Characteristics of Pyrolysis Products of Tar-Rich Coal Under Cryogenic Pretreatment with Liquid Nitrogen
Abstract
:1. Introduction
2. Experimental Methodology
2.1. Coal Samples
2.2. Pretreatment Method
2.3. Pyrolysis Experimental Procedure
2.4. Analytical Methods
3. Results and Discussion
3.1. Effect of Cryogenic Pretreatment on Heating Rate of Coal During Pyrolysis
3.2. Effect of Cryogenic Temperature on Product Yield
3.3. Effect of Cryogenic Temperature on Gas Product
3.4. Effect of Cryogenic Temperature on Liquid Product
3.5. Effect of Cryogenic Temperature on Solid Product
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
T/°C C/wt% | Conventional Pyrolysis Temperature | Cryogenic Pretreatment Temperature | |||||
---|---|---|---|---|---|---|---|
500 | 700 | 900 | 0 | −30 | −60 | −90 | |
XBD | |||||||
Benzene | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Toluene | 0 | 0 | 0 | 0 | 0 | 0 | 0.16 |
Ethylbenzene | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Xylenes | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
YS | |||||||
Benzene | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Toluene | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Ethylbenzene | 0 | 0 | 0 | 0 | 0.75 | 0 | 0 |
Xylenes | 0 | 0 | 0 | 0.26 | 0.14 | 0 | 0 |
HCG | |||||||
Benzene | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Toluene | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Ethylbenzene | 0 | 0 | 0 | 0 | 0.26 | 0 | 0 |
Xylenes | 0 | 0 | 0 | 0 | 0.80 | 0.70 | 0.46 |
Appendix B
XBD/wt% | Pyrolysis | Cryogenic |
---|---|---|
500 °C | −90 °C | |
Benzenes | ||
Propylbenzene | 1.51 | 0 |
1-Ethyl-2-meth | 2.57 | 0 |
Toluene | 0 | 0.19 |
Tribenzocyclo | 0.61 | 0 |
1-Methyl-4-[(4-propylphenyl)ethynyl]benzene | 0.47 | 0 |
Pentamethylbenzene | 0 | 0.30 |
Phenols | ||
Phenol | 1.37 | 0 |
2-Methylphenol | 1.48 | 0 |
3-Methylphenol | 4.02 | 0 |
2-Ethylphenol | 0.27 | 0 |
2,4-Dimethylphenol | 2.02 | 0 |
3-Ethylphenol | 2.32 | 0 |
2,3-Dimethylphenol | 0.23 | 0 |
2-Ethyl-4-methylphenol | 1.55 | 0 |
2,4,5-Trimethylphenol | 0.39 | 0 |
2,3,5-Trimethylphenol | 0.35 | 0.21 |
1-Naphthol | 1.34 | 1.04 |
2-Naphthol | 1.33 | 0.33 |
p-Cresol | 0 | 1.12 |
4-Ethyl-2-methylphenol | 0 | 1.32 |
3,4-Dimethylphenol | 0 | 0.6 |
2-Methyl-1-naphthol | 1.76 | 0 |
6,7-Dimethyl-1-naphthol | 0.64 | 0 |
Phenol, 3,4-dimethyl | 0 | 0.46 |
3,5-Diethylphenol | 0 | 0.31 |
Phenol, 4-ethyl-2-methyl | 0 | 1.02 |
4-Methylthio-2,6-dimethylphenol | 0 | 0.13 |
p-(Benzaldehyde amine)phenol | 0 | 0.32 |
Phenol, 2-[[(4-methylphenyl)imino]methyl] | 0 | 0.32 |
4-Ethylphenol | 0 | 2.15 |
PAHs | ||
Naphthalenes | ||
Naphthalene | 1.35 | 0 |
2-Methylnaphthalene | 0.82 | 0.46 |
1-Methylnaphthalene | 0.97 | 0 |
1,6-Dimethylnaphthalene | 1.73 | 0 |
2,3-Dimethylnaphthalene | 1.39 | 0 |
1,3-Dimethylnaphthalene | 0.65 | 0 |
1,6,7-Trimethylnaphthalene | 1.33 | 4.37 |
2,3,6-Trimethylnaphthalene | 1.15 | 0 |
1,4,5-Trimethylnaphthalene | 1.39 | 0 |
Naphthalene,1,2,3,4-tetramethyl | 0 | 1.09 |
Naphthalene,7-butyl-1-hexyl- | 0 | 0.14 |
1,4,5,8-Tetramethylnaphthalene | 0 | 0.19 |
1,5-Dimethylnaphthalene | 0 | 1.31 |
1,2-Dimethylnaphthalene | 0 | 1.92 |
Phenanthrenes | ||
Fluorene | 1.53 | 0 |
2-Hydroxyfluorene | 0.93 | 0 |
9-Methylfluorene | 0.7 | 0 |
4-Methylphenanthrene | 0.67 | 0 |
2-Methylphenanthrene | 1.03 | 0 |
1-Methylanthracene | 1.22 | 0 |
1-Methylphenanthrene | 0.41 | 0 |
4,5-Dimethylphenanthrene | 0.72 | 0 |
3,6-Dimethylphenanthrene | 0.51 | 0 |
2,3,5-Trimethylphenanthrene | 1.46 | 1.71 |
Retene | 4.44 | 0 |
Anthracene | 0 | 0.25 |
9-Methoxy-anthracene | 0 | 0.17 |
Di-p-tolylethyne | 0 | 0.64 |
Phenanthrene, 3,6-dimethyl | 0 | 0.53 |
1-Phenyl-naphthalene | 0 | 0.62 |
1H-Indene, 2-phenyl | 0 | 0.45 |
1,1,4,5,6-Pentamethyl-2,3-dihydro-1H-indene | 0 | 0.52 |
2-Methylanthracene | 0 | 2.49 |
2-Isopropyl-10-methylphenanthrene | 0 | 1.02 |
9-Methyl-9H-fluorene | 0 | 1.55 |
1,9-Dimethyl-9H-fluorene | 0 | 0.37 |
9H-Fluorene, 9-methylene | 0 | 2.43 |
7H-Benzophenanthrene | 0 | 0.41 |
2-Phenyl-1H-indene | 0 | 1.34 |
1,4-Dimethyl-7-(1-methylethyl)-azulene | 0 | 0.24 |
Acenaphthene | 0 | 0.25 |
Pyrenes | ||
Pyrene | 1.68 | 1.34 |
1-Methylpyrene | 1.82 | 0 |
11H-Benzo[a]fluorene | 0 | 1.85 |
Benzo[a]pyrenes | ||
Benzo[j]fluoranthene | 1.87 | 0 |
Benzo[e]pyrene | 1.18 | 0 |
Perylene | 1.20 | 0 |
Indeno[1,2,3-cd]anthracene | 0.34 | 0 |
Aromatics | ||
Oxygen-containing aromatics | ||
1-Ethyl-4-methoxybenzene | 0.23 | 0 |
3-Methyl-1,2-dihydroxybenzene | 0.44 | 0 |
1,1′-(Dioxydiethyl)dibenzene | 0.28 | 0 |
2,5-Dimethyl-1,4-dihydroxybenzene | 0.24 | 0 |
2,3-Dihydro-3,3,5,6-tetramethyl-1H-indenone | 0.52 | 0 |
E-15-Heptadecenal | 0.17 | 0 |
7-Hexyltridecan-1-ol | 0.26 | 0 |
n-Nonadecan-1-ol | 0.17 | 0 |
2-Methyl-1-hexadecanol | 0.38 | 0 |
3,7,11-Trimethyldodecanol | 0.2 | 0 |
1-Phenyl-1,3-cyclohexadien-5-ol | 0.41 | 0 |
9H-Fluoren-9-one, hydrazone | 0.39 | 0 |
1-Tricosanol | 1.33 | 0 |
2,5-Furandione, dihydro-3-octadecyl | 0.38 | 0 |
3,19:14,15-Diepoxy-20-ketopregnane, 3,11,18-triacetoxy | 0.37 | 0 |
4-Methyldibenzofuran | 0.83 | 0 |
3-Phenylfuran | 0 | 1.63 |
cis-2,5-Dimethyltetrahydrofuran | 0 | 0.09 |
Naphtho[2,1-b]furan | 0 | 0.37 |
2,3-Dihydroinden-5-ol | 0 | 0.12 |
Tetratriacontyn-4-ethylbenzoate | 0 | 0.26 |
4-(1-Phenyl-2-propenyloxy)benzaldehyde | 0 | 0.11 |
Naphthalenemethanol | 0 | 0.83 |
Phenyl borate phthalate | 0 | 0.28 |
1,8-Naphthyridine, 2,4,7-trimethyl ester | 0 | 0.22 |
2-Butoxyethanol | 0 | 19.43 |
Nitrogen-containing aromatics | ||
1H-Phenanthro[9,10-c]pyrazole | 0.41 | 0 |
9H-Fluoren-9-one, hydrazone | 0.39 | 0 |
2-(1-Methylethyl)phenol methylcarbamate | 0.16 | 0 |
5,6-Dimethyl-1H-benzimidazole | 0 | 0.19 |
5,7-Dimethylpyrimido[a]indole | 0 | 0.26 |
2-(1-Methylcyclopropyl)aniline | 0 | 0.46 |
2-Phenyl-4,5-dihydro-1H-imidazole | 0 | 0.07 |
1H-Benzimidazole, 5,6-dimethyl- | 0 | 0.38 |
8-Methyl-5H-pyrido[4,3-b]indole | 0 | 0.12 |
1-Benzyl-2-methyl-1H-imidazole | 0 | 0.13 |
1,8-Naphthyridine, 2,4,7-trimethyl ester | 0 | 2.50 |
p-Aminotoluene | 0 | 0.10 |
Sulfur-containing aromatics | ||
3-Methylbenzothiophene | 0 | 0.14 |
4-Methylthio-2,6-dimethylphenol | 0 | 0.08 |
Halogen-containing aromatics | ||
4-Isopropylphenol-4-chlorobutyrate | 0 | 0.09 |
Naphthylmethyl ester | 0 | 0.24 |
Alkanes | ||
Tetradecane | 0.49 | 0 |
Heptadecane | 0.81 | 0 |
Octadecane | 0.72 | 0 |
Nonadecane | 1.05 | 0.65 |
Eicosane | 0.96 | 0 |
9-Hexylheptadecane | 1.95 | 0 |
Tricosane | 1.60 | 0 |
3-Ethyl-5-(2-ethylbutyl)-octadecane | 2.16 | 0 |
Benzo[b]naphtho[2,3-h]bicyclo[2.2.2]octane | 0.56 | 0 |
Pentacosane | 1.59 | 0 |
3-Ethyl-5-(2-ethylbutyl)-octadecane | 1.53 | 0 |
28-Nor-17-(H)-hopane | 0.31 | 0 |
7-Hexyltridecan-1-ol | 0.39 | 0 |
n-Nonadecan-1-ol | 0.26 | 0 |
2-Methyl-1-hexadecanol | 0.57 | 0 |
1-Tricosanol | 1.95 | 0 |
1-Bromotriacontane | 0.29 | 0 |
3,7,11-Trimethyldodecanol | 0.31 | 0 |
2,5,5,8a-Tetramethyl-4-methylene-4a,5,6,7,8,8a-hexahydro-4H-chromene | 0.30 | 0 |
2,4,5,5,8a-Pentamethyl-6,7,8,8a-tetrahydro-5H-chromene | 0.68 | 0 |
Di-tert-dodecyl disulfide | 0.85 | 0 |
2,7,10-Trimethyldodecane | 0 | 0.60 |
Hexadecane | 0 | 0.42 |
1,2-Dibromopropane | 0 | 0.06 |
1,7-Dimethyl-4-(1-methylethyl)cyclodecane | 0 | 0.25 |
Heptadecane | 0 | 0.47 |
1,2-Dibromopropane | 0 | 0.06 |
Hexane, 3,3-dimethyl- | 0 | 0.03 |
1-Phenyl-1-phenoxyethane | 0 | 0.03 |
2,2,3,3-Tetramethyl-butane | 0 | 0.27 |
2-Ethyl-2-phenyl-1,3-benzodioxole | 0 | 0.05 |
Hexadecane, 1-iodo | 0 | 1.40 |
4-Methyl-2-pentanol | 0 | 1.07 |
Allyl isobutyrate | 0 | 0.05 |
2,3,4-Trimethylpentyl tetradecanoate | 0 | 0.07 |
2-Butoxyethanol | 0 | 11.66 |
4-Heptanol, 2,6-dimethyl-, acetate | 0 | 0.24 |
2,3-Dimethyl-2-cyclopenten-1-one | 0 | 0.06 |
1,2,3,4-Butanetetrol, tetraacetate | 0 | 0.10 |
1-Hexene, 5,5-dimethyl | 0 | 0.10 |
2-Propylamine, N,N′-methanetetramine | 0 | 0.12 |
Others | 16.35 | 16.58 |
YS/wt% | Pyrolysis | Cryogenic |
---|---|---|
500 °C | −90 °C | |
Benzenes | ||
2-Phenyl-1H-indene | 0 | 0.31 |
