Structure and Selected Properties of Si(C,N) Coatings on Ni-Cr Prosthetic Alloys
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
- The properties of the produced Ti(C,N) coatings are adequate for their intended use as protective coatings for prosthetic and orthodontic elements.
- The adhesion of the produced coatings to the Ni-Cr alloy substrate is insufficient.
- It is necessary to continue further research to assess the biocompatibility and antibacterial properties of silicon nitride coatings on the surface of nickel–chromium alloys used in prosthetics. Assessment of the corrosion degradation and tribology of these coatings is also important.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Slokar, L.; Pranjić, J.; Carek, A. Metallic materials for use in dentistry. Holist. Approach Environ. 2017, 7, 39–58. [Google Scholar]
- Reclaru, L. Corrosion behaviour of cobalt–chromium dental alloys doped with precious metals. Biomaterials 2005, 26, 4358–4365. [Google Scholar]
- Ming, P. Corrosion behavior and cytocompatibility of a Co–Cr and two Ni–Cr dental alloys before and after the pretreatment with a biological saline solution. RSC Adv. 2017, 7, 5843–5852. [Google Scholar]
- Ercetin, A.; Özgün, Ö.; Aslantaş, K.; Der, O.; Yalçın, B.; Şimşir, E.; Aamir, M. Microstructural and Mechanical Behavior Investigations of Nb-Reinforced Mg–Sn–Al–Zn–Mn Matrix Magnesium Composites. Metals 2023, 13, 1097. [Google Scholar] [CrossRef]
- Hou, C.-H.; Ye, Z.-S.; Qi, F.-G.; Wang, Q.; Li, L.-H.; Ouyang, X.-P.; Zhao, N. Effect of Al addition on microstructure and mechanical properties of Mg−Zn−Sn−Mn alloy. Trans. Nonferrous Met. Soc. China 2021, 31, 1951–1968. [Google Scholar] [CrossRef]
- Szymanowski, H.; Sobczyk, A.; Gazicki-Lipman, M.; Jakubowski, W.; Klimek, L. Plasma enhanced CVD deposition of titanium oxide for biomedical applications. Surf. Coat. Technol. 2005, 200, 1036–1040. [Google Scholar]
- Kula, Z.; Semenov, M.; Klimek, L. Carbon Coatings Deposited on Prosthodontic Ni-Cr Alloy. Appl. Sci. 2021, 11, 4551. [Google Scholar] [CrossRef]
- Chouirfa, H.; Bouloussa, H.; Migonney, V.; Falentin-Daudré, C. Review of titanium surface modification techniques and coatings for antibacterial applications. Acta Biomater. 2019, 83, 37–54. [Google Scholar]
- Dong, H.; Liu, H.; Zhou, N.; Li, Q.; Yang, G.; Chen, L.; Mou, Y. Surface modified techniques and emerging functional coating of dental implants. Coatings 2020, 10, 1012. [Google Scholar] [CrossRef]
- Kaloyeros, A.E.; Jove, F.; Goff, J.; Arkles, B. Review—Silicon Nitride and Silicon Nitride-Rich Thin Film Technologies: Trends in Deposition Techniques and Related Applications. ECS J. Solid State Sci. Technol. 2017, 6, 691–714. [Google Scholar]
- Zhang, Y.; Zheng, Y.; Li, Y.; Wang, L.; Bai, Y.; Zhao, Q.; Xiong, X.; Cheng, Y.; Tang, Z.; Deng, Y.; et al. Tantalum Nitride-Decorated Titanium with Enhanced Resistance to Microbiologically Induced Corrosion and Mechanical Property for Dental Application. PLoS ONE 2015, 10, e0130774. [Google Scholar] [CrossRef]
- Narayan, R. Nanostructured diamond like carbon thin films for medical applications. Mater. Sci. Eng. C 2005, 25, 405–416. [Google Scholar]
- Banaszek, K.; Maślanka, M.; Semenov, M.; Klimek, L. Corrosive Studies of a Prosthetic Ni-Cr Alloy Coated with Ti(C,N) Type Layers. Materials 2022, 15, 2471. [Google Scholar] [CrossRef] [PubMed]
- Jamesh, M.I.; Li, P.; Bilek, M.M.; Boxman, R.L.; McKenzie, D.R.; Chu, P.K. Evaluation of corrosion resistance and cytocompatibility of graded metal carbon film on Ti and NiTi prepared by hybrid cathodic arc/glow discharge plasma-assisted chemical vapor deposition. Corros. Sci. 2015, 97, 126–138. [Google Scholar]
- Hsu, S.-M.; Fares, C.; Xia, X.; Rasel, M.A.J.; Ketter, J.; Afonso Camargo, S.E.; Haque, M.A.; Ren, F.; Esquivel-Upshaw, J.F. In Vitro Corrosion of SiC-Coated Anodized Ti Nano-Tubular Surfaces. J. Funct. Biomater. 2021, 12, 52. [Google Scholar] [CrossRef]
- Banaszek, K.; Klimek, L. Ti (C, N) as Barrier Coatings. Coatings 2019, 9, 432. [Google Scholar] [CrossRef]
- Banaszek, K.; Klimek, L.; Dąbrowski, J.R.; Jastrzębski, W. Fretting Wear in Orthodontic and Prosthetic Alloys with Ti(C, N) Coatings. Processes 2019, 7, 874. [Google Scholar] [CrossRef]
- Liang, Y.; Liu, D.; Bai, W.; Tu, J. Investigation of silicon carbon nitride nanocomposite films as a wear resistant layer in vitro and in vivo for joint replacement applications. Colloids Surf. B Biointerfaces 2017, 153, 41–51. [Google Scholar] [PubMed]
- Banaszek, K.; Szymanski, W.; Pietrzyk, B.; Klimek, L. Adhesion of E. coli Bacteria Cells to Prosthodontic Alloys Surfaces Modified by TiO2 Sol-Gel Coatings. Adv. Mater. Sci. Eng. 2013, 2013, 179241. [Google Scholar]
- Knowles, B.R. Zwitterion functionalized silica nanoparticle coatings: The effect of particle size on protein, bacteria, and fungal spore adhesion. Langmuir 2018, 35, 1335–1345. [Google Scholar] [PubMed]
- Akhavan, B. Plasma activated coatings with dual action against fungi and bacteria. Appl. Mater. Today 2018, 12, 72–84. [Google Scholar] [CrossRef]
- Bazaka, K. Plasma-assisted surface modification of organic biopolymers to prevent bacterial attachment. Acta Biomater. 2011, 7, 2015–2028. [Google Scholar] [CrossRef] [PubMed]
- Jedrzejowski, P.; Cizek, J.; Amassian, A.; Klemberg-Sapieha, J.E.; Vlcek, J.; Martinu, L. Mechanical and optical properties of hard SiCN coatings prepared by PECVD. Thin Solid Film. 2004, 447, 201–207. [Google Scholar] [CrossRef]
- Kumar, D.; Das, S.; Swain, B.P.; Guha, S. Unveiling the multifaceted impact of C2H2 flow on SiCN CVD coatings: Mechanical mastery and beyond. Ceram. Int. 2024, 50, 6526–6542. [Google Scholar] [CrossRef]
