Effects of Zn-Organic Supplementation on Growth, Body Composition, Carcass Traits, and Meat Quality of Grazing Lambs Fed with Two Levels of Concentrate
Abstract
:1. Introduction
2. Materials and Methods
2.1. Grassland Performance and Chemical Composition of Lolium perenne L.
2.2. Productive Performance
2.3. Voluntary Feed Intake and In Vivo Digestibility
2.4. Carcass Trait Evaluation
2.5. Body Composition of Carcass
2.6. Meat Quality Analysis
2.7. Analysis Meat Fatty Acid Content
2.8. Experimental Design and Statistical Analysis
3. Results and Discussion
3.1. Pasture Performance and Chemical Composition of Lolium perenne L.
3.2. Productive Performance and In Vivo Digestibility
3.3. Treatments Effect on Carcass Trait
3.4. Treatments Effect on Body Composition of Carcass
3.5. Treatments Effect on Meat Quality
3.6. Analysis of Fatty Acid Content in Longissimus dorsi Muscle
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Duffy, R.; Yin, M.; Redding, L.E. A review of the impact of dietary zinc on livestock health. J. Trace Elem. Miner. 2023, 5, 100085. [Google Scholar] [CrossRef]
- Rodríguez-Gaxiola, M.A.; Domínguez-Vara, I.A.; Barajas-Cruz, R.; Mariezcurrema, M.A.; Bórquez-Gastelum, J.L.; Cervantes-Pacheco, B.J. Effects of zilpaterol hydrochloride and zinc methionine on growth performance and carcass characteristics of beef bulls. Can. J. Anim. Sci. 2015, 95, 609–615. [Google Scholar] [CrossRef]
- Spears, J.W.; Kegley, E.B. Effect of zinc source (zinc oxide vs. zinc proteinate) and level on performance, carcass characteristics, and immune response of growing and finishing steers. J. Anim. Sci. 2002, 80, 2747–2752. [Google Scholar]
- Rodríguez-Maya, M.A.; Domínguez-Vara, I.A.; Trujillo-Gutiérrez, D.; Morales-Almaráz, E.; Sánchez-Torres, J.E.; Bórquez-Gastelum, J.L.; Acosta-Dibarrat, J.; Grageola-Nuñez, F.; Rodríguez-Carpena, J.G. Growth performance parameters, carcass traits and meat quality of lambs supplemented with zinc methionine or/and zinc oxide in feedlot system. Can. J. Anim. Sci. 2019, 99, 585–595. [Google Scholar] [CrossRef]
- Nagandla, H.; Lopez, S.; Yu, W.; Rasmussen, T.L.; Tucker, H.O.; Schwartz, R.J.; Stewart, M.D. Defective myogenesis in the absence of the muscle-specific lysine methyltransferase SMYD1. Dev. Biol. 2016, 410, 86–97. [Google Scholar] [CrossRef]
- Meruvu, S.; Hugendubler, L.; Mueller, E. Regulation of adipocyte differentiation by the zinc finger protein ZNF638. J. Biol. Chem. 2011, 286, 26516–26523. [Google Scholar] [CrossRef]
- Guerrero-Bárcena, M.; Domínguez-Vara, I.A.; Morales-Almaraz, E.; Sánchez-Torres, J.E.; Bórquez-Gastelum, J.L.; Hernández-Ramírez, D.; Trujillo-Gutiérrez, D.; Rodríguez-Gaxiola, M.A.; Pinos-Rodríguez, J.M.; Velázquez-Garduño, G.; et al. Effect of zilpaterol hydrochloride and zinc methionine on growth, carcass traits, meat quality, fatty acid profile and gene expression in Longissimus dorsi muscle of sheep in intensive fattening. Agriculture 2023, 13, 684. [Google Scholar] [CrossRef]
- Nuemberg, K.; Fischer, A.; Nuernberg, G.; Ender, K.; Dannenberger, D. Meat quality and fatty acid composition of lipids in muscle and fatty tissue of Skudde lambs fed grass versus concentrate. Small Rumin. Res. 2008, 74, 279–283. [Google Scholar] [CrossRef]
- Rioux, V.; Legrand, P. Saturated fatty acids: Simple molecular structures with complex cellular functions. Curr. Opin. Clin. Nutr. Metab. Care 2007, 10, 752–758. [Google Scholar] [CrossRef]
- Chaturvedi, O.H.; Bhatta, R.; Santra, A.; Mishra, A.S.; Mann, J.S. Effect of supplementary feeding of concentrate on nutrient utilization and production performance of ewes grazing on community rangeland during late gestation and early lactation. Asian-Australas. J. Anim. 2003, 16, 983–987. [Google Scholar] [CrossRef]
- De Brito, G.F.; McGrath, S.R.; Holman, B.W.B.; Friend, M.A.; Fowler, S.M.; van de Ven, R.J.; Hopkins, D.L. The effect of forage type on lamb carcass traits, meat quality and sensory traits. Meat Sci. 2016, 119, 95–101. [Google Scholar] [CrossRef] [PubMed]
- Boughalmi, A.; Araba, A. Effect of feeding management from grass to concentrate feed on growth, carcass characteristics, meat quality and fatty acid profile of Timahdite lamb breed. Small Rumin. Res. 2016, 144, 158–163. [Google Scholar] [CrossRef]
- Ke, T.; Zhao, M.; Zhang, X.; Cheng, Y.; Sun, Y.; Wang, P.; Ren, C.; Cheng, X.; Huang, Y. Review of feeding systems affecting production, carcass attributes, and meat quality of ovine and caprine species. Life 2023, 13, 1215. [Google Scholar] [CrossRef]
- Stanišić, N.; Ružić-Muslić, D.; Maksimović, N.; Cekić, B.; Caro-Petrović, V.; Ćosić, I.; Lazarević, M. Assessing the impact of sustainable pasture systems on lamb meat quality. Processes 2024, 12, 1532. [Google Scholar] [CrossRef]
- Claffey, N.A.; Fahey, A.G.; Gkarane, V.; Moloney, A.P.; Monahan, F.J.; Diskin, M.G. Effect of forage to concentrate ratio and duration of feeding on growth and feed conversion efficiency of male lambs. Transl. Anim. Sci. 2018, 2, 419–427. [Google Scholar] [CrossRef]
- Huang, Y.; Liu, L.; Zhao, M.; Zhang, X.; Chen, J.; Zhang, Z.; Cheng, X.; Ren, C. Feeding regimens affecting carcass and quality attributes of sheep and goat meat—A comprehensive review. Anim. Biosci. 2023, 36, 1314. [Google Scholar] [CrossRef]
- NASEM (National Academies of Sciences, Engineering, and Medicine). Nutrient Requirements of Dairy Cattle: Eighth Revised Edition; The National Academies Press: Washington, DC, USA, 2021. [Google Scholar]
- McClearn, B.; Delaby, L.; Gilliland, T.J.; Guy, C.; Dineen, M.; Coughlan, F.; Galvin, N.; McCarthy, B. The effect of Lolium perenne L. ploidy and Trifolium repens L. inclusion on dry matter intake and production efficiencies of spring-calving grazing dairy cows. J. Dairy Sci. 2021, 104, 6688–6700. [Google Scholar] [CrossRef] [PubMed]
- Castro-Hernández, H.; Domínguez-Vara, I.A.; Morales-Almaráz, E.; Huerta-Bravo, M. Composición química, contenido mineral y digestibilidad in vitro de raigrás (Lolium perenne) según intervalo de corte y época de crecimiento. Rev. Mex. Cienc. Pecu. 2017, 8, 201–210. [Google Scholar]
- Beechey-Gradwell, Z.; Kadam, S.; Bryan, G.; Cooney, L.; Nelson, K.; Richardson, K.; Cookson, R.; Winichayakul, S.; Reid, M.; Anderson, P.; et al. Lolium perenne engineered for elevated leaf lipids exhibits greater energy density in field canopies under defoliation. Field Crops Res. 2022, 275, 108340. [Google Scholar] [CrossRef]
- Buccioni, A.; Decandia, M.; Minieri, S.; Molle, G.; Cabiddu, A. Lipid metabolism in the rumen: New insights on lipolysis and biohydrogenation with an emphasis on the role of endogenous plant factors. Anim. Feed Sci. Technol. 2012, 174, 1–25. [Google Scholar] [CrossRef]
- Wang, J.S.; Xu, Z.Z.; Zhang, H.B.; Wang, Y.Y.; Liu, X.X.; Wang, Q.; Xue, J.L.; Zhao, Y.; Yang, S.M. Meat differentiation between pasture-fed and concentrate-fed sheep/goats by liquid chromatography quadrupole time-of-flight mass spectrometry combined with metabolomic and lipidomic profiling. Meat Sci. 2021, 173, 108374. [Google Scholar] [CrossRef] [PubMed]
- AOAC. Official Methods of Analysis, 16th ed.; Association of Official Analytical Chemists: Arlington, VA, USA, 1997; 771p. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef] [PubMed]
- Fenton, T.W.; Fenton, M. An improved procedure for the determination of chromic oxide in feed and feces. Can. J. Anim. Sci. 1979, 59, 631–634. [Google Scholar] [CrossRef]
- Menke, K.H.; Steingass, H. Estimation of the energetic fed value obtained from chemical analysis and in vitro gas production using rumen fluid. Anim. Res. Dev. 1998, 28, 7–12. [Google Scholar]
- Theodorou, M.K.; Williams, B.A.; Dhanoa, M.S.; McAllan, A.B.; France, J. A simple gas production method using a pressure transducer to determine the fermentation kinetics of ruminant feeds. Anim. Feed Sci. Technol. 1994, 48, 185–197. [Google Scholar] [CrossRef]
- European Community. Commission Regulation (CE) no 1249/2008 of 10 December 2008 Laying Down Detailed Rules on the Implementation of the Community Scales for the Classification of Beef, Pig and Sheep Carcasses and the Reporting of Prices Thereof. Official Journal of the European Union. L 337/3. Available online: http://eur-lex.europa.eu/legal-content/EN/TXT/?qid=1473400865387&uri=CELEX:32008R1249 (accessed on 20 January 2025).
- Riquelme, V.E. Efectos asociativos en dietas basadas en subproductos agrícolas. Rev. Mex. Prod. Anim. 1984, 16, 13–18. [Google Scholar]
- Meyer, J.H.; Clawson, W.J. Undernutrition and subsequent realimentation in rats and sheep. J. Anim. Sci. 1964, 23, 214–224. [Google Scholar] [CrossRef]
- Castellanos, R.A. Técnicas para estimar la composición corporal. In Manual de Técnicas de Investigación en Rumiología, 1st ed.; Castellanos Ruelas, A., Lamas, G.L., Shimada, A.S., Eds.; Ed. Sistemas de Educación Continua en Producción Animal. A.C. México, D.F. 1990; pp. 257–267.
