Evaluation of Process Parameters on Phenolic Recovery and Antioxidant Activity Using Ultrasonic and Microwave-Assisted Extraction from Pineapple Peel
Abstract
1. Introduction
2. Materials and Methods
2.1. Reagents and Materials
2.2. Conditioning of Raw Material
2.3. UAE for the Recovery of Phenolic Compounds Using BBH Experimental Design
2.4. MAE for the Recovery of Phenolic Compounds Using BHH Experimental Design
2.5. Quantification of Polyphenolic Compounds
2.6. Identification of Polyphenolic Compounds by HPLC-MS
2.7. Determination of Antioxidant Activity
2.8. Statistical Analysis
3. Results and Discussion
3.1. Analysis of Polyphenol Extraction Using UAE
3.2. Effect of Independent Variables on Condensed Polyphenols by UAE
3.3. Analysis of Polyphenol Extraction Using MAE
3.4. Effect of Independent Variables on the Condensed Polyphenols by MAE
3.5. Identification of the Main Polyphenols Using HPLC-MS
3.6. Antioxidant Activity of the Best Treatments Using UAE and MAE
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO. Available online: https://www.fao.org/faostat/en/#home (accessed on 14 June 2025).
- Polanía, A.M.; Londoño, L.; Ramírez, C.; Bolivar, G.; Aguilar, C.N. Valorization of Pineapple Waste as Novel Source of Nutraceuticals and Biofunctional Compounds. Biomass Convers. Biorefin. 2023, 13, 3593–3618. [Google Scholar] [CrossRef]
- Aili Hamzah, A.F.; Hamzah, M.H.; Che Man, H.; Jamali, N.S.; Siajam, S.I.; Ismail, M.H. Recent Updates on the Conversion of Pineapple Waste (Ananas comosus) to Value-Added Products, Future Perspectives and Challenges. Agronomy 2021, 11, 2221. [Google Scholar] [CrossRef]
- García-De la Cruz, R.; García-López, E. Combined Effects of Cover Crops and Herbicide Rotation as Proactive Weed Management in Pineapple (Ananas comosus L. Merr) in Huimanguillo, Tabasco, Mexico. Agro Product. 2021, 14, 97–108. [Google Scholar] [CrossRef]
- Uresti Gil, J.; Vélez-Izquierdo, A.; Espinosa-García, J.A.; Jolalpa-Barrera, J.L.; Rangel-Quintos, J.; Uresti-Duran, D. Technical-Economic Study to Identify Areas with Potential to Produce Pineapple in the Humid Tropics of Mexico. Rev. Mex. Cienc. Agric 2020, 11, 1619–1632. [Google Scholar] [CrossRef]
- Sánchez-Hernández, M.A.; Huja-Mendoza, S.; Acevedo-Gómez, R. Ciencias de la Biología y Agronomía. Handbook T-I, 1st ed.; Universidad del Papaloapan: Loma Bonita, Oaxaca, Mexico, 2015; pp. 100–110. [Google Scholar]
- Torres-Avila, A.; Aguilar-Ávila, J.; Santoyo-Cortés, V.H.; Martínez-González, E.G.; Aguilar-Gallegos, N. Innovation in the Pineapple Value Chain in Mexico: Explaining the Global Adoption Process of the MD-2 Hybrid. Agric. Syst. 2022, 198, 103386. [Google Scholar] [CrossRef]
- Roselli, V.; Pugliese, G.; Leuci, R.; Brunetti, L.; Gambacorta, L.; Tufarelli, V.; Piemontese, L. Green Methods to Recover Bioactive Compounds from Food Industry Waste: A Sustainable Practice from the Perspective of the Circular Economy. Molecules 2024, 29, 2682. [Google Scholar] [CrossRef]
- Chaudhary, V.; Kumar, V.; Sunil, V.; Singh, K.; Kumar, R.; Kumar, V. Pineapple (Ananas cosmosus) Product Processing: A Review. J. Pharmacogn. Phytochem. 2019, 8, 4642–4652. [Google Scholar]
- Kumar, A. Utilization of bioactive components present in pineapple waste: A review. J. Pharm. Innov. 2021, 10, 954–961. [Google Scholar]
- Abraham, R.A.; Joshi, T.J.; Abdullah, S. A Comprehensive Review of Pineapple Processing and its By-Product Valorization in India. Food Chem. Adv. 2023, 3, 100416. [Google Scholar] [CrossRef]
- Mohd, A.M.; Hashim, N.; Aziz, S.A.; Lasekan, O. Pineapple (Ananas comosus): A Comprehensive Review of Nutritional Values, Volatile Compounds, Health Benefits, and Potential Food Products. Food Res. Int. 2020, 137, 109675. [Google Scholar] [CrossRef] [PubMed]
- Palos-Hernández, A.; González-Paramás, A.M.; Santos-Buelga, C. Latest Advances in Green Extraction of Polyphenols from Plants, Foods and Food By-Products. Molecules 2025, 30, 55. [Google Scholar] [CrossRef]
- Garcia-Vaquero, M.; Ravindran, R.; Walsh, O.; O’Doherty, J.; Jaiswal, A.K.; Tiwari, B.K.; Rajauria, G. Evaluation of Ultrasound, Microwave, Ultrasound–Microwave, Hydrothermal and High Pressure Assisted Extraction Technologies for the Recovery of Phytochemicals and Antioxidants from Brown Macroalgae. Mar. Drugs 2021, 19, 309. [Google Scholar] [CrossRef]
- Santos, T.R.J.; Santana, L.C.L.d.A. Conventional and Emerging Techniques for Extraction of Bioactive Compounds from Fruit Waste. Braz. J. Food Technol. 2022, 25, 1–18. [Google Scholar] [CrossRef]
- da Rocha, C.; Noreña, C. Microwave-Assisted Extraction and Ultrasound-Assisted Extraction of Bioactive Compounds from Grape Pomace. Int. J. Food Eng. 2020, 16, 20190191. [Google Scholar] [CrossRef]
- Caputo, L.; Quintieri, L.; Cavalluzzi, M.M.; Lentini, G.; Habtemariam, S. Antimicrobial and Antibiofilm Activities of Citrus Water-Extracts Obtained by Microwave-Assisted and Conventional Methods. Biomedicines 2018, 6, 70. [Google Scholar] [CrossRef] [PubMed]
- García-Villegas, A.; Rojas-García, A.; Villegas-Aguilar, M.d.C.; Fernández-Moreno, P.; Fernández-Ochoa, Á.; Cádiz-Gurrea, M.d.l.L.; Arráez-Román, D.; Segura-Carretero, A. Cosmeceutical Potential of Major Tropical and Subtropical Fruit By-Products for a Sustainable Revalorization. Antioxidants 2022, 11, 203. [Google Scholar] [CrossRef] [PubMed]
- Yahya, N.A.; Wahab, R.A.; Xine, T.L.S.; Hamid, M.A. Ultrasound-Assisted Extraction of Polyphenols from Pineapple Skin. AIP Conf. Proc. 2019, 2155, 020002. [Google Scholar] [CrossRef]
- Bansod, S.P.; Parikh, J.K.; Sarangi, P.K. Pineapple Peel Waste Valorization for Extraction of Bio-Active Compounds and Protein: Microwave Assisted Method and Box Behnken Design Optimization. Environ. Res. 2023, 221, 115237. [Google Scholar] [CrossRef]
- Wang, J.; Ren, B.; Bak, K.H.; Soladoye, O.P.; Gagaoua, M.; Ruiz-Carrascal, J.; Huang, Y.; Zhao, Z.; Zhao, Y.; Fu, Y.; et al. Preservative effects of composite biopreservatives on goat meat during chilled storage: Insights into meat quality, high-throughput sequencing and molecular docking. LWT 2023, 184, 115033. [Google Scholar] [CrossRef]
- Espitia-Hernández, P.; Ruelas-Chacón, X.; Chávez-González, M.L.; Ascacio-Valdés, J.A.; Flores-Naveda, A.; Sepúlveda-Torre, L. Solid-State Fermentation of Sorghum by Aspergillus oryzae and Aspergillus niger: Effects on Tannin Content, Phenolic Profile, and Antioxidant Activity. Foods 2022, 11, 3121. [Google Scholar] [CrossRef]
- De León-Medina, J.C.; Sepúlveda, L.; Buenrostro-Figueroa, J.J.; Mata-Gómez, M.A.; Flores-Gallegos, A.C.; Rodríguez-Herrera, R.; Aguilar, C.N.; Ascacio-Valdes, J.A. Production and Evaluation of Ellagitannase Activity Using a Pure Geraniin Substrate. Food Bioprod. Process. 2025, 149, 112–117. [Google Scholar] [CrossRef]
- Lasunon, P.; Phonkerd, N.; Tettawong, P.; Sengkhamparn, N. Total Phenolic Compound and its Antioxidant Activity of By-Product from Pineapple. Food Res. 2022, 6, 107–112. [Google Scholar] [CrossRef]
- Valdés García, A.; Domingo Martínez, M.I.; Ponce Landete, M.; Prats Moya, M.S.; Beltrán Sanahuja, A. Potential of Industrial Pineapple (Ananas comosus (L.) Merrill) By-Products as Aromatic and Antioxidant Sources. Antioxidants 2021, 10, 1767. [Google Scholar] [CrossRef]
- Sanahuja, A.B.; García, A.V.; Baenas, N.; Ferrando, B.O.; Periago, M.J.; Alonso, N.C.; Sánchez, R.; Todolí, J.L. Valorization of Pineapple Core Waste for Sequential Extraction of Phenolic Compounds and Carotenoids: Optimization Through Ultrasound-Assisted Method and Box–Behnken Design. Food Bioprocess Technol. 2025, 18, 2618–2631. [Google Scholar] [CrossRef]
- Zampar, G.G.; Zampar, I.C.; de Souza, S.B.S.; da Silva, C.; Barros, B.C.B. Effect of Solvent Mixtures on the Ultrasound-Assisted Extraction of Compounds from Pineapple By-Product. Food Biosci. 2022, 50, 102098. [Google Scholar] [CrossRef]
- Liu, S.-H.; Liu, Y.-G.; Zhang, X.-M. Extraction conditions and antioxidant activities of the extract of pineapple peel by ultrasonic. IOP Conf. Ser. Earth Environ. Sci. 2018, 186, 1–6. Available online: https://iopscience.iop.org/article/10.1088/1755-1315/186/4/012038/pdf (accessed on 3 August 2025). [CrossRef]
- Wang, H.; Deng, M.; Zhang, Z.; Zhang, J.; Wu, K.; Feng, J.; Li, S.; Tong, Y.W. Ultrasound-Assisted Extraction of Polyphenols from Apple Pomace Using Choline Chloride-Oxalic Acid Deep Eutectic Solvent: Characterization, Reusability, and Molecular Dynamics Simulation. Microchem. J. 2025, 214, 114149. [Google Scholar] [CrossRef]
- Huo, H.; Bao, H.; Yin, H. Optimization of Bioactive Polyphenols Recovery from Flammulina velutipes Stem Waste Using Nonionic Surfactant-Integrated Ultrasound-Assisted Extraction. Ultrason. Sonochem. 2025, 119, 107408. [Google Scholar] [CrossRef]
- Zheng, L.; Pedrós-Garrido, S.; Lyng, J.G.; Jacquier, J.C.; Harbourne, N. A Comparative Study of Pulsed Electric Field, Ultrasound, Milling, and Soaking as Pre-Treatments for Assistance in the Extraction of Polyphenols from Willow Bark (Salix alba). J. Appl. Res. Med. Aromat. Plants 2024, 43, 100591. [Google Scholar] [CrossRef]
- Zhang, S.; Tan, T.; Wang, J.; Ma, T.; Li, T. Green Extraction of Polyphenols from Pomegranate Seeds by Ultrasound-Assisted Deep Eutectic Solvent Extraction: Optimization and Bioactivity. Sustain. Chem. Pharm. 2024, 41, 101710. [Google Scholar] [CrossRef]
- Che, H.; Zhang, R.; Wang, X.; Yu, H.; Shi, X.; Yi, J.; Li, J.; Qi, Q.; Dong, R.; Li, Q. Ultrasound-Assisted Extraction of Polyphenols from Phyllanthi fructus: Comprehensive Insights from Extraction Optimization and Antioxidant Activity. Ultrason. Sonochem. 2024, 111, 107083. [Google Scholar] [CrossRef]
- Tan, M.-J.; Li, Y.; Zhao, S.-Q.; Yue, F.-H.; Cai, D.-J.; Wu, J.-T.; Zeng, X.-A.; Li, J.; Han, Z. Synergistic Ultrasound Pulsed Electric Field Extraction of Litchi Peel Polyphenols and Determination of Their Properties. Int. J. Biol. Macromol. 2024, 260, 129613. [Google Scholar] [CrossRef]
- Zhang, S.; Xie, H.; Huang, J.; Chen, Q.; Li, X.; Chen, X.; Liang, J.; Wang, L. Ultrasound-Assisted Extraction of Polyphenols from Pine Needles (Pinus elliottii): Comprehensive Insights from RSM Optimization, Antioxidant Activity, UHPLC-Q-Exactive Orbitrap MS/MS Analysis and Kinetic Model. Ultrason. Sonochem. 2024, 102, 106742. [Google Scholar] [CrossRef]
- Harith, N.S.; Rahman, N.A.; Zamanhuri, N.A.; Hashib, S.A. Microwave-Based Antioxidant Extraction from Pineapple Peel Waste. Mater. Today Proc. 2023, 87, 126–131. [Google Scholar] [CrossRef]
- Deo, S.K.; Sakhale, B.K. Studies of Different Solvents on Total Phenolic, Flavonoid Content, and Antioxidant Activities of Peel Extracts of Pineapple Peel Var. Jaldhup. Annals. Food Sci. Technol. 2023, 24, 14. [Google Scholar]
- Vargas-Serna, C.L.; Ochoa-Martínez, C.I.; Vélez-Pasos, C. Microwave-Assisted Extraction of Phenolic Compounds from Pineapple Peel Using Deep Eutectic Solvents. Horticulturae 2022, 8, 791. [Google Scholar] [CrossRef]
- Shijarath, T.R.; Madhu, G.; Sahoo, D.K.; Abdullah, S. Microwave Assisted Aqueous Extraction of Phenolic Compounds From Pomegranate and Banana Peels: Process Modelling and Optimization. Food Humanit. 2024, 3, 100456. [Google Scholar] [CrossRef]
- Gamarra-Castillo, O.; Hernández-Carrión, M.; Sánchez-Camargo, A.d.P. Revalorization of Purple Passion Fruit Peel: Compositional Analysis, Anthocyanin Microwave-Assisted Extraction, and Beverage Application. Future Foods 2025, 11, 100536. [Google Scholar] [CrossRef]
- Campos, D.A.; Ribeiro, T.B.; Teixeira, J.A.; Pastrana, L.; Pintado, M.M. Integral Valorization of Pineapple (Ananas comosus L.) By-Products through a Green Chemistry Approach towards Added Value Ingredients. Foods 2020, 9, 60. [Google Scholar] [CrossRef] [PubMed]
- Maia, F.d.A.; Fasolin, L.H. Recovery of Bioactive Compounds from Pineapple Waste Through High-Pressure Technologies. J. Supercrit. Fluids 2025, 218, 106455. [Google Scholar] [CrossRef]
- PubChem. Available online: https://pubchem.ncbi.nlm.nih.gov (accessed on 22 June 2025).
- Chen, X.; Li, L.; Zhu, W.; Teng, Y.; Qiu, Z.; Ji, W.; Zheng, Z.; Gong, J. Fabrication of Caffeoylquinic Acid-Loaded Burdock Polysaccharide Nanoparticles and Their Antioxidant Activity in Hydrogen Peroxide-Damaged Heparg Cells. Food Chem. X 2024, 22, 101293. [Google Scholar] [CrossRef]
- Azizan, A.; Lee, A.X.; Abdul Hamid, N.A.; Maulidiani, M.; Mediani, A.; Abdul Ghafar, S.Z.; Zolkeflee, