. J. Microbiol. Methods 2021, 180, 106110. [Google Scholar] [CrossRef]
- Jin, S.; Dai, M.; Ye, B.-c.; Nugen, S.R. Development of a capillary flow microfluidic Escherichia coli biosensor with on-chip reagent delivery using water-soluble nanofibers. Microsyst. Technol. 2013, 19, 2011–2015. [Google Scholar] [CrossRef]
- Zhou, H.; Guo, W.; Hao, T.; Xie, J.; Wu, Y.; Jiang, X.; Hu, Y.; Wang, S.; Guo, Z. Electrochemical sensor for single-cell determination of bacteria based on target-triggered click chemistry and fast scan voltammetry. Food Chem. 2023, 417, 135906. [Google Scholar] [CrossRef]
- Morant-Miñana, M.C.; Elizalde, J. Microscale electrodes integrated on COP for real sample Campylobacter spp. Detection. Biosens. Bioelectron. 2015, 70, 491–497. [Google Scholar] [CrossRef]
- Jiang, D.; Liu, F.; Liu, C.; Liu, L.; Li, Y.; Pu, X. Induction of an electrochemiluminescence sensor for DNA detection of Clostridium perfringens based on rolling circle amplification. Anal. Methods 2014, 6, 1558–1562. [Google Scholar] [CrossRef]
- Ghadeer, A.R.Y.S.; Alhogail, S.; Zourob, M. Rapid and low-cost biosensor for the detection of Staphylococcus aureus. Biosens. Bioelectron. 2017, 90, 230–237. [Google Scholar] [CrossRef]
- Jiang, S.; Hua, E.; Liang, M.; Liu, B.; Xie, G. A novel immunosensor for detecting toxoplasma gondii-specific IgM based on goldmag nanoparticles and graphene sheets. Colloids Surf. B Biointerfaces 2013, 101, 481–486. [Google Scholar] [CrossRef]
- Bacchu, M.S.; Ali, M.R.; Das, S.; Akter, S.; Sakamoto, H.; Suye, S.-I.; Rahman, M.M.; Campbell, K.; Khan, M.Z.H. A DNA functionalized advanced electrochemical biosensor for identification of the foodborne pathogen Salmonella enterica serovar Typhi in real samples. Anal. Chim. Acta 2022, 1192, 339332. [Google Scholar] [CrossRef] [PubMed]
- Angelopoulou, M.; Petrou, P.; Misiakos, K.; Raptis, I.; Kakabakos, S. Simultaneous Detection of Salmonella Typhimurium and Escherichia coli O157:H7 in Drinking Water and Milk with Mach–Zehnder Interferometers Monolithically Integrated on Silicon Chips. Biosensors 2022, 12, 507. [Google Scholar] [CrossRef] [PubMed]
- da Silva, A.D.; Paschoalino, W.J.; Neto, R.C.; Kubota, L.T. Electrochemical Point-Of-Care Devices for Monitoring Waterborne Pathogens: Protozoa, Bacteria, and Viruses—An Overview. Case Stud. Chem. Environ. Eng. 2022, 5, 100182. [Google Scholar] [CrossRef]
- Roy, E.; Maity, S.K.; Patra, S.; Madhuri, R.; Sharma, P.K. A metronidazole-probe sensor based on imprinted biocompatible nanofilm for rapid and sensitive detection of anaerobic protozoan. RSC Adv. 2014, 4, 32881. [Google Scholar] [CrossRef]
- Ilkhani, H.; Zhang, H.; Zhou, A. A novel three-dimensional microTAS chip for ultra-selective single base mismatched Cryptosporidium DNA biosensor. Sens. Actuator. B Chem. 2019, 282, 675–683. [Google Scholar] [CrossRef]
- Manzano, M.; Viezzi, S.; Mazerat, S.; Marks, R.; VIDIC, J. Rapid and label-free electrochemical DNA biosensor for detecting hepatitis A virus. Biosens. Bioelectron. 2018, 100, 89–95. [Google Scholar] [CrossRef]
- Escobar, V.; Scaramozzino, N.; Vidic, J.; Buhot, A.; Mathey, R.; Chaix, C.; Hou, Y. Recent Advances on Peptide-Based Biosensors and Electronic Noses for Foodborne Pathogen Detection. Biosensors 2023, 13, 258. [Google Scholar] [CrossRef]
- Gomes, N.O.; Teixeira, S.C.; Calegaro, M.L.; Machado, S.A.S.; Ferreira Soares, N.F.; de Oliveira, T.V.; Raymundo, P.A. Pereira Flexible and sustainable printed sensor strips for on-site, fast decentralized self-testing of urinary biomarkers integrated with a portable wireless analyzer. Chem. Eng. J. 2023, 472, 144775. [Google Scholar] [CrossRef]
- Sakthivel, K.; Balasubramanian, S.; Chang-Chien, G.-P.; Wang, S.-F.; Ahammad Billey, W.; Platero, J.; Soundappan, T.; Sekhar, P. Editors’ Choice—Review—Advances in Electrochemical Sensors: Improving Food Safety, Quality, and Traceability. ECS Sens. Plus 2024, 3, 020605. [Google Scholar] [CrossRef]
Target Food Contaminate | Biosensor | Reference |
---|---|---|
Heavy metals | ||
Heavy metal—Hg2+; Ag+; Pb2+ | Aptamers | [52,53,54,55]; |
Cadmium | Immunochromatography sensor | [56] |
Enzyme-linked immunosensor | [57,58,59] | |
Heavy metals | Conductometric biosensor | [60] |
Pb2+; Cu2+ | Enzyme biosensor | [61,62] |
Heavy metals | DNAzymes | [59,63] |
Heavy metals | Nucleic acid | [59,63] |
Pesticides | ||
Carbamate | Acetylcholinesterase biosensor | [64,65] |
Organophosphorus | Non-enzymatic electrochemical sensors | [66] |
Pesticide | Enzyme-based biosensor—acetylcholinesterase | [44] |
Pesticide | Molecularly imprinted polymer-based biosensor | [43] |
Allergens | ||
Allergen | Antibody-based biosensor | [45] |
Allergen | Nucleic acid-based biosensor | [46] |
Egg ovalbumin | Electrochemical immunosensor | [67] |
Egg ovalbumin | Surface plasmon resonance biosensor | [68] |
Fungal toxins—Mycotoxins | ||
Patulin | Immunochemical sensor | [69] |
Aflatoxin B | Bio-electrochemical assay | [70] |
Fusarium | Molecularly imprinted polymer-based biosensor | [48] |
Ochratoxin A | Electrochemical immunosensor | [71,72,73] |
Immunosensor with fluorescence | [74] | |
Mycotoxins | Enzyme-based biosensor | [47] |
Bacterial toxins | ||
Botulinum neurotoxin (Clostridium botulinum toxin) | Meta-Nano-Channel (MNC) Field-Effect Transistor (FET) biosensor | [75] |
Botulinum neurotoxin (Clostridium botulinum toxin) | Surface Acoustic Wave Immunosensor | [76] |
Foodborne Pathogens–Bacteria | ||
Campylobacter jejuni | Mechanical Biosensor QCM | [77,78] |
Cronobacter sakazakii | Optical Biosensor Colorimetric | [79,80] |
Cronobacter sakazakii | Optical Biosensor SPR Antibody | [81] |
Cronobacter sakazakii | Electrochemical Biosensor Antibody | [82] |
Escherichia coli O157:H7 | Optical Biosensor Antibody | [83] |
Escherichia coli | Optical Biosensor Antibody | [84] |
Escherichia coli | Optical Biosensor Interferometric | [85] |
Escherichia coli O157:H7 | Electrochemical Biosensor Antibody | [78] |
Escherichia coli | Electrochemical Chemiluminescence (ELC) Biosensors Aptamer-Based ECL Sensors | [86] |
Listeria monocytogenes | Optical Biosensor Chemiluminescence | [87] |
Listeria monocytogenes | Electrochemical Biosensor | [88] |
Listeria monocytogenes | Electrochemical Biosensor Antibody | [89] |
Listeria monocytogenes | Electrochemical Chemiluminescence (ELC) Biosensors Paper-Based Bipolar electrode ECL | [90] |
Mycobacterium tuberculosis | Mechanical Biosensor Multi-Channel Series Piezoelectric Guartz Crystal (MSPQC) | [91,92] |
Pseudomonas | Optical Biosensor Surface Plasmon Resonance (SPR) | [93,94] |
Salmonella | Optical Biosensor Antibody | [95] |
Salmonella enterica subsp. enterica Enteritidis | Optical Biosensor Antibody | [84] |
Salmonella enterica subsp. enterica Typhimurium | Optical Biosensor Aptamer | [96] |
Salmonella enterica subsp. enterica Typhimurium | Optical Biosensor localized Surface Plasmon Resonance (LSPR) | [97] |
Salmonella enterica subsp. enterica Typhimurium | Electrochemical Impedimetric | [98,99] |
Salmonella | Mechanical Biosensor Quartz Crystal Microbalance (QCM) | [100,101] |
Staphylococcus aureus | Electrochemical Potentiometric | [102,103] |
Staphylococcus aureus | Mechanical Biosensor QCM | [104,105] |
Streptococcus agalactiae | Electrochemical Amperometric | [106,107] |
Vibrio parahaemolyticus | Electrochemical Biosensor | [108] |
Vibrio parahaemolyticus | Electrochemical Biosensor | [109] |
Vibrio parahaemolyticus | Electrochemical Biosensor | [110] |
Vibrio parahaemolyticus | Electrochemical Chemiluminescence (ELC) Biosensors ECL Immunosensor | [111] |
Vibrio parahaemolyticus | SERS Biosensor | [112] |
Vibrio vulnificus | Colorimetric Biosensor | [113] |
Foodborne Pathogens–Virus | ||
Norovirus | Electrochemical biosensor | [114] |
Histamine | ||
Histamine | Molecularly imprinted polymer-based biosensor | [48] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Inês, A.; Cosme, F. Biosensors for Detecting Food Contaminants—An Overview. Processes 2025, 13, 380. https://doi.org/10.3390/pr13020380
Inês A, Cosme F. Biosensors for Detecting Food Contaminants—An Overview. Processes. 2025; 13(2):380. https://doi.org/10.3390/pr13020380
Chicago/Turabian StyleInês, António, and Fernanda Cosme. 2025. "Biosensors for Detecting Food Contaminants—An Overview" Processes 13, no. 2: 380. https://doi.org/10.3390/pr13020380
APA StyleInês, A., & Cosme, F. (2025). Biosensors for Detecting Food Contaminants—An Overview. Processes, 13(2), 380. https://doi.org/10.3390/pr13020380