- Santos-Silva, J.; Bessa, R.J.B.; Santos-Silva, F. Effect of genotype, feeding system and slaughter weight on the quality of light lambs II. Fatty acid composition of meat. Livest. Prod. Sci. 2002, 77, 187–194. [Google Scholar] [CrossRef]
- Özcan, M.; Demirel, G.; Yakan, A.; Ekiz, B.; Tölü, C.; Savas, T. Genotype, production system and sex effects on fatty acid composition of meat from goat kids. Anim. Sci. J. 2015, 86, 200–206. [Google Scholar] [CrossRef]
- SAS Institute Inc. SAS/STAT® 9.1 User’s Guide; SAS Institute Inc.: Cary, NC, USA, 2004. [Google Scholar]
- Posada, O.S.; Cerón, J.M.; Arenas, J.; Hamedt, J.F.; Álvarez, A. Evaluación del establecimiento de ryegrass (Lolium sp.) en potreros de kikuyo (Pennisetum clandestinum) usando la metodología de cero labranzas. Rev. CES Med. Zootec. 2013, 8, 23–32. [Google Scholar]
- McDonald, R.S. The role of zinc in growth and cell proliferation. J. Nutr. 2000, 130, 1500S–1508S. [Google Scholar] [CrossRef] [PubMed]
- Turgut, S.; Kaptanoğlu, B.; Turgut, G.; Emmungil, G.; Genc, O. Effects of cadmium and zinc on plasma levels of growth hormone, insulin-like growth factor I, and insulin-like growth factor-binding protein 3. Biol. Trace Elem. Res. 2005, 108, 197–204. [Google Scholar] [CrossRef]
- Zhang, X.Q.; Luo, H.L.; Hou, X.Y.; Badgery, W.B.; Zhang, Y.J.; Jiang, C. Effect of restricted time at pasture and indoor supplementation on ingestive behaviour, dry matter intake and weight gain of growing lambs. Livest. Sci. 2014, 167, 137–143. [Google Scholar] [CrossRef]
- Fraser, M.D.; Speijers, M.H.M.; Theobald, V.J.; Fychan, R.; Jones, R. Production performance and meat quality of grazing lambs finished on red clover, lucerne or perennial ryegrass swards. Plant Anim. Microb. Sci. 2004, 59, 345–356. [Google Scholar] [CrossRef]
- Ishaq, S.L.; Page, C.M.; Yeoman, C.J.; Murphy, T.W.; Van Emon, M.L.; Stewart, W.C. Zinc AA supplementation alters yearling ram rumen bacterial communities but zinc sulfate supplementation does not. J. Anim. Sci. 2019, 97, 687–697. [Google Scholar] [CrossRef]
- Froetschel, M.A.; Martin, A.C.; Amos, H.E.; Evans, J.J. Effects of zinc sulfate concentration and feeding frequency on ruminal protozoal numbers, fermentation patterns and amino acid passage in steers. J. Anim. Sci. 1990, 68, 2874–2884. [Google Scholar] [CrossRef]
- Eryavuz, A.; Dehority, B.A. Effects of supplemental zinc concentration on cellulose digestion and cellulolytic and total bacterial numbers in vitro. Anim. Feed Sci. Technol. 2009, 151, 175–183. [Google Scholar] [CrossRef]
- Shabat, S.K.; Sasson, G.; Doron-Faigenboim, A.; Durman, T.; Yaacoby, S.; Berg-Miller, M.E.; White, B.A.; Shterzer, N.; Mizrahi, I. Specific microbiome-dependent mechanisms underlie the energy harvest efficiency of ruminants. ISME J. 2016, 10, 2958–2972. [Google Scholar] [CrossRef]
- Hilal, E.Y.; Elkhairey, M.A.E.; Osman, A.O.A. The role of zinc, manganese, and copper in rumen metabolism and immune function: A review article. Open J. Anim. Sci. 2016, 6, 304–324. [Google Scholar] [CrossRef]
- Spears, J.W.; Schlegel, P.; Seal, M.C.; Lloyd, K.E. Bioavailability of zinc from zinc sulfate and different organic zinc sources and their effects on ruminal volatile fatty acid proportions. Livest. Prod. Sci. 2004, 90, 211–217. [Google Scholar] [CrossRef]
- Pei, X.; Xiao, Z.; Liu, L.; Wang, G.; Tao, W.; Wang, M.; Zou, J.; Leng, D. Effects of dietary zinc oxide nanoparticles supplementation on growth performance, zinc status, intestinal morphology, microflora population, and immune response in weaned pigs. J. Sci. Food Agric. 2019, 99, 1366–1374. [Google Scholar] [CrossRef] [PubMed]