- Kaloyeros, A.E.; Pan, Y.; Goff, J.; Arkles, B. Silicon nitride and silicon nitride-rich thin film technologies: State-of-the-art processing technologies, properties, and applications. ECS J. Solid State Sci. Technol. 2020, 9, 063006. [Google Scholar] [CrossRef]
- Xia, X.; Chiang, C.-C.; Gopalakrishnan, S.K.; Kulkarni, A.V.; Ren, F.; Ziegler, K.J.; Esquivel-Upshaw, J.F. Properties of SiCN Films Relevant to Dental Implant Applications. Materials 2023, 16, 5318. [Google Scholar] [CrossRef]
- Xie, E.; Ma, Z.; Lin, H.; Zhang, Z.; He, D. Preparation and characterization of SiCN films. Opt. Mater. 2003, 23, 151–156. [Google Scholar] [CrossRef]
- Fares, C.; Hsu, S.; Xian, M.; Xia, X.; Ren, F.; John, J.; Mecholsky, J.J., Jr.; Gonzaga, L.; Esquivel-Upshaw, J. Demonstration of a SiC Protective Coating for Titanium Implants. Materials 2020, 13, 3321. [Google Scholar] [CrossRef] [PubMed]
- Skjöldebrand, C.; Hulsart-Billström, G.; Engqvist, H.; Persson, C. Si–Fe–C–N Coatings for Biomedical Applications: A Combinatorial Approach. Materials 2020, 13, 2074. [Google Scholar] [CrossRef] [PubMed]
- Afonso Camargo, S.E.; Mohiuddeen, A.S.; Fares, C.; Partain, J.L.; Carey, P.H., IV; Ren, F.; Hsu, S.-M.; Clark, A.E.; Esquivel-Upshaw, J.F. Anti-Bacterial Properties and Biocompatibility of Novel SiC Coating for Dental Ceramic. J. Funct. Biomater. 2020, 11, 33. [Google Scholar] [CrossRef] [PubMed]
- Walczak, M.; Drozd, K. Tribological characteristics of dental metal biomaterials. Curr. Issues Pharm. Med. Sci. 2016, 29, 158–162. [Google Scholar] [CrossRef]
- Nine, M.J.; Choudhury, D.; Hee, A.C.; Mootanah, R.; Osman, N.A. A: Wear Debris Characterization and Corresponding Biological Response. Artificial Hip and Knee Joints. Materials 2014, 7, 980. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.-J.; Xiao, S.-L.; Jing, T.; Chen, Y.-Y.; Huang, Y.-D. Microstructure and dry wear properties of Ti-Nb alloys for dental prostheses. Trans. Nonferrous Met. Soc. China 2009, 19, 639. [Google Scholar] [CrossRef]
- Milojević, S.; Savić, S.; Mitrović, S.; Marić, D.; Krstić, B.; Stojanović, B.; Popović, V. Solving the Problem of Friction and Wear in Auxiliary Devices of Internal Combustion Engines on the Example of Reciprocating Air Compressor for Vehicles. Tehnicki vjesnik-Tech. Gazette 2023, 30, 122–130. [Google Scholar] [CrossRef]
- Klimek, L.; Makówka, M.; Sobczyk-Guzenda, A.; Kula, Z. Characteristics of Si (C,N) Silicon Carbonitride Layers on the Surface of Ni–Cr Alloys Used in Dental Prosthetics. Materials 2024, 17, 2450. [Google Scholar] [CrossRef]
- Chiang, C.-C.; Xia, X.; Craciun, V.; Rocha, M.G.; Camargo, S.E.A.; Rocha, F.R.G.; Gopalakrishnan, S.K.; Ziegler, K.J.; Ren, F.; Esquivel-Upshaw, J.F. Enhancing the Hydrophobicity and Antibacterial Properties of SiCN-Coated Surfaces with Quaternization to Address Peri-Implantitis. Materials 2023, 16, 5751. [Google Scholar] [CrossRef] [PubMed]
- Pettersson, M.; Berlind, T.; Schmidt, S.; Jacobson, S.; Hultman, L.; Persson, C.; Engqvist, H. Structure and composition of silicon nitride and silicon carbon nitride coatings for joint replacements. Surf. Coat. Technol. 2013, 235, 827–834. [Google Scholar] [CrossRef]
- Grigoriev, S.; Sotova, C.; Vereschaka, A.; Uglov, V.; Cherenda, N. Modifying Coatings for Medical Implants Made of Titanium Alloys. Metals 2023, 13, 718. [Google Scholar] [CrossRef]
- Li, X.; Bhushan, B. A review of nanoindentation continuous stiffness and its applications. Mater. Charact. 2002, 48, 11–36. [Google Scholar] [CrossRef]
- Anthony, C. Fisher-Cripps. In Nanoindentation, 2nd ed.; Winer, W.O., Bergles, A.E., Eds.; Mechanical Engineering Series; Springer: Killarney Heights, Australia, 2004. [Google Scholar]
Equipment | Company |
---|---|
Planar magnetrons WK100 | Dora POWER SYSTEMS, Wrocław, Poland |
Vacuum chamber of the B-90 deposition apparatus | Hoch-Vacuum, Dresden, Germany |
Gas | Flow Unit | Sample | Time [min] | ||||
---|---|---|---|---|---|---|---|
B | C | D | E | F | |||
N2 | SCCM | 28 | 21 | 14 | 7 | - | 240 |
C2H2 | - | 5 | 10 | 14 | 19 |
Specimen | Element | ||||||
---|---|---|---|---|---|---|---|
Si | N | C | at. C/N | ||||
at. [%] | wt. [%] | at. [%] | wt. [%] | at. [%] | wt. [%] | ||
B | 24.8 | 38.5 | - | - | 75.2 | 61.5 | - |
C | 29.6 | 46.7 | 15.9 | 12.5 | 54.5 | 40.8 | 3.4 |
D | 35.2 | 53.3 | 25.2 | 19.0 | 39.6 | 27.7 | 1.6 |
E | 42.9 | 61.0 | 35.3 | 25.0 | 21.8 | 14.0 | 0.6 |
F | 47.7 | 64.7 | 52.3 | 35.3 | - | - | - |
Specimen | B | C | D | E | F |
---|---|---|---|---|---|
Fk1 | ~2.5 N | ~3.5 N | ~4.0 N | ~4.5 N | ~3 N |
Fk2 | ~2.6 N | ~3.7 N | ~4.5 N | ~7.0 N | ~3.5 N |
Group | |||||
---|---|---|---|---|---|
B | C | D | E | F | |
Average value | 2.24 | 2.59 | 2.32 | 1.95 | 2.23 |
SD | 0.09 | 0.09 | 0.05 | 0.04 | 0.03 |
Type of Coating | Si(C,N) | Ti(C,N) |
---|---|---|
Hardness | 15 GPa | 20 GPa |
Moduli of elasticity | 170 GPa | 270 GPa |
Adhesion strength | 4.5 N | 12.1 N |
Coatings thickness | 2 to 2.5 μm | 2–4 μm |
Application | Fixed and removable dentures Orthodontic arches and brackets | Fixed and removable dentures Orthodontic arches and brackets |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kula, Z.; Dąbrowska, K.; Klimek, L. Structure and Selected Properties of Si(C,N) Coatings on Ni-Cr Prosthetic Alloys. Processes 2025, 13, 624. https://doi.org/10.3390/pr13030624
Kula Z, Dąbrowska K, Klimek L. Structure and Selected Properties of Si(C,N) Coatings on Ni-Cr Prosthetic Alloys. Processes. 2025; 13(3):624. https://doi.org/10.3390/pr13030624
Chicago/Turabian StyleKula, Zofia, Katarzyna Dąbrowska, and Leszek Klimek. 2025. "Structure and Selected Properties of Si(C,N) Coatings on Ni-Cr Prosthetic Alloys" Processes 13, no. 3: 624. https://doi.org/10.3390/pr13030624
APA StyleKula, Z., Dąbrowska, K., & Klimek, L. (2025). Structure and Selected Properties of Si(C,N) Coatings on Ni-Cr Prosthetic Alloys. Processes, 13(3), 624. https://doi.org/10.3390/pr13030624