1-Methyl-4-[4-propylphenylethynyl]benzene | 0 | 0.04 |
Pentamethylbenzene | 0 | 0.05 |
p-Tolylethyne | 0.52 | 0.05 |
Propylbenzene | 4.82 | 0 |
1-Ethyl-2-methylbenzene | 7.9 | 0 |
1,2,3-Trimethylbenzene | 0.65 | 0 |
2,2′-Dimethylbiphenyl | 0 | 0.02 |
3,3′,4,4′-Tetramethyl-1,1′-biphenyl | 0 | 0 |
1,2-Diethyl-3,4-dimethylbenzene | 0 | 0.03 |
1,1′-(1,3-Butadiyne-1,4-diyl)diferrocene-benzene | 0.57 | 0 |
Phenols | ||
Phenol | 0 | 0.32 |
Phenol | 2.97 | 0 |
p-Cresol | 0 | 2.37 |
2-Methylphenol | 1.74 | 0.47 |
3-Methylphenol | 5.73 | 0 |
2,3-Dimethylphenol | 0.47 | 0 |
2,4-Dimethylphenol | 2.07 | 0 |
3,4-Dimethylphenol | 0 | 1.49 |
3,4,5-Trimethylphenol | 0 | 0.10 |
2,3,5-Trimethylphenol | 0 | 0.10 |
2-Ethylphenol | 0.26 | 0 |
3-Ethylphenol | 3.17 | 1.14 |
3,5-Dimethylphenol | 0 | 0.10 |
3,5-Diethylphenol | 0 | 0 |
2,3,5-Trimethylphenol | 0.41 | 0 |
Catechol | 0 | 0.15 |
2,2′-Methylenebis[6-(1,1-dimethylethyl)-4-methyl-phenol | 0 | 0.18 |
4-Ethyl-2-methylphenol | 0 | 0.34 |
1-Naphthol | 1.06 | 0 |
2-Naphthol | 1.20 | 0 |
2-Methyl-1-naphthol | 2.80 | 0 |
4-Methyl-1,2-benzenediol | 0 | 0.24 |
3-Methyl-1,2-benzenediol | 0 | 0.12 |
4-Ethyl-1,3-benzenediol | 0 | 0.11 |
4-(1-Phenylethyl)-phenol | 0 | 0.11 |
3-Ethyl-5-methylphenol | 0.96 | 0 |
2-Ethyl-4-methylphenol | 0 | 0.80 |
p-Cresol, TMS derivative | 0 | 0.28 |
Orcinol (also known as: Orcinol) | 0 | 0.12 |
Resorcinol | 0 | 0.44 |
PAHs | ||
Naphthalenes | ||
2-Methylnaphthalene | 2.74 | 1.09 |
1,2-Dimethylnaphthalene | 0 | 0.17 |
1,3-Dimethylnaphthalene | 1.80 | 0.67 |
1,5-Dimethylnaphthalene | 0 | 0.41 |
Azulene, 1,4-dimethyl-7-(1-methylethyl)- | 0 | 0.09 |
1,6-Dimethylnaphthalene | 0.95 | 0.63 |
1,4,6-Trimethylnaphthalene | 0 | 0.78 |
2,3,6-Trimethylnaphthalene | 1.12 | 0.48 |
1,6,7-Trimethylnaphthalene | 0.93 | 1.74 |
Pyrene | 1.38 | 0 |
2,7-Dimethylnaphthalene | 1.58 | 0 |
1-Ethylnaphthalene | 0.51 | 0 |
1,4,5,8-Tetramethylnaphthalene | 1.64 | 0 |
1,4-Dimethylnaphthalene | 0 | 0.22 |
2-Vinylnaphthalene | 0 | 0 |
Biphenyl | 0.70 | 0.36 |
7-Butyl-1-hexyl-naphthalene | 0 | 0.66 |
3,6,8-Trimethyl-1,2-dihydronaphthalene | 0 | 0.35 |
1-(1,1-Dimethylethyl)-naphthalene | 0 | 0.16 |
1,6-Dimethyl-4-(1-methylethyl)-naphthalene | 0 | 0.13 |
2-(1-Methylethyl)-naphthalene | 0 | 0.11 |
phenanthrenes | ||
1-Phenylnaphthalene | 0 | 0.13 |
Fluorene | 1.44 | 0.37 |
9-Methyl-9H-fluorene | 0.88 | 1.17 |
1,4-Dimethyl-6-phenylnaphthalene | 0 | 0.11 |
Acenaphthene | 0 | 0.12 |
2,3,5-Trimethylphenanthrene | 0.75 | 0 |
1-Azafluorenone | 0 | 0.19 |
3-Methylphenanthrene | 0 | 0 |
3,6-Dimethylphenanthrene | 0 | 0.30 |
9,9-Dimethyl-9H-fluorene | 0 | 0.28 |
1,1-Dimethylindene | 0 | 0.08 |
8-Isopropyl-1,3-dimethylphenanthrene | 0 | 0.57 |
4,5-Dimethylphenanthrene | 0.58 | 0.21 |
2-Methylphenanthrene | 0 | 2.14 |
1-Ethyl-2-methylphenanthrene | 0 | 0.59 |
2,3-Dimethylphenanthrene | 0 | 0.13 |
9-Methylene-9H-fluorene | 0 | 1.10 |
Anthracene | 0.69 | 0 |
4-Methylphenanthrene | 0.63 | 0 |
1-Methylanthracene | 0.88 | 0 |
1a,9b-Dihydro-1H-cyclopropa[l]phenanthrene | 1.09 | 0 |
Pyrenes | ||
Pyrene | 0.41 | 1.00 |
11H-Benzo[b]fluorene | 0 | 1.87 |
Benzo[b]naphtho[2,3-d]furan | 0 | 0.2 |
Benzo[a]fluorene | 0 | 0.29 |
1,9-Dimethylpyrene | 0 | 0.74 |
Triphenylene | 0.34 | 0 |
Pyranthrene | 0 | 2.05 |
4,12-Dimethylbenzo[a]anthracene | 0 | 0.14 |
1-Methylpyrene | 0.85 | 0 |
Naphthophenanthrene | 0 | 0.96 |
Benzo[a]pyrenes | ||
Perylene | 1.34 | 0.37 |
8H-Indeno[2,1-b]phenanthrene | 0 | 0.23 |
Benzo[ghi]perylenes | ||
Benzo[ghi]perylene | 0 | 0 |
Benzo[ghi]perylene | 0 | 0.16 |
Aromatics | ||
Oxygen-containing aromatics | ||
1,3-Dihydro-2H-indenone | 0 | 0.09 |
2,3,4,6,8,9,10,11-Octahydro-6-oxo-1H-pyrido[3,2-a]quinazoline | 0 | 0.09 |
Cyclohexanecarboxylic acid, (1H-tetrazol-5-yl)amide | 0 | 0.53 |
Cyclopentanone, O-methoxime | 0 | 0.30 |
11-Oxodibenzo[b,e]oxepin-11(7H)-one | 0 | 0.08 |
Phenanthro[1,9-cd]pyrazol-6(2H)-one | 0 | 0.15 |
4-Fluoro-2-(trifluoromethyl)benzoic acid, 2-nitro-5-fluorophenyl ester | 0 | 0.08 |
9,9′-Bis(9H-fluorene), 9,9′-dihydroxy- | 0 | 0.18 |
1-Acetamido-bicyclo [3.2.0]heptan-2-one | 0 | 0.14 |
2-(2,4,6-Cycloheptatrienyl)-1,3-indenone | 0 | 0.12 |
1-(1-Methylcyclohexyl)acetone | 0 | 0.19 |
Trimesic acid, propyl tridec-2-ynyl ester | 0 | 0.08 |
o-Isopropylphenol methylcarbamate | 0 | 0.08 |
5-(p-Phenoxyphenyl)pentanal | 0 | 0.08 |
4-Ethyl-3-methyl-3-phenylpyrrolidine-2,5-dione, TMS (isomer 2) | 0 | 0.08 |
1H-Benzimidazole, 5,6-dimethyl- | 0 | 0.08 |
3,3-Diethylpyrrolidine-2,4-dione | 0 | 0.08 |
3-Phenylfuran | 0 | 1.1 |
Naphtho[2,1-b]furan | 0 | 0.14 |
Opianic acid | 0 | 0.11 |
Flavone | 0 | 0.12 |
2-Benzylpyridine | 0 | 0.22 |
3-Acetyl-2,5,6-trimethylhydroquinone | 0 | 0.09 |
7-Methyl-2-naphthol | 0 | 0.83 |
Benzo(b)naphtho(1,2-d)furan | 0 | 0.19 |
[[4-(1,1-Dimethylethyl)phenoxy]methyl]-oxirane | 0 | 0.32 |
2-Methyl-1-naphthol | 0 | 0.83 |
9H-Fluorenol | 0 | 1.33 |
6-(4-Cyanophenyl)-2-naphthyl hexanoate | 0 | 1.16 |
1-Naphthol | 0 | 0.39 |
2,3-Dihydro-1H-inden-5-ol | 0 | 0.35 |
9H-Fluorenol | 0 | 0.28 |
9,10-Dihydro-9,10-dimethyl-9,10-ethanophenanthrene-11,12-dicarboxylic acid, dimethyl ester | 0 | 0.25 |
4,5-Dimethoxy-2-hydroxyacetic acid phenyl ester | 0 | 0.22 |
2-Phenanthrol | 0 | 0.22 |
Benzo(a)pyrene-7-ol | 0 | 0.21 |
1-(4-Hydroxyphenyl)propane-1,2-diol (isomer 2) | 0 | 0.17 |
3-Amino-3-(4-methoxy-1-naphthyl)-propanoic acid | 0 | 0.17 |
Glutaric acid, monoamide, N,N-bis(4-methylphenyl)-, nonyl ester | 0 | 0.16 |
4-Methyl-1-naphthyl methyl ether | 0 | 0.29 |
2-Methoxyfluorene | 0 | 0.13 |
N-Phenylpropargyl-3-phenolamine | 0 | 0.13 |
Tuberostemonine | 0 | 0.13 |
2-(1-Methylethyl)-phenol, methylcarbamate | 0 | 0.12 |
9H-Fluorenone | 0 | 0.12 |
Catechol phenylboronate | 0 | 0.11 |
Dibenzo-para-dioxin | 0 | 0.10 |
1-(1-Hydroxy-2-methylpropyl)-cyclopropanecarboxylic acid, 2,6-bis(1,1-dimethylethyl)-4-methylphenyl ester | 0 | 0.13 |
1-Vinylphenanthrol, 1,2-dihydro-1-methyl- | 0 | 0.09 |
Phthalic acid, propyl-2-tridec-1-ynyl ester | 0 | 0.09 |
9H-Fluorenone | 0 | 0.08 |
1-Ethyl-4-methoxybenzene | 0.72 | 0 |
3,4-Dihydro-8-methyl-1(2H)-naphthalenone (one benzene ring containing oxygen, oxygen not on the benzene ring) | 0.43 | 0 |
1,1′-(Dioxydiethylidene)bis[3-ethylbenzene] (two benzene rings, oxygen not on the benzene rings) | 0.41 | 0 |
1-Methyl-2-indenone (1, O not on) | 0.41 | 0 |
1,2,3,4-Tetrahydro-5,6,7,8-tetramethylnaphthalene | 1.37 | 0 |
4-Methyldibenzofuran | 2.54 | 0 |
2,3-Diphenyl-2-cyclopropen-1-one (2, O not on) | 1.02 | 0 |
N-Methyl-melochinone (1, O and N not on) | 0.45 | 0 |
1-Oxindole benzo[b]naphtho[e]bicyclo[2.2.2]octane (3, O not on) | 0.34 | 0 |
Indeno[2,1-b]chromene | 0 | 0.13 |
1-Phenyl-1-pentyne (monocyclic containing oxygen, oxygen not on the ring) | 0.31 | 0 |
Rhinitis tablet base | 0 | 0.09 |
Nitrogen-containing aromatics | ||
5,7-Dimethylpyrano[3,4-a]indole | 0 | 0.38 |
1H-Phenanthro[9,10-d]imidazole-2-amine | 0 | 0.09 |
4-tert-Butylphthalonitrile | 0 | 0.08 |
3-Phenylpyridine | 0 | 0.15 |
10H-Benzothiophene-2-carbonitrile, trimethylsilyl derivative | 0 | 7.47 |
4-Pyridinamine, N-(1-naphthylmethyl)- | 0 | 0.23 |
5,6-Dimethyl-1H-benzimidazole | 0 | 0.21 |
Benzylhydrazine | 0 | 0.33 |
2-(1-Methylcyclopropyl)aniline | 0 | 0.26 |
1,8-Naphthyridine, 2,4,7-trimethyl- | 0 | 0.09 |
4-Methylamino-5-amino-fluorene | 0 | 0.09 |
Aniline, 4,4′-(1,2-ethylenediyl)bis- | 0 | 0.09 |
3-Methyl-3-phenyl(3H)benzo[c]pyrrole (three rings, two benzene rings, N on another ring) | 0.91 | 0 |
4-Propylthiazole | 0 | 0.38 |
1H-Phenanthro[9,10-c]pyrazole (four rings, three benzene rings, N on another ring) | 0.30 | 0 |
Sulfur-containing aromatics | ||
Acetoxy-2-norbornyl succinate | 0 | 0.13 |
4,9-Dimethylnaphtho[2,3-b]thiophene (three aromatic rings, two benzene rings, S on the thiophene ring) | 0.46 | 0 |
Halogen-containing aromatics | ||
1-[4-(Benzyloxy)phenyl]-2-bromo-1-propanone | 0 | 0.08 |
1-(3-Chloro-4-methylphenylsulfonyl)-4-piperidinecarboxylic acid, isopropylamide | 0 | 0.19 |
Alkanes | ||
2,5-Furandicarboxaldehyde | 0 | 0.18 |
Hexadecane | 0 | 0.81 |
Heptadecane | 0.40 | 0 |
Pyrrolidine-2,4-dione | 0 | 0.77 |
Nonadecane | 0.36 | 2.64 |
Tetracosane | 0.55 | 1.67 |
Octadecane | 0.32 | 2.24 |
9-Hexylheptadecane | 1.44 | 0 |
Pyrene | 0.93 | 0 |
9-Hexylheptadecane | 0.63 | 0 |
1,7-Dimethyl-4-(1-methylethyl)cyclodecane | 0 | 0.43 |
4-Methyl-2-pentanol | 0 | 1.44 |
1-Propylcyclopentene | 0 | 0.10 |
1,1,4,5,6-Pentamethyl-2,3-dihydro-1H-indene | 0 | 0.31 |
9-Methyl-1-undecene | 0 | 0.58 |
Cyclohexylmethyl nonyl ester sulfate | 0 | 0.17 |
Heptacosane | 0 | 2.11 |
2,6,10,14-Tetramethylhexadecane | 0 | 1.82 |
9-Methylfluorene | 0 | 0.1 |
4-(Trimethylsilyl)pyrazole, 2TMS derivative | 0 | 0.25 |
Heneicosane | 0 | 1.59 |
2,6,11-Trimethyldodecane | 0 | 0.6 |
1-Tetradecene | 0 | 0.57 |
5-(1-Adamantyl)salicylic acid, methyl ester | 0 | 0.5 |
Benzyl acetate | 0 | 0.49 |
2,4,6-Trimethyloctane | 0 | 0.37 |
Butyl decanyl ester sulfate | 0 | 0.33 |
Anisole | 0 | 0.28 |
2-Octen-4-one | 0 | 0.25 |
3-Ethoxy-3,4-dimethyl-1-hexyne | 0 | 0.22 |
1-Methylchrysene | 0 | 0.21 |
1,3,5,6-Tetramethyladamantane | 0 | 0.25 |
Homobicyclo[2.2.1]heptan-2-one ethyl acetate | 0 | 0.16 |
Methyl diisopropoxyethoxy silane | 0 | 0.16 |
1-(Hexyloxy)-4-methylhexane | 0 | 0.15 |
1-Adamantanamine, N-tert-butyldimethylsilyl- | 0 | 0.12 |
1,3-Di-n-propyladamantane | 0 | 0.11 |
Heptafluorobutyric acid, undecyl ester | 0 | 0.45 |
2-Chloroacetic acid, 1,4-cyclohexanediylbis(oxy-2,1-ethanediyl) ester | 0 | 0.29 |
2-Bromotetradecane | 0 | 0.26 |
Bromochloronitromethane | 0 | 0.21 |
Carbonic acid, allyl-pentafluorobenzyl ester | 0 | 0.12 |
2-Fluoropyridine | 0 | 0.26 |
2-(2-Benzyl-1,2-dihydroisoquinolin-3-yl)ethanol | 0 | 0.13 |
4-Ethyloctane | 0.16 | 0 |
1-Bromo-heptadecane | 0.1 | 0 |
Acenaphthene | 0.27 | 0 |
2,6,10-Trimethyl-tetradecane | 0.26 | 0 |
3-Ethyl-5-(2-ethylbutyl)-octadecane | 0.73 | 0 |
2,3-Dihydro-5,6-dimethyl-1H-indene | 0.31 | 0 |
3-(2-Methyl-1-propenyl)-1H-indene | 0.47 | 0 |
1,7-Dimethyl-3-phenyltricyclo[4.1.0.0(2,7)]heptene | 0.41 | 0 |
17.α.,21.β.-28,30-Bisnorhopane | 0.22 | 0 |
2,3-Dimethyl-2-cyclopenten-1-one | 0.09 | 0 |
3,7,11-Trimethyl-dodecanol | 0.10 | 0 |
7-Hexyltridecan-1-ol | 0.22 | 0 |
Methyl 5,8,11,14-eicosatetraynoate | 0.86 | 0 |
Podophyllotoxin | 0.32 | 0 |
9-Hexadecenoic acid | 0.27 | 0 |
(Z)-Eicosyl 9-hexadecenoate | 0.42 | 0 |
n-Hexadecyl succinic anhydride | 0.34 | 0 |
Tetrahydrofishtoxin 287b | 0.25 | 0 |
1-Tricosanol | 1.84 | 0 |
3,13,16,20-Tetraacetoxy-3-deoxy-3,16-dihydroxy-12-deoxypodophyllotoxin | 0.21 | 0 |
tert-Hexadecyl mercaptan | 0.34 | 0 |
2-Amino-3-cyano-4,5,6,7-tetrahydro-5,7-dimethylthionaphthene | 0.26 | 0 |
2-Chloro-2-nitropropane | 0 | 0.10 |
2-Butyl-1,3-dioxane-5,5-dimethanol | 0 | 0.10 |
28-Nor-17α-hopane | 0 | 0.10 |
1-Methoxycyclododecanemethanol | 0 | 0.09 |
Others | 16.73 | 19.62 |
HCG/wt% | Pyrolysis | Cryogenic |
---|---|---|
500 °C | −90 °C | |
Benzenes | ||
Propylbenzene | 0.35 | 0 |
1-Ethyl-2-methylbenzene | 1.45 | 0 |
1,2,3-Trimethylbenzene | 0.36 | 0 |
p-Xylene | 0 | 0.46 |
1-Hexene, 2-(o-phenyldimethyl)-4-methyl (C14H20O derivative) | 0.33 | 0 |
1-Ethyl-4-methoxybenzene (C9H12O derivative) | 0.77 | 0 |
Di(2-ethylhexyl) phthalate (C24H38O4 derivative) | 0.54 | 0 |
Phenols | ||
Phenol | 2.51 | 0 |
2-Methylphenol | 3.27 | 2.28 |
p-Cresol | 5.74 | 5.97 |
2,6-Dimethylphenol | 0.88 | 0 |
2-Ethylphenol | 0.80 | 0 |
2,4-Dimethylphenol | 4.32 | 0 |
3-Ethylphenol | 3.12 | 0 |
2,3-Dimethylphenol | 0.38 | 0 |
2-(1-Methylpropyl)phenol | 0.16 | 0 |
3,4-Dimethylphenol | 0.77 | 1.30 |
2,3,5-Trimethylphenol | 1.41 | 0 |
3-(1-Methylpropyl)phenol | 0.80 | 0 |
2-Ethyl-4-methylphenol | 0.23 | 0 |
3-Ethyl-5-methylphenol | 1.72 | 0 |
3,5-Diethylphenol | 0.43 | 0 |
β-Naphthol | 0.44 | 0 |
7-Methyl-2-naphthol | 0.70 | 0 |
4-Ethylphenol | 0 | 0.32 |
4-Ethyl-2-methylphenol | 0 | 1.54 |
PAHs | ||
Naphthalenes | ||
2,3-Dihydro-5-methylinden | 0.38 | 0 |
2-Methylnaphthalene | 0.92 | 2.12 |
1-Methylnaphthalene | 0.60 | 0 |
1,2,3,4-Tetrahydro-6,7-dimethylnaphthalene | 0.16 | 0 |
2,3-Dihydro-5-indanol | 0.62 | 0 |
1,6-Dimethylnaphthalene | 0.59 | 0 |
1,3-Dimethylnaphthalene | 2.74 | 0 |
2,6-Dimethylnaphthalene | 0.71 | 0 |
Dimethylbiphenyl | 0.35 | 0 |
1,4-Dimethylnaphthalene | 0.21 | 0 |
1,4,5-Trimethylnaphthalene | 1.43 | 0 |
2,3,6-Trimethylnaphthalene | 1.72 | 0 |
1,6,7-Trimethylnaphthalene | 0.49 | 0 |
1,4,5,8-Tetramethylnaphthalene | 0.83 | 1.04 |
1,2-Dimethylnaphthalene | 0 | 1.83 |
1,4,6-Trimethylnaphthalene | 0 | 2.63 |
2-Phenyl-1H-indene; | 0 | 1.19 |
4-Ethylbiphenyl | 0 | 0 |
(4-Methoxybenzyl)phenethylamine (bicyclic C16H19NO) | 0.25 | 0 |
2,3-Dihydro-5-indanol (bicyclic C9H10O) | 0.61 | 0 |
Phenanthrenes | ||
1-Methylphenanthrene | 0.37 | 0 |
9-Methylanthracene | 0 | 1.46 |
4-Methylphenanthrene | 1.07 | 0 |
3-Methylphenanthrene | 0.25 | 0 |
2,3,5-Trimethylphenanthrene | 0.46 | 0 |
2-Methylanthracene | 0 | 0.42 |
Benzo[b]fluorene | 0 | 0.32 |
9-Hydroxyflavone | 0.65 | 0 |
9,9-Dimethylflavone | 0.25 | 0 |
2,3,3-Trimethyl-3H-pyrrolo[3,2-H]quinoline (tricyclic C14H14N2) | 0.34 | 0 |
Pyrenes | ||
Pyrene | 0 | 0.41 |
Benzo[a]anthracene | 0 | 0.34 |
Benzo[c]phenanthrene | 0 | 0.27 |
9,10-Dihydro-11,12-diacetyl-9,10-oxanthracene | 0.68 | 0 |
Benzo[a]pyrenes | ||
Benzo[e]pyrene | 0 | 0.31 |
Aromatics | ||
Nitrogen-containing aromatics | ||
Norsamide | 0 | 0.55 |
Ethylpyrazine | 0.13 | 0 |
2-Methyl-5-phenylpyrrole | 0.21 | 1.02 |
9,10-Dihydroacid diethyl ester | 0.65 | 0.7 |
1H-Pyrrolo[3,2-H]quinoline, 2,3,6,8-tetramethyl- | 0 | 0.31 |
Pyridinemethanol, α-(azidomethyl)-1-[(pyridylcarbonyl)oxy]- | 0 | 4.10 |
Phenol, 2-[(ethylamino)methyl]-4-nitro | 1.07 | 2.08 |
1-[(pyridylcarbonyl)oxy]-2,5-pyrrolidine-dione | 1.52 | 2.51 |
2,4,6-(1H,3H,5H)-pyrimidinetrione, 5-acetyl- | 0.53 | 1.25 |
Oxygen-containing aromatics | ||
9H-Fluorene | 0.75 | 1.58 |
2-Vinylfuran | 1.44 | |
Sulfur-containing aromatics | ||
1,5-Dimethoxy-naphthalene | 0.24 | |
9,9-Dimethylfluorene | 0.53 | 0.97 |
2,4-Dihydroxy-3,6-dimethylbenzaldehyde | 0.41 | 1.26 |
1,5-Diacetyl-2,6-naphthalenediol | 1.5 | 2 |
Aromatics containing halogen elements | ||
m-Cresol, TMS derivative | 0.12 | 0.23 |
5-Chloro-3-ethyl-1H-pyrrole-derived pyridine | 0.42 | |
Succinic acid, 2,4,6-trichlorobenzyl-2-naphthyl ester | 0.6 | 0.94 |
2-Chloro-4-(2-hydroxyphenyl)pyrimidine | 0.41 | 0.8 |
Alkanes | ||
Decane | 0.22 | 0 |
Undecane | 0.45 | 0 |
1-Dodecene | 0.14 | 0 |
Dodecane | 0.48 | 0 |
Tridecane | 1.18 | 0 |
1-Tetradecene | 0.56 | 0 |
Tetradecane | 1.32 | 0 |
Pentadecane | 1.51 | 0 |
Hexadecane | 1.43 | 12.75 |
Heptadecane | 1.38 | 0 |
2,6,10,14-Tetramethylpentadecane | 0.59 | 0 |
Octadecane | 1.57 | 0 |
Nonadecane | 1.94 | 0 |
Eicosane | 1.93 | 0 |
Heneicosane | 1.78 | 0 |
Docosane | 1.85 | 0 |
(Z)-9-Docosene | 0.24 | 0 |
Tricosane | 1.34 | 0 |
Tetracosane | 2.13 | 0 |
Pentacosane | 2 | 0 |
3-Ethyl-5-(2-ethylbutyl)octadecane | 3.76 | 0 |
Heptacosane | 1.45 | 0 |
Butenoic acid, undecyl ester | 0.42 | 0 |
1-Dodecanol, 3,7,11-trimethyl | 0.86 | 0 |
5,8-Diethyl-dodecane | 0.48 | 0 |
1-Pentadecene | 0.57 | 0 |
E-15-Heptenal | 0.45 | 0 |
E-14-Hexenal | 0.49 | 0 |
5,8,11,14-Eicosatetraenoic acid | 0.67 | 0 |
n-Nonadecanol | 0.65 | 0 |
E-15-Heptenal | 0.58 | 0 |
17-Pentacosene | 0.64 | 0 |
1-Tricosanol | 1.58 | 0 |
3,3-Dimethylhexane | 0 | 3.98 |
1-Iodododecane | 0 | 1.85 |
2,2,5-Trimethyl-3,4-hexanedione | 0 | 0.41 |
2,5-Dimethyl-3-hexanone | 0 | 0 |
2,4-Dimethyldecane | 0 | 0.65 |
1,1,3-Trimethylcyclopentane | 0 | 0.88 |
3,7-Dimethyldecane | 0 | 0 |
2,7-Dimethyloctane | 0 | 1.55 |
2,2-Dimethyl-3-hexene | 0 | 0.40 |
Propylene | 0 | 0.36 |
(E)-5-Methyl-4-decene | 0 | 0.68 |
2,6,11-Trimethyl-dodecane | 0 | 3.16 |
3,7-Dimethylundecane | 0 | 2.93 |
Acetone | 0 | 0.14 |
Propyne | 0 | 0.17 |
(2S,6R,7S,8E)-(+)-2,7-Epoxy-4,8-giant blue alkenyl | 0 | 2.00 |
1,3-Dihydro-1-methyl-5-(1-methylethyl)-2H-imidazole-2-thione | 0 | 0.52 |
Phenobarbital | 0 | 0.64 |
Cyclohexylmethylhexyl sulfate ester | 0 | 0.31 |
Cyclohexyl(2-methylcyclohexyl)propanedinitrile | 0 | 0.16 |
3,3,6-Trimethyl-1,5-heptadiene-4-one | 0 | 0.14 |
Di(cyclohexylmethyl) sulfate ester | 0 | 0.21 |
N-Allyloctanamide | 0 | 1.35 |
1-(4,6-Dihydroxy-2,3,5-trimethyl-7-benzofuran-yl)ethanone | 0 | 0.22 |
2-Ethylhexyl isobutyl sulfate ester | 0 | 2.58 |
Isobutylpentyl sulfate ester | 0 | 0.16 |
Others | 6.78 | 15.18 |
References
- Ma, Z.-H.; Li, S.; Dong, X.-Q.; Li, M.; Liu, G.-H.; Liu, Z.-Q.; Liu, F.-J.; Zong, Z.-M.; Cong, X.-S.; Wei, X.-Y. Recent Advances in Characterization Technology for Value-Added Utilization of Coal Tars. Fuel 2023, 334, 126637. [Google Scholar] [CrossRef]
- Chen, J.; Xu, T.; Wu, Y.; Ke, Y.; Li, Y. In-Situ SANS Study on Spatial Evolution of Coal Nanoporosity during Pyrolysis at Elevated Temperatures. Powder Technol. 2024, 445, 120123. [Google Scholar] [CrossRef]
- Gong, B.; Tian, C.; Wang, X.; Chen, X.; Zhang, J. Mineralogical Characteristics and Arsenic Release of High Arsenic Coals from Southwestern Guizhou, China during Pyrolysis Process. Processes 2023, 11, 2321. [Google Scholar] [CrossRef]
- Du, Z.; Li, W. The Catalytic Effect from Alkaline Elements on the Tar-Rich Coal Pyrolysis. Catalysts 2022, 12, 376. [Google Scholar] [CrossRef]
- Yu, Z.; Guo, W.; Yang, P.; Zhang, J.; Gao, K.; Shang, J.; Yang, B.; Wu, Z. In-Situ Infrared and Kinetic Characteristics Analysis on Pyrolysis of Tar-Rich Coal and Macerals. Fuel 2023, 348, 128601. [Google Scholar] [CrossRef]
- Melikoglu, M. Clean Coal Technologies: A Global to Local Review for Turkey. Energy Strategy Rev. 2018, 22, 313–319. [Google Scholar] [CrossRef]
- Zhu, Z.; Cong, R.; Zhou, L.; Zheng, H.; Tu, Y.; Wu, Z. Effects of Chemical Properties and Inherent Mineral Matters on Pyrolysis Kinetics of Low-Rank Coals. Processes 2021, 9, 2111. [Google Scholar] [CrossRef]
- Mi, Q.; Li, B.; Li, Y.; Ma, Y.; Shi, R. Kinetic Analysis of Pyrolysis Reaction of Hydrogen-Containing Low Rank Coals Based on Thermogravimetric Method. Processes 2023, 11, 706. [Google Scholar] [CrossRef]
- Luo, L.; Liu, J.; Zhang, H.; Ma, J.; Wang, X.; Jiang, X. TG-MS-FTIR Study on Pyrolysis Behavior of Superfine Pulverized Coal. J. Anal. Appl. Pyrolysis 2017, 128, 64–74. [Google Scholar] [CrossRef]
- Qiang, L.; Bai, B.; Peng, Z.; Zhang, S.; Chang, H.; Sun, M.; Xu, L.; Ma, X. Research on the Relationship between the Structure and Pyrolysis Characteristics of Pretreated Shendong Coal. Fuel 2021, 305, 121515. [Google Scholar] [CrossRef]
- He, R.Z.; Liu, H.; Lu, Q.X.; Zhao, Y.; Wang, X.; Xie, X.; Deng, X.; Yuan, S. Effects of Si and Al elements in coal on Fe-catalyzed brown coal pyrolysis. Fuel 2022, 315, 123170. [Google Scholar] [CrossRef]
- Chen, J.; Wu, Y.; Xu, T.; Bhattacharya, S. A Review on in-Situ Process Analytical Techniques for the Thermochemical Conversion of Coal and Biomass. Rev. Chem. Eng. 2023, 40, 435–455. [Google Scholar] [CrossRef]
- Liang, P.; Qin, X.Z.; Bai, G.M.; Wu, Z.; Sun, D.; Zhang, Y.; Jiao, T. Effects of ionic liquid pretreatment on pyrolysis characteristics of a high-sulfur bituminous coal. Fuel 2019, 258, 116134. [Google Scholar] [CrossRef]
- Bai, B.; Qiang, L.; Zhang, S.; Mu, H.; Ma, X. Influence of Coal Structure Change Caused by Different Pretreatment Methods on Shengli Lignite Pyrolysis. Fuel 2023, 332, 126089. [Google Scholar] [CrossRef]
- Nelson, I.; Naleway, S.E. Intrinsic and Extrinsic Control of Freeze Casting. J. Mater. Res. Technol. 2019, 8, 2372–2385. [Google Scholar] [CrossRef]
- Deville, S.; Saiz, E.; Nalla, R.K.; Tomsia, A.P. Freezing as a Path to Build Complex Composites. Science 2006, 311, 515–518. [Google Scholar] [CrossRef]
- Cai, C.; Li, G.; Huang, Z.; Tian, S.; Shen, Z.; Fu, X. Experiment of Coal Damage Due to Super-Cooling with Liquid Nitrogen. J. Nat. Gas Sci. Eng. 2015, 22, 42–48. [Google Scholar] [CrossRef]
- Fu-bao, Z.; Bo-bo, S.; Jian-wei, C.; Ling-jun, M. A New Approach to Control a Serious Mine Fire with Using Liquid Nitrogen as Extinguishing Media. Fire Technol. 2015, 51, 325–334. [Google Scholar] [CrossRef]
- Xu, T.; Lei, Y.; Chen, L.; Wu, Y. Thermal Properties and Grey Correlation Degree Analysis of Tar-Rich Coal under Cryogenic and Pyrolysis Condition. Fuel 2024, 371, 132170. [Google Scholar] [CrossRef]
- Wang, F.; Zeng, X.; Kang, G.; Li, K.; Ma, J.; Xu, G. Secondary Reactions Suppression during Fuel Fast Pyrolysis in an Infrared Heating Apparatus for the Fixed Bed Pyrolysis Process with Internals. J. Anal. Appl. Pyrolysis 2021, 156, 105163. [Google Scholar] [CrossRef]
- Sharifzadeh, M.; Sadeqzadeh, M.; Guo, M.; Borhani, T.N.; Murthy Konda, N.V.S.N.; Garcia, M.C.; Wang, L.; Hallett, J.; Shah, N. The Multi-Scale Challenges of Biomass Fast Pyrolysis and Bio-Oil Upgrading: Review of the State of Art and Future Research Directions. Prog. Energy Combust. Sci. 2019, 71, 1–80. [Google Scholar] [CrossRef]
- Song, Y.; Lei, S.; Li, J.; Yin, N.; Zhou, J.; Lan, X. In Situ FT-IR Analysis of Coke Formation Mechanism during Co-Pyrolysis of Low-Rank Coal and Direct Coal Liquefaction Residue. Renew. Energy 2021, 179, 2048–2062. [Google Scholar] [CrossRef]
Samples | Proximate Analysis (d, wt%) | Ultimate Analysis (daf. wt/%) | Gray–King Method Y (d, wt%) | ||||||
---|---|---|---|---|---|---|---|---|---|
Ash | Volatile Matter | Fixed Carbon | C | H | N | S | O * | ||
XBD | 5.60 | 41.35 | 53.05 | 80.46 | 4.94 | 0.88 | 0.42 | 13.30 | 7.30 |
YS | 11.04 | 41.25 | 47.71 | 78.06 | 5.30 | 1.17 | 0.27 | 15.20 | 7.20 |
HCG | 8.05 | 43.62 | 48.33 | 86.80 | 5.86 | 2.01 | 0.44 | 4.89 | 11.32 |
T/°C C/wt% | Conventional Pyrolysis Temperature | Cryogenic Pretreatment Temperature | |||||
---|---|---|---|---|---|---|---|
500 | 700 | 900 | 0 | −30 | −60 | −90 | |
XBD | |||||||
Benzenes | 5.17 | 10.49 | 15.43 | 0.31 | 0.71 | 0.37 | 0.49 |
Phenols | 19.07 | 16.37 | 0.46 | 21.95 | 15.08 | 12.02 | 9.33 |
PAHs | 32.50 | 52.8 | 72.78 | 27.83 | 30.81 | 22.35 | 27.66 |
Aromatics | 7.56 | 11.27 | 8.85 | 16.51 | 23.58 | 28.78 | 28.12 |
Alkanes | 19.35 | 2.07 | 0 | 12.73 | 13.39 | 16.63 | 17.78 |
Others | 16.35 | 7.00 | 2.47 | 20.67 | 16.43 | 19.83 | 16.58 |
YS | |||||||
Benzenes | 14.46 | 19.04 | 22.98 | 0.26 | 0.47 | 0.41 | 0.50 |
Phenols | 22.83 | 14.25 | 6.90 | 11.75 | 10.23 | 9.56 | 8.98 |
PAHs | 23.24 | 51.88 | 54.69 | 32.53 | 32.55 | 27.79 | 23.55 |
Aromatics | 9.67 | 11.86 | 10.77 | 14.44 | 19.49 | 20.37 | 23.26 |
Alkanes | 13.07 | 0 | 2.68 | 17.96 | 18.9 | 15.30 | 24.09 |
Others | 16.73 | 2.98 | 1.97 | 23.06 | 18.36 | 26.57 | 19.62 |
HCG | |||||||
Benzenes | 3.79 | 11.52 | 17.07 | 1.45 | 1.06 | 0.27 | 0.46 |
Phenols | 27.68 | 17.42 | 0.41 | 15.97 | 10.01 | 19.43 | 11.41 |
PAHs | 16.68 | 55.98 | 71.60 | 14.15 | 17.24 | 15.41 | 12.34 |
Aromatics | 8.43 | 15.08 | 10.92 | 9.38 | 13.73 | 14.00 | 22.40 |
Alkanes | 36.64 | 0 | 0 | 46.71 | 42.2 | 33.21 | 38.21 |
Others | 6.78 | 0 | 0 | 12.34 | 15.76 | 17.68 | 15.18 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, T.; Chen, L.; Chen, J.; Lei, Y.; Wang, X.; Yang, X.; Yang, Z. Characteristics of Pyrolysis Products of Tar-Rich Coal Under Cryogenic Pretreatment with Liquid Nitrogen. Processes 2025, 13, 1064. https://doi.org/10.3390/pr13041064
Xu T, Chen L, Chen J, Lei Y, Wang X, Yang X, Yang Z. Characteristics of Pyrolysis Products of Tar-Rich Coal Under Cryogenic Pretreatment with Liquid Nitrogen. Processes. 2025; 13(4):1064. https://doi.org/10.3390/pr13041064
Chicago/Turabian StyleXu, Tao, Lingyun Chen, Jie Chen, Yurui Lei, Xinxin Wang, Xinyu Yang, and Zhifu Yang. 2025. "Characteristics of Pyrolysis Products of Tar-Rich Coal Under Cryogenic Pretreatment with Liquid Nitrogen" Processes 13, no. 4: 1064. https://doi.org/10.3390/pr13041064
APA StyleXu, T., Chen, L., Chen, J., Lei, Y., Wang, X., Yang, X., & Yang, Z. (2025). Characteristics of Pyrolysis Products of Tar-Rich Coal Under Cryogenic Pretreatment with Liquid Nitrogen. Processes, 13(4), 1064. https://doi.org/10.3390/pr13041064