- Kuźnicka, E. The effect of forced walking on slaughter value and meat quality of lambs. IJFAR 2006, 1, 162–164. [Google Scholar]
- Popova, T.; Gonzales-Barron, U.; Cadavez, V. A meta-analysis of the effect of pasture access on the lipid content and fatty acid composition of lamb meat. Food Res. Int. 2015, 77, 476–483. [Google Scholar] [CrossRef]
- Gabryszuk, M.; Kuźnicka, E.; Horbańczuk, K.; Oprządek, J. Effects of housing systems and the diet supplements on the slaughter value and concentration of mineral elements in the loin muscle of lambs. Asian-Australas. J. Anim. Sci. 2014, 27, 726–732. [Google Scholar] [CrossRef]
- McDowell, L.R. Minerals in Animal and Human Nutrition; Academic Press, Inc.: San Diego, CA, USA, 1992. [Google Scholar]
- Brugger, D.; Windisch, W.M. Zn metabolism of monogastric species and consequences for the definition of feeding requirements and the estimation of feed Zn bioavailability. J. Zhejiang Univ. Sci. B 2019, 20, 617–627. [Google Scholar] [CrossRef]
- Pace, N.J.; Weerapana, E. Zinc-binding cysteines: Diverse functions and structural motifs. Biomolecules 2014, 4, 419–434. [Google Scholar] [CrossRef]
- Andreini, C.; Banci, L.; Bertini, I.; Rosato, A. Counting the zinc-proteins encoded in the human genome. J. Proteome Res. 2006, 5, 196–201. [Google Scholar] [CrossRef]
- King, J.C.; Brown, K.H.; Gibson, R.S.; Krebs, N.N.; Lowe, N.M.; Stekmann, J.H.; Raiten, D.J. Biomarkers of nutrition for development (BOND)-Zinc review. J. Nutr. 2016, 146, 858S–885S. [Google Scholar] [CrossRef] [PubMed]
- Suttle, N.F. Mineral Nutrition of Livestock, 5th ed.; Cabi: Boston, MA, USA, 2022; 610p. [Google Scholar]
- Taylor, K.M.; Hiscox, S.; Nicholson, R.I.; Hogstrand, C.; Kille, P. Protein kinase CK2 triggers cytosolic zinc signaling pathways by phosphorylation of zinc channel ZIP7. Sci. Signal. 2012, 5, ra11. [Google Scholar] [CrossRef]
- Chen, B.; Yu, P.; Chan, W.N.; Xie, F.; Zhang, Y.; Liang, L.; Tong, L.K.; Wai, L.K.; Yu, J.; Tse, G.M.K.; et al. Cellular zinc metabolism and zinc signaling from biological functions to diseases and therapeutic targets. Signal Transduct. Target. Ther. 2024, 9, 6. [Google Scholar]
- Nimmanon, T.; Ziliotto, S.; Morris, S.; Flanagan, L.; Taylor, K.M. Phosphorylation of zinc channel ZIP7 drives MAPK, PI3K and mTOR growth and proliferation signalling. Metallomics 2017, 24, 471–481. [Google Scholar] [CrossRef] [PubMed]
- Mapley, J.I.; Wagner, P.; Officer, D.L.; Gordon, K.C. Computational and spectroscopic analysis of beta-indandione modified zinc porphyrins. J. Phys. Chem. A 2018, 122, 4448–4456. [Google Scholar] [CrossRef]
- Wu, G. Principles of Animal Nutrition; CRC Press: Boca Raton, FL, USA, 2018; 801p. [Google Scholar]
- Balaz, M.; Vician, M.; Janakova, Z.; Kurdiova, T.; Surova, M.; Imrich, R.; Majercikova, Z.; Penesova, A.; Vlcek, M.; Kiss, A.; et al. Subcutaneous adipose tissue zinc-α2-glycoprotein is associated with adipose tissue and whole-body insulin sensitivity. Obesity 2014, 22, 1821–1829. [Google Scholar] [CrossRef]
- Mortimer, S.I.; van der Werf, J.H.J.; Jacob, R.H.; Hopkins, D.L.; Pannier, L.; Pearce, K.L.; Gardner, G.E.; Warner, R.D.; Geesink, G.H.; Hocking, E.J.E.; et al. Genetic parameters for meat quality traits of Australian lamb meat. Meat Sci. 2013, 96, 1016–1024. [Google Scholar] [CrossRef] [PubMed]
- Essén-Gustavsson, B.; Karlsson, A.; Lundström, K.; Enfält, A.C. Intramuscular fat and muscle fibre lipid contents in halothane-gene-free pigs fed high or low protein diets and its relation to meat quality. Meat Sci. 1994, 38, 269–277. [Google Scholar] [CrossRef] [PubMed]
- Prache, S.; Schreurs, N.; Guillier, L. Review: Factors affecting sheep carcass and meat quality attributes. Animal 2022, 16, 100330. [Google Scholar] [CrossRef] [PubMed]
- Thériez, M.; Aurousseau, B.; Prache, S.; Mendizabal, J. Les défauts de couleur des gras d’ıagneaux. In Proceedings of the 4th Meeting “Rencontres Autour des Recherches sur les Ruminants”, Paris, France, 4–5 December 1997; Institut National de la Recherche Agronomique (France): Paris, France, 1997; Volume 4, pp. 295–301. [Google Scholar]
- Priolo, A.; Micol, D.; Agabriel, J.; Prache, S.; Dransfield, E. Effect of grass or concentrate feeding systems on lamb carcass and meat quality. Meat Sci. 2002, 62, 179–185. [Google Scholar] [CrossRef]
- Karaca, S.; Yılmaz, A.; Kor, A.; Bingöl, M.; Cavidoğlu, İ.; Ser, G. The effect of feeding system on slaughter-carcass characteristics, meat quality, and fatty acid composition of lambs. Arch. Anim. Breed. 2016, 59, 121–129. [Google Scholar] [CrossRef]
- Wang, Z.; Chen, Y.; Luo, H.; Liu, X.; Liu, K. Influence of restricted grazing time systems on productive performance and fatty acid composition of Longissimus dorsi in growing lambs. Asian-Australas. J. Anim. Sci. 2015, 28, 1105. [Google Scholar] [CrossRef]
- Pannier, L.; Pethick, D.W.; Boyce, M.D.; Ball, A.J.; Jacob, R.H.; Gardner, G.E. Associations of genetic and nongenetic factors with concentrations of iron and zinc in the longissimus muscle of lamb. Meat Sci. 2014, 96, 1111–1119. [Google Scholar] [CrossRef]
- Joy, M.; Álvarez-Rodríguez, J.; Revilla, R.; Delfa, R.; Ripoll, G. Ewe metabolic performance and lambs carcass traits in pasture and concentrate-base production systems in Churra Tensina breed. Small Rumin. Res. 2008, 75, 24–35. [Google Scholar] [CrossRef]
- Khliji, S.; Van de Ven, R.; Lamb, T.A.; Lanza, M.; Hopkins, D.L. Relationship between consumer ranking of lamb colour and objective measures of colour. Meat Sci. 2010, 85, 224–229. [Google Scholar] [CrossRef] [PubMed]
- Calnan, H.; Jacob, R.H.; Pethick, D.W.; Gardner, G.E. Production factors influence fresh lamb longissimus colour more than muscle traits such as myoglobin concentration and pH. Meat Sci. 2016, 119, 41–50. [Google Scholar] [CrossRef] [PubMed]
- Powell, S. The antioxidant properties of zinc. J. Nutr. 2000, 130, 1447S–1454S. [Google Scholar] [CrossRef]
- Mozaffarian, D.; Wu, J.H. Omega-3 fatty acids and cardiovascular disease: Effects on risk factors, molecular pathways, and clinical events. J. Am. Coll. Cardiol. 2011, 58, 2047–2067. [Google Scholar] [CrossRef]
- Sanhueza, C.J.; Durán, A.S.; Torres, G.J. Los ácidos grasos dietarios y su relación con la salud. Nutr. Hosp. 2015, 32, 1362–1375. [Google Scholar]
- Wood, J.D.; Richardson, R.I.; Nute, G.R.; Fisher, A.V.; Campo, M.M.; Kasapidou, E.; Sheard, P.R.; Enser, M. Effects of fatty acids on meat quality: A review. Meat Sci. 2004, 66, 21–32. [Google Scholar] [CrossRef]
- Wang, B.; Wang, Z.; Chen, Y.; Liu, X.; Liu, K.; Zhang, Y.; Luo, H. Carcass traits, meat quality, and volatile compounds of lamb meat from different restricted grazing time and indoor supplementary feeding systems. Foods 2021, 10, 2822. [Google Scholar] [CrossRef]
Chemical Content g kg−1 DM | Sampling Month (2018–2019) | Mean | SD | |||||||
---|---|---|---|---|---|---|---|---|---|---|
July | August | September | October | November | December | January | ||||
Dry matter | 145.2 | 155.4 | 163.0 | 144.2 | 152.9 | 152.6 | 165.5 | 154.1 | 8.07 | |
Organic matter | 870.3 | 884.2 | 900.8 | 853.8 | 861.4 | 872.4 | 880.1 | 874.7 | 15.4 | |
Crude protein | 162.7 | 167.9 | 166.8 | 164.3 | 150.5 | 132.4 | 174.9 | 159.9 | 14.2 | |
Ash | 129.6 | 135.8 | 139.1 | 146.1 | 138.5 | 127.6 | 119.9 | 133.8 | 8.7 | |
Neutral detergent fiber | 521.6 | 512.3 | 539.3 | 482.8 | 525.5 | 490.0 | 458.7 | 504.3 | 28.2 | |
Acid detergent fiber | 267.8 | 268.1 | 273.6 | 251.7 | 260.0 | 229.6 | 220.3 | 253.0 | 20.5 | |
Forage production, kg DM ha−1 | 827.3 | 790.4 | 772.3 | 754.2 | 736.1 | 718.0 | 681.1 | 754.2 | 48.2 | |
Lipid Content, g 100 g−1 of Fatty Acid | ||||||||||
Lipid | Forage | Conc. | Lipid | Forage | Conc. | Lipid | Forage | Conc. | ||
Lauric, C12:0 | 0.40 | 0.39 | Myristoleic, C14:1 | 0.04 | 0.00 | Others | 6.33 | 2.37 | ||
Myristic, C14:0 | 0.56 | 0.28 | Palmitoleic, C16:1 | 0.40 | 0.28 | SFA | 28.2 | 29.2 | ||
Palmitic, C16:0 | 26.1 | 22.2 | Oleic, C18:1n9 | 2.51 | 34.2 | MFA | 2.95 | 34.5 | ||
Heptadecanoic, C17:0 | 0.09 | 0.02 | Linoleic, C18:2 | 15.8 | 33.1 | PFA | 62.3 | 33.9 | ||
Esteraric, C18:0 | 0.49 | 5.9 | Linolenic, C18:3 | 46.4 | 0.83 | UFA | 65.2 | 68.4 | ||
Behenic, C22:0 | 0.52 | 0.4 | Araquidonic, C20:4 | 0.19 | 0.00 |
Variable | Zn-0 ppm | Zn-80 ppm | SEM 1 | Pr< | ||||
---|---|---|---|---|---|---|---|---|
C-0.75% | C-1.5% | C-0.75% | C-1.5% | C | Zn | C × Zn | ||
Initial live weight (ILW), kg | 26.2 | 25.8 | 26.3 | 26.0 | 1.10 | - | - | - |
Final live weight (FLW), kg | 42.7 ab | 42.3 b | 42.3 b | 43.9 a | 0.94 | 0.54 | 0.82 | 0.05 |
Total weight gain (TWG), kg | 16.5 b | 16.5 b | 16.0 b | 17.8 a | 0.91 | 0.40 | 0.42 | 0.05 |
Daily weight gain (DWG), g d−1 T, P | 229.1 | 230.2 | 222.6 | 234.4 | 1.16 | 0.96 | 0.17 | 0.13 |
Total DMI, kg T, P, T × P, | 1481.0 a | 1545.4 a | 1224.9 b | 1530.2 a | 51.1 | 0.01 | 0.03 | 0.03 |
Concentrate DMI, kg T, P, T × P | 325.4 b | 576.0 a | 328.2 b | 633.7 a | 18.0 | 0.01 | 0.11 | 0.14 |
Forage DMI, kg T, P, T × P | 1155.6 a | 969.4 b | 896.7 b | 896.5 b | 34.8 | 0.01 | 0.01 | 0.01 |
Feed conversion (FC) P | 6.46 ab | 6.71 a | 5.50 b | 6.52 ab | 0.38 | 0.05 | 0.01 | 0.69 |
Feed efficiency (FE, %) P | 15.4 ab | 14.9 b | 18.1 a | 15.3 ab | 0.86 | 0.05 | 0.03 | 0.87 |
Dry matter digestibility, g kg−1 | 690.0 | 705.0 | 685.0 | 715.0 | 35.0 | 0.86 | 0.27 | 0.63 |
Zn-0 ppm | Zn-80 ppm | Pr< | ||||||
---|---|---|---|---|---|---|---|---|
Variable | C-0.75% | C-1.5% | C-0.75% | C-1.5% | SEM 1 | C | Zn | C × Zn |
Live weight at slaughter (LWS), kg | 42.5 a | 41.2 b | 42.0 b | 43.1 a | 0.94 | 0.54 | 0.82 | 0.05 |
Cold carcass weight (CCW), kg | 18.9 | 18.7 | 19.4 | 20.4 | 0.47 | 0.04 | 0.50 | 0.25 |
Carcass yield (CY) 2, % | 44.5 | 45.3 | 46.2 | 47.3 | 0.91 | 0.01 | 0.81 | 0.58 |
Final pH24 h | 6.23 | 6.27 | 6.29 | 6.30 | 0.03 | 0.26 | 0.55 | 0.73 |
Back fat 12th rib (BF), mm | 5.00 | 4.71 | 5.78 | 4.21 | 0.55 | 0.84 | 0.19 | 0.36 |
Intact carcass length (ICL), cm | 68.4 | 69.0 | 68.4 | 69.3 | 1.04 | 0.91 | 0.56 | 0.86 |
Compactness index 3 | 0.27 | 0.28 | 0.27 | 0.29 | 0.01 | 0.04 | 0.80 | 0.26 |
Leg length (LL), cm | 36.0 a | 35.4 a | 33.6 b | 36.0 a | 0.50 | 0.21 | 0.25 | 0.04 |
Leg perimeter (LP), cm | 40.9 | 40.9 | 41.3 | 42.0 | 0.83 | 0.39 | 0.70 | 0.71 |
Rump perimeter (RP), cm | 63.4 | 63.3 | 64.5 | 64.9 | 0.38 | 0.02 | 0.72 | 0.65 |
Rump width (RW), cm | 22.2 | 21.9 | 22.6 | 23.7 | 0.40 | 0.02 | 0.43 | 0.16 |
Sig. χ2 | ||||||||
Muscle conformation (ConfM) †,4 | 4.71 (5.27) | 4.28 (4.54) | 3.85 (2.09) | 3.85 (2.09) | 0.14 | - | - | - |
Fattening degree (FD) †,5 | 1.85 (1.69) | 2.14 (2.92) | 2.71 (3.92) | 3.00 (5.46) | 0.08 | - | - | - |
Internal fat kidney (IFK) †,6 | 1.14 (1.40) | 1.28 (2.33) | 1.71 (4.20) | 2.00 (6.06) | 0.03 | - | - | - |
Variable | Zn-0 ppm | Zn-80 ppm | SEM 1 | Pr< | ||||
---|---|---|---|---|---|---|---|---|
C-0.75% | C-1.5% | C-0.75% | C-1.5% | C | Zn | C × Zn | ||
Empty body weight (EBW), kg | 33.4 ab | 34.0 ab | 32.7 b | 35.7 a | 0.64 | 0.01 | 0.45 | 0.05 |
Specific gravity (EspG) | 1.06 ab | 1.06 a | 1.05 b | 1.04 c | 0.01 | 0.05 | 0.01 | 0.05 |
Fat in carcass (FatC%), % | 17.7 b | 18.1 b | 18.9 b | 22.4 a | 0.62 | 0.01 | 0.01 | 0.02 |
Fat in carcass (FatC), kg | 5.92 b | 6.30 b | 6.19 b | 7.98 a | 0.32 | 0.01 | 0.01 | 0.04 |
Fat free carcass (FFC), % | 82.2 a | 81.0 a | 81.8 a | 77.5 b | 0.62 | 0.01 | 0.01 | 0.03 |
Protein in carcass (ProtC), % | 16.2 a | 16.0 a | 16.2 a | 15.3 b | 0.12 | 0.01 | 0.01 | 0.03 |
Protein in carcass (ProtC), kg | 5.44 | 5.29 | 5.52 | 5.43 | 0.08 | 0.24 | 0.20 | 0.78 |
Fat in empty body (FEB), % | 14.1 b | 15.2 b | 14.4 b | 18.3 a | 0.55 | 0.01 | 0.01 | 0.03 |
Fat free empty body (FFEB), % | 85.8 a | 84.7 a | 85.5 a | 81.6 b | 0.55 | 0.01 | 0.01 | 0.03 |
Empty body protein (EBProt), % | 17.3 a | 17.2 a | 17.1 a | 16.4 b | 0.11 | 0.01 | 0.01 | 0.02 |
Retained fat (kg) | 1.72 b | 2.10 b | 1.99 b | 3.78 a | 0.32 | 0.01 | 0.01 | 0.04 |
Retained protein (kg) | 1.18 | 1.03 | 1.26 | 1.17 | 0.08 | 0.24 | 0.20 | 0.78 |
Retained energy (MJ) | 103.8 b | 127.0 b | 127.9 b | 195.0 a | 11.3 | 0.01 | 0.01 | 0.05 |
Variables | Zn-0 ppm | Zn-80 ppm | Pr< | |||||
---|---|---|---|---|---|---|---|---|
C-0.75% | C-1.5% | C-0.75% | C-1.5% | SEM 1 | C | Zn | C × Zn | |
Dry muscle weight, g kg−1 DM | 265.0 | 264.8 | 272.1 | 271.1 | 5.14 | 0.21 | 0.91 | 0.93 |
Muscle protein, g kg−1 DM | 196.5 | 206.0 | 207.1 | 210.4 | 5.10 | 0.20 | 0.27 | 0.58 |
Intramuscular fat, g kg−1 DM | 68.5 | 79.3 | 67.7 | 64.5 | 12.6 | 0.73 | 0.58 | 0.62 |
Ash, g kg−1 DM | 49.3 | 46.7 | 55.2 | 45.7 | 4.27 | 0.91 | 0.21 | 0.97 |
Organic matter, g kg−1 DM | 950.5 | 953.0 | 944.6 | 954.1 | 4.27 | 0.91 | 0.21 | 0.97 |
Drip loss, % | 30.1 | 32.1 | 29.9 | 31.3 | 1.38 | 0.72 | 0.21 | 0.86 |
Chop area, cm2 | 17.3 | 16.9 | 18.1 | 18.4 | 0.99 | 0.26 | 0.96 | 0.75 |
Hardness (WBSF £), kgf cm2 | 3.10 | 3.75 | 3.94 | 3.85 | 0.28 | 0.14 | 0.38 | 0.22 |
Final pH24, h | 6.49 | 6.52 | 6.51 | 6.52 | 0.01 | 0.62 | 0.26 | 0.55 |
L* (lightness) ¥ | 37.2 | 37.2 | 35.5 | 36.8 | 1.03 | 0.35 | 0.57 | 0.56 |
a* (redness) | 18.8 | 19.2 | 20.0 | 19.7 | 0.68 | 0.26 | 0.93 | 0.67 |
b* (yellowness) | 6.36 | 6.27 | 6.60 | 6.99 | 0.58 | 0.40 | 0.79 | 0.68 |
C* (chroma) | 19.9 | 20.2 | 21.1 | 20.9 | 0.81 | 0.29 | 0.92 | 0.80 |
Hue* (angle) | 18.2 | 17.9 | 18.1 | 19.4 | 1.11 | 0.53 | 0.63 | 0.48 |
Fatty Acids, g 100 g−1 FA | Zn-0 ppm | Zn-80 ppm | Pr< | |||||
---|---|---|---|---|---|---|---|---|
C-0.75% | C-1.5% | C-0.75% | C-1.5% | SEM 1 | C | Zn | C × Zn | |
Lauric, C12:0 | 0.07 | 0.08 | 0.07 | 0.08 | 0.01 | 0.65 | 0.22 | 0.85 |
Myristic, C14:0 | 2.23 | 2.16 | 2.19 | 2.21 | 0.11 | 0.98 | 0.80 | 0.69 |
Palmitic, C16:0 | 25.3 ab | 24.8 b | 25.0 ab | 26.9 a | 0.68 | 0.19 | 0.33 | 0.05 |
Heptadecanoic, C17:0 | 0.42 b | 0.60 ab | 0.75 a | 0.44 b | 0.09 | 0.38 | 0.49 | 0.02 |
Estearic, C18:0 | 18.2 | 18.4 | 17.8 | 17.8 | 0.54 | 0.38 | 0.91 | 0.85 |
Behenic, C22:0 | 0.54 | 0.41 | 0.45 | 0.34 | 0.12 | 0.52 | 0.32 | 0.94 |
Myristoleic, C14:1 | 0.06 b | 0.19 a | 0.20 a | 0.07 b | 0.06 | 0.86 | 0.96 | 0.05 |
Palmitoleic, C16:1 | 0.68 | 0.64 | 0.57 | 0.53 | 0.10 | 0.30 | 0.73 | 0.97 |
Oleic, C18:1 | 44.5 | 44.4 | 44.2 | 44.6 | 0.59 | 0.99 | 0.78 | 0.69 |
Linoleic, C18:2 | 5.47 | 5.85 | 5.81 | 5.11 | 0.53 | 0.71 | 0.76 | 0.32 |
Linolenic, C18:3 | 0.19 | 0.17 | 0.17 | 0.12 | 0.03 | 0.22 | 0.23 | 0.57 |
Arachidonic, C20:4 | 0.07 | 0.10 | 0.13 | 0.12 | 0.03 | 0.18 | 0.76 | 0.30 |
Others | 1.99 | 2.03 | 2.17 | 1.43 | 0.22 | 0.38 | 0.14 | 0.09 |
Saturated fatty acids, SFA | 47.6 | 47.0 | 47.1 | 48.4 | 0.73 | 0.57 | 0.67 | 0.20 |
Monounsaturated fatty acids, MUFAS | 45.8 | 45.8 | 45.8 | 45.8 | 0.62 | 0.95 | 0.98 | 0.99 |
Polyunsaturated fatty acids, PUFAS | 6.47 | 7.11 | 7.03 | 5.79 | 0.63 | 0.55 | 0.64 | 0.15 |
Unsaturated fatty acids, AGI | 52.3 | 52.9 | 52.8 | 51.5 | 0.73 | 0.57 | 0.67 | 0.21 |
Ω-3 | 0.53 a | 0.32 b | 0.56 a | 0.28 b | 0.11 | 0.96 | 0.04 | 0.78 |
Ω-6 | 5.84 | 6.64 | 6.21 | 5.39 | 0.57 | 0.45 | 0.99 | 0.17 |
Ω-3/Ω-6 | 0.08 a | 0.05 b | 0.08 a | 0.05 b | 0.01 | 0.99 | 0.05 | 0.94 |
Ω-9 | 45.6 | 45.4 | 45.4 | 45.5 | 0.59 | 0.94 | 0.88 | 0.85 |
Nutritive value | 2.49 | 2.56 | 2.49 | 2.31 | 0.09 | 0.21 | 0.58 | 0.20 |
Atherogenic index | 0.52 | 0.51 | 0.50 | 0.52 | 0.01 | 0.77 | 0.89 | 0.53 |
Thrombogenic index | 0.92 | 0.92 | 0.90 | 0.96 | 0.02 | 0.65 | 0.31 | 0.26 |
Cholesterolemic index | 1.84 | 1.90 | 1.87 | 1.71 | 0.07 | 0.29 | 0.50 | 0.14 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Trujillo-Gutiérrez, D.; Domínguez-Vara, I.A.; Márquez-Hernández, D.; Reyes-Juárez, J.; Morales-Almaráz, E.; Sánchez-Torres, J.E.; Velázquez-Garduño, G.; Pinos-Rodríguez, J.M.; Ramírez-Bribiesca, J.E. Effects of Zn-Organic Supplementation on Growth, Body Composition, Carcass Traits, and Meat Quality of Grazing Lambs Fed with Two Levels of Concentrate. Processes 2025, 13, 900. https://doi.org/10.3390/pr13030900
Trujillo-Gutiérrez D, Domínguez-Vara IA, Márquez-Hernández D, Reyes-Juárez J, Morales-Almaráz E, Sánchez-Torres JE, Velázquez-Garduño G, Pinos-Rodríguez JM, Ramírez-Bribiesca JE. Effects of Zn-Organic Supplementation on Growth, Body Composition, Carcass Traits, and Meat Quality of Grazing Lambs Fed with Two Levels of Concentrate. Processes. 2025; 13(3):900. https://doi.org/10.3390/pr13030900
Chicago/Turabian StyleTrujillo-Gutiérrez, Daniel, Ignacio Arturo Domínguez-Vara, Daniel Márquez-Hernández, Jessica Reyes-Juárez, Ernesto Morales-Almaráz, Juan Edrei Sánchez-Torres, Gisela Velázquez-Garduño, Juan Manuel Pinos-Rodríguez, and Jacinto Efrén Ramírez-Bribiesca. 2025. "Effects of Zn-Organic Supplementation on Growth, Body Composition, Carcass Traits, and Meat Quality of Grazing Lambs Fed with Two Levels of Concentrate" Processes 13, no. 3: 900. https://doi.org/10.3390/pr13030900
APA StyleTrujillo-Gutiérrez, D., Domínguez-Vara, I. A., Márquez-Hernández, D., Reyes-Juárez, J., Morales-Almaráz, E., Sánchez-Torres, J. E., Velázquez-Garduño, G., Pinos-Rodríguez, J. M., & Ramírez-Bribiesca, J. E. (2025). Effects of Zn-Organic Supplementation on Growth, Body Composition, Carcass Traits, and Meat Quality of Grazing Lambs Fed with Two Levels of Concentrate. Processes, 13(3), 900. https://doi.org/10.3390/pr13030900