Development and Chemical, Physical, Functional, and Multi-Element Profile Characterization of Requeijão with Guabiroba Pulp
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Raw Materials
2.3. Sample Preparation
2.3.1. Guabiroba Pulp Production
2.3.2. Production of Requeijão
2.4. Physicochemical Analysis
2.5. Colorimetric Analysis
2.6. Texture Analysis
2.7. Carotenoid Content
2.8. Multi-Element Profile
2.9. Scanning Electron Microscopy (SEM)
2.10. Statistical Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Moura, R.S.; Guimarães, J.T.; Scudino, H.; Freitas, M.Q.; Mársico, E.T.; Esmerino, E.A.; Sant’Anna, C.; Henrique Campelo Félix, P.; Pimentel, T.C.; Paulino, B.N.; et al. Thermosonication as an effective substitution for fusion in Brazilian cheese spread (Requeijão cremoso) manufacturing: The effect of ultrasonic power on technological properties. Ultrason. Sonochem. 2024, 105, 106867. [Google Scholar] [CrossRef]
- Kwon, Y.H.; Banskota, S.; Wang, H.; Rossi, L.; Grondin, J.A.; Syed, S.A.; Yousefi, Y.; Schertzer, J.D.; Morrison, K.M.; Wade, M.G.; et al. Chronic exposure to synthetic food colorant Allura Red AC promotes susceptibility to experimental colitis via intestinal serotonin in mice. Nat. Commun. 2022, 13, 7617. [Google Scholar] [CrossRef]
- de Oliveira, Z.B.; Silva da Costa, D.V.; da Silva dos Santos, A.C.; da Silva Júnior, A.Q.; de Lima Silva, A.; de Santana, R.C.F.; Costa, I.C.G.; de Sousa Ramos, S.F.; Padilla, G.; da Silva, S.K.R. Synthetic Colors in Food: A Warning for Children’s Health. Int. J. Environ. Res. Public Health 2024, 21, 682. [Google Scholar] [CrossRef]
- Pereira, M.C.; Steffens, R.S.; Jablonski, A.; Hertz, P.F.; de O. Rios, A.; Vizzotto, M.; Flôres, S.H. Characterization and Antioxidant Potential of Brazilian Fruits from the Myrtaceae Family. J. Agric. Food Chem. 2012, 60, 3061–3067. [Google Scholar] [CrossRef]
- Prestes, A.; Helm, C.V.; Esmerino, E.A.; Silva, R.; da Cruz, A.G.; Prudencio, E.S. Potential Properties of Guabiroba (Campomanesia xanthocarpa O. Berg) Processing: A Native Brazilian Fruit. Adv. Food Technol. Nutr. Sci.-Open J. 2022, 8, 1–13. [Google Scholar] [CrossRef]
- Sharma, S.; Kumar, A.; Kumar, S.; Katare, A.K.; Bhat, H.F.; Aadil, R.M.; Bhat, Z.F. Grewia asiatica fruit extract-based kalari cheese for enhanced storage stability and functional value. Food Chem. Adv. 2023, 3, 100520. [Google Scholar] [CrossRef]
- Shabbir, M.A.; Mehak, F.; Khan, Z.M.; Ahmed, W.; Haq, S.M.A.U.; Khan, M.R.; Bhat, Z.F.; Aadil, R.M. Delving the role of nutritional psychiatry to mitigate the COVID-19 pandemic induced stress, anxiety and depression. Trends Food Sci. Technol. 2022, 120, 25–35. [Google Scholar] [CrossRef]
- Dalastra, V.; Kael, C.; Bonatto, S.J.R.; Yamazaki, R.K. Chemical evaluation and biological activity of bioactive compounds from Campomanesia xanthocarpa Berg. Res. Soc. Dev. 2022, 11, e30011931561. [Google Scholar] [CrossRef]
- Prestes, A.; Fermino Silveira, M.; Helena, M.; Canella, M.; Vieira Helm, C.; Regina, D.; Andrade, M.; Letícia, A.; Ferreira, A.; Dias De Melo, R.; et al. Whey block freeze concentration aiming a functional fermented lactic beverage with the addition of probiotic and guabiroba pulp (Campomanesia xanthocarpa O. Berg), a native Brazilian fruit. Food Sci. Technol. 2023, 43, 2023. [Google Scholar] [CrossRef]
- Prestes, A.A.; Verruck, S.; Vargas, M.O.; Canella, M.H.M.; Silva, C.C.; da Silva Barros, E.L.; Dantas, A.; de Oliveira, L.V.A.; Maran, B.M.; Matos, M.; et al. Influence of guabiroba pulp (campomanesia xanthocarpa o. berg) added to fermented milk on probiotic survival under in vitro simulated gastrointestinal conditions. Food Res. Int. 2021, 141, 110135. [Google Scholar] [CrossRef]
- Prestes, A.A.; Andrade, D.R.M.; Canella, M.H.M.; Haas, I.C.d.S.; Helm, C.V.; Gois, J.S.d.; Block, J.M.; Wanderley, B.R.d.S.M.; Amboni, R.D.d.M.C.; da Cruz, A.G.; et al. The Addition of Concentrated Cold-Pressed Guabiroba Juice to Yogurts: Effects on the Physicochemical Analyses, Antioxidant Activity, Carotenoid Content, Total Phenolic Compounds, and Mineral Profile. Process 2024, 12, 1915. [Google Scholar] [CrossRef]
- Prestes, A.A.; Marafon, K.; Carvalho, A.C.F.; Andrade, D.R.M.; Helm, C.V.; de Gois, J.S.; da Silva Monteiro Wanderley, B.R.; de Mello Castanho Amboni, R.D.; Prudencio, E.S. The Functional Carbonated Beverage Properties of Guabiroba Juice Using the Ice Fraction from Gravitational Block Freeze Concentration. Process 2024, 12, 2235. [Google Scholar] [CrossRef]
- Rodriguez-Amaya, D.B. A Guide to Carotenoid analysis in Foods; Ilsi Press: Washington, DC, USA, 2001. [Google Scholar]
- Lobato-Calleros, C.; Ramírez-Santiago, C.; Osorio-Santiago, V.J.; Vernon-Carter, E.J.; Hornelas-Uribe, Y. Microstructure and texture of manchego cheese-like products made with canola oil, lipophilic and hydrophilic emulsifiers. J. Texture Stud. 2002, 33, 165–182. [Google Scholar] [CrossRef]
- Rigo, M.; de Oliveira, O.W.C.; Bastos, R.G.; da Silva, M.A.; Bezerra, J.R.M.V.; Teixeira, Â.M. Efeito da temperatura no comportamento reológico de bebida láctea de guabiroba. Rev. Ciência Tecnol. Ambient. 2022, 12, e12228. [Google Scholar] [CrossRef]
- Oliveira, R.B.A.; Baptista, R.C.; Chincha, A.A.I.A.; Conceição, D.A.; Nascimento, J.S.; Costa, L.E.O.; Cruz, A.G.; Sant’Ana, A.S. Thermal inactivation kinetics of Paenibacillus sanguinis 2301083PRC and Clostridium sporogenes JCM1416MGA in full and low fat “requeijão cremoso”. Food Control 2018, 84, 395–402. [Google Scholar] [CrossRef]
- Malherbi, N.M.; Schmitz, A.C.; Grando, R.C.; Bilck, A.P.; Yamashita, F.; Tormen, L.; Fakhouri, F.M.; Velasco, J.I.; Bertan, L.C. Corn starch and gelatin-based films added with guabiroba pulp for application in food packaging. Food Packag. Shelf Life 2019, 19, 140–146. [Google Scholar] [CrossRef]
- Leonarski, E.; dos Reis, N.N.; Bertan, L.C.; Pinto, V.Z. Optimization and sensorial evaluation of guabiroba jam with prebiotic. Pesqui. Agropecuária Bras. 2020, 55, e01841. [Google Scholar] [CrossRef]
- Vollmer, A.H.; Kieferle, I.; Youssef, N.N.; Kulozik, U. Mechanisms of structure formation underlying the creaming reaction in a processed cheese model system as revealed by light and transmission electron microscopy. J. Dairy Sci. 2021, 104, 9505–9520. [Google Scholar] [CrossRef]
- Huynh, N.; Van Camp, J.; Smagghe, G.; Raes, K. Improved Release and Metabolism of Flavonoids by Steered Fermentation Processes: A Review. Int. J. Mol. Sci. 2014, 15, 19369–19388. [Google Scholar] [CrossRef]
- Biegalski, J. Water activity of smoked pasta filata cheese during storage. Electron. J. Polish Agric. Univ. 2020, 23, 1–9. [Google Scholar] [CrossRef]
- Gavahian, M.; Tiwari, B.K.; Chu, Y.-H.; Ting, Y.; Farahnaky, A. Food texture as affected by ohmic heating: Mechanisms involved, recent findings, benefits, and limitations. Trends Food Sci. Technol. 2019, 86, 328–339. [Google Scholar] [CrossRef]
- Brighenti, M.; Govindasamy-Lucey, S.; Jaeggi, J.J.; Johnson, M.E.; Lucey, J.A. Effect of substituting whey cream for sweet cream on the textural and rheological properties of cream cheese. J. Dairy Sci. 2021, 104, 10500–10512. [Google Scholar] [CrossRef]
- Amaral, J.B.S.; Grisi, C.V.B.; Vieira, E.A.; Ferreira, P.S.; Rodrigues, C.G.; Diniz, N.C.M.; Vieira, P.P.F.; dos Santos, N.A.; Gonçalves, M.C.; Braga, A.L.M.; et al. Light cream cheese spread of goat milk enriched with phytosterols: Physicochemical, rheological, and microbiological characterization. Lebensm.-Wiss. Technol. 2022, 157, 113103. [Google Scholar] [CrossRef]
- Alves, A.M.; Alves, M.S.O.; de Oliveira Fernandes, T.; Naves, R.V.; Naves, M.M.V. Caracterização física e química, fenólicos totais e atividade antioxidante da polpa e resíduo de gabiroba. Rev. Bras. Frutic. 2013, 35, 837–844. [Google Scholar] [CrossRef]
- Szafrańska, J.O.; Sołowiej, B.G. Effect of different fibres on texture, rheological and sensory properties of acid casein processed cheese sauces. Int. J. Food Sci. Technol. 2020, 55, 1971–1979. [Google Scholar] [CrossRef]
- Ningtyas, D.W.; Bhandari, B.; Bansal, N.; Prakash, S. Sequential aspects of cream cheese texture perception using temporal dominance of sensations (TDS) tool and its relation with flow and lubrication behaviour. Food Res. Int. 2019, 120, 586–594. [Google Scholar] [CrossRef] [PubMed]
- Wee, M.S.M.; Goh, A.T.; Stieger, M.; Forde, C.G. Correlation of instrumental texture properties from textural profile analysis (TPA) with eating behaviours and macronutrient composition for a wide range of solid foods. Food Funct. 2018, 9, 5301–5312. [Google Scholar] [CrossRef] [PubMed]
- De Souza, V.R.; Pereira, P.A.P.; Gomes, U.J.; Carneiro, J. de D.S. Avaliação e definição do perfil de textura ideal de queijo petit suisse. Rev. Inst. Laticínios Cândido Tostes 2011, 66, 48–53. [Google Scholar]
- Inoue, K.; Fu, W.; Nakamura, T. Explaining the different textures of commercial processed cheese from fractured structures. Int. Dairy J. 2019, 97, 40–48. [Google Scholar] [CrossRef]
- Ahmed, M.; Shafqat, S.S.; Javed, A.; Sanaullah, M.; Shakoor, A.; Shafiq, M.I.; Shahzadi, S.K.; Wani, T.A.; Zargar, S. Exposure Assessment of Essential and Potentially Toxic Metals in Wheat-Based Sweets for Human Consumption: Multivariate Analysis and Risk Evaluation Studies. Molecules 2023, 28, 7365. [Google Scholar] [CrossRef]
- Nędzarek, A.; Czerniejewski, P. The edible tissues of the major European population of the invasive Chinese mitten crab (Eriocheir sinensis) in the Elbe River, Germany, as a valuable and safe complement in essential elements to the human diet. J. Food Compos. Anal. 2021, 96, 103713. [Google Scholar] [CrossRef]
- Nuapia, Y.; Chimuka, L.; Cukrowska, E. Assessment of heavy metals in raw food samples from open markets in two African cities. Chemosphere 2018, 196, 339–346. [Google Scholar] [CrossRef] [PubMed]
- Doroszkiewicz, J.; Farhan, J.A.; Mroczko, J.; Winkel, I.; Perkowski, M.; Mroczko, B. Common and Trace Metals in Alzheimer’s and Parkinson’s Diseases. Int. J. Mol. Sci. 2023, 24, 15721. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, A.G.; Renu, K.; Gopalakrishnan, A.V.; Veeraraghavan, V.P.; Vinayagam, S.; Paz-Montelongo, S.; Dey, A.; Vellingiri, B.; George, A.; Madhyastha, H.; et al. Heavy Metal and Metalloid Contamination in Food and Emerging Technologies for Its Detection. Sustainability 2023, 15, 1195. [Google Scholar] [CrossRef]
- Bilandžić, N.; Sedak, M.; Čalopek, B.; Đokić, M.; Varenina, I.; Kolanović, B.S.; Luburić, Đ.B.; Varga, I.; Hruškar, M. Dietary exposure of the adult Croatian population to meat, liver and meat products from the Croatian market: Health risk assessment. J. Food Compos. Anal. 2021, 95, 103672. [Google Scholar] [CrossRef]
- Jachimowicz-Rogowska, K.; Winiarska-Mieczan, A. Initiatives to Reduce the Content of Sodium in Food Products and Meals and Improve the Population’s Health. Nutrients 2023, 15, 2393. [Google Scholar] [CrossRef]
- Turck, D.; Castenmiller, J.; de Henauw, S.; Hirsch-Ernst, K.; Kearney, J.; Knutsen, H.K.; Maciuk, A.; Mangelsdorf, I.; McArdle, H.J.; Pelaez, C.; et al. Dietary reference values for sodium. EFSA J. 2019, 17, e05778. [Google Scholar] [CrossRef]
- Huang, Z.; Hu, H.; Shen, F.; Wu, B.; Wang, X.; Zhang, B.; Wang, W.; Liu, L.; Liu, J.; Chen, C.; et al. Relatively high acidity is an important breeding objective for fresh juice-specific apple cultivars. Sci. Hortic. 2018, 233, 29–37. [Google Scholar] [CrossRef]
- Khan, I.T.; Nadeem, M.; Imran, M.; Ullah, R.; Ajmal, M.; Jaspal, M.H. Antioxidant properties of Milk and dairy products: A comprehensive review of the current knowledge. Lipids Health Dis. 2019, 18, 41. [Google Scholar] [CrossRef]
- Mitchell, S.C. Nutrition and Sulfur; Academic Press: Cambridge, MA, USA, 2021; pp. 123–174. [Google Scholar]
- Toft, U.; Riis, N.L.; Jula, A. Potassium—A scoping review for Nordic Nutrition Recommendations 2023. Food Nutr. Res. 2024, 68, 1–9. [Google Scholar] [CrossRef]
- Pogozheva, A.V.; Kodentsova, V.M.; Sharafetdinov, K.K. The role of magnesium and potassium in preventive and therapeutic nutrition. Probl. Nutr. 2022, 91, 29–42. [Google Scholar] [CrossRef] [PubMed]
- Cheng, D.; Ding, R.; Jin, X.; Lu, Y.; Bao, W.; Zhao, Y.; Chen, S.; Shen, C.; Yang, Q.; Wang, Y. Strontium Ion-Functionalized Nano-Hydroxyapatite/Chitosan Composite Microspheres Promote Osteogenesis and Angiogenesis for Bone Regeneration. ACS Appl. Mater. Interfaces 2023, 15, 19951–19965. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Lu, Y.; Feng, L.; Hao, W.; Li, C.; Yang, Y.; Fan, X.; Li, Q.; Zhang, C.; Liu, Q. Genetic Dissection and Functional Differentiation of ALK a and ALK b, Two Natural Alleles of the ALK/SSIIa Gene, Responding to Low Gelatinization Temperature in Rice. Rice 2020, 13, 39. [Google Scholar] [CrossRef] [PubMed]
- Lowe, N.M.; Hall, A.G.; Broadley, M.R.; Foley, J.; Boy, E.; Bhutta, Z.A. Preventing and Controlling Zinc Deficiency Across the Life Course: A Call to Action. Adv. Nutr. 2024, 15, 100181. [Google Scholar] [CrossRef]
- Manzi, P.; Di Costanzo, M.G.; Ritota, M. Content and Nutritional Evaluation of Zinc in PDO and Traditional Italian Cheeses. Molecules 2021, 26, 6300. [Google Scholar] [CrossRef]
- Prudêncio, E.S.; Müller, C.M.O.; Fritzen-Freire, C.B.; Amboni, R.D.M.C.; Petrus, J.C.C. Effect of whey nanofiltration process combined with diafiltration on the rheological and physicochemical properties of ricotta cheese. Food Res. Int. 2014, 56, 92–99. [Google Scholar] [CrossRef]
Ingredients | Amount (g) |
---|---|
Salted fresh ricotta | 760 |
Slated butter | 300 |
Whole UHT (ultra-high-temperature) milk | 600 |
Parameters | Samples | ||||
---|---|---|---|---|---|
Control | 5 | 10 | 15 | 20 | |
pH | 5.08 ± 0.02 a | 5.03 ± 0.04 a | 4.24 ± 0.05 c | 4.79 ± 0.02 b | 4.76 ± 0.03 b |
aw | 0.91 ± 0.02 | 0.91 ± 0.01 | 0.91 ± 0.01 | 0.91 ± 0.01 | 0.91 ± 0.01 |
L* | 88.53 ± 0.84 a | 81.96 ± 0.59 b | 77.00 ± 0.37 c | 69.73 ± 0.74 d | 63.54 ± 0.33 e |
a* | 4.95 ± 0.12 e | 11.52 ± 0.18 d | 14.90 ± 0.21 c | 18.14 ± 0.29 a | 16.89 ± 0.13 b |
b* | 28.89 ± 0.41 e | 35.56 ± 0.80 d | 42.17 ± 0.51 b | 47.06 ± 0.51 a | 39.47 ± 0.65 c |
Parameter | Samples | ||||
---|---|---|---|---|---|
Control | 5 | 10 | 15 | 20 | |
Firmness (N) | 14.3 ± 6.4 a | 11.3 ± 0.3 a | 10.8 ± 0.6 a | 5.2 ± 2.2 b | 9.9 ± 1.2 a |
Adhesiveness (N.s) | −10.7 ± 0.5 a | −9.1 ± 0.5 b | −9.1 ± 0.1 b | −8.1 ± 1.0 b | −10.3 ± 1.8 a,b |
Resilience * | 3.7 ± 1.2 | 2.5 ± 0.1 | 3.0 ± 0.7 | 3.1 ± 0.9 | 2.4 ± 0.1 |
Cohesiveness * | 0.6 ± 0.1 b | 0.8 ± 0.1 a,b | 0.9 ± 0.1 a | 1.0 ± 0.1 a | 1.0 ± 0.1 a |
Element (mg/g) | Requeijão Sample | ||||
---|---|---|---|---|---|
Control | 5 | 10 | 15 | 20 | |
Al | <LOD | <LOD | <LOD | <LOD | <LOD |
As | <LOD | <LOD | <LOD | <LOD | <LOD |
Ca | 1.89 ± 0.07 a | 1.94 ± 0.02 a | 1.73 ± 0.06 b | 1.68 ± 0.07 b,c | 1.59 ± 0.07 c |
Cd | <LOD | <LOD | <LOD | <LOD | <LOD |
Co | <LOD | <LOD | <LOD | <LOD | <LOD |
Cr | <LOD | <LOD | <LOD | <LOD | <LOD |
Cu | <LOD | <LOD | <LOD | <LOD | <LOD |
Fe | <LOD | <LOD | <LOD | <LOD | <LOD |
K | 0.88 ± 0.02 c | 0.99 ± 0.01 b | 0.97 ± 0.01 b | 1.05 ± 0.03 a | 1.08 ± 0.03 a |
Mg | 0.10 ± 0.01 | 0.10 ±0.01 | 0.09 ± 0.01 | 0.09 ± 0.01 | 0.09 ± 0.01 |
Mn | <LOD | <LOD | <LOD | <LOD | <LOD |
Na | 3.03 ± 0.16 a | 3.15 ± 0.03 a | 2.70 ± 0.04 b | 2.69 ± 0.17 b | 2.60 ± 0.08 b |
P | 1.49 ± 0.02 a | 1.46 ± 0.03 a | 1.33 ± 0.09 b | 1.29 ± 0.01 b | 1.24 ± 0.06 b |
Pb | <LOD | <LOD | <LOD | <LOD | <LOD |
S | 1.39 ± 0.04 a | 1.33 ± 0.04 a | 1.24 ± 0.05 b | 1.23 ± 0.03 b | 1.20 ± 0.02 b |
Se | <LOD | <LOD | <LOD | <LOD | <LOD |
Sr | 0.01 ± 0.01 | 0.01 ± 0.01 | 0.01 ± 0.01 | 0.01 ± 0.01 | 0.01 ± 0.01 |
Zn | Presence | Presence | Presence | Presence | Presence |
Carotenoids Content | Samples | ||||
---|---|---|---|---|---|
Control | 5 | 10 | 15 | 20 | |
α-carotene (µg/g) | <LD | 0.24 ± 0.01 d | 0.51 ± 0.02 c | 0.70 ± 0.02 b | 0.94 ± 0.03 a |
β-carotene (µg/g) | 8.11 ± 0.02 e | 8.41 ± 0.02 d | 8.72 ± 0.03 c | 8.96 ± 0.07 b | 9.25 ± 0.05 a |
β-criptoxantin (µg/g) | <LD | 0.31± 0.01 d | 0.58 ± 0.07 c | 0.84 ± 0.11 b | 1.13 ± 0.06 a |
λ-carotene (µg/g) | <LD | 0.22 ± 0.04 d | 0.42 ± 0.01 c | 0.64 ± 0.12 b | 0.84 ± 0.02 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prestes, A.A.; de Kacia Souza Coelho, B.; de Oliveira Mindelo, L.J.; Carvalho, A.C.F.; de Gois, J.S.; Andrade, D.R.M.; de Souza, C.K.; Helm, C.V.; da Cruz, A.G.; Prudencio, E.S. Development and Chemical, Physical, Functional, and Multi-Element Profile Characterization of Requeijão with Guabiroba Pulp. Processes 2025, 13, 1322. https://doi.org/10.3390/pr13051322
Prestes AA, de Kacia Souza Coelho B, de Oliveira Mindelo LJ, Carvalho ACF, de Gois JS, Andrade DRM, de Souza CK, Helm CV, da Cruz AG, Prudencio ES. Development and Chemical, Physical, Functional, and Multi-Element Profile Characterization of Requeijão with Guabiroba Pulp. Processes. 2025; 13(5):1322. https://doi.org/10.3390/pr13051322
Chicago/Turabian StylePrestes, Amanda Alves, Brunna de Kacia Souza Coelho, Leandro José de Oliveira Mindelo, Ana Caroline Ferreira Carvalho, Jefferson Santos de Gois, Dayanne Regina Mendes Andrade, Carolina Krebs de Souza, Cristiane Vieira Helm, Adriano Gomes da Cruz, and Elane Schwinden Prudencio. 2025. "Development and Chemical, Physical, Functional, and Multi-Element Profile Characterization of Requeijão with Guabiroba Pulp" Processes 13, no. 5: 1322. https://doi.org/10.3390/pr13051322
APA StylePrestes, A. A., de Kacia Souza Coelho, B., de Oliveira Mindelo, L. J., Carvalho, A. C. F., de Gois, J. S., Andrade, D. R. M., de Souza, C. K., Helm, C. V., da Cruz, A. G., & Prudencio, E. S. (2025). Development and Chemical, Physical, Functional, and Multi-Element Profile Characterization of Requeijão with Guabiroba Pulp. Processes, 13(5), 1322. https://doi.org/10.3390/pr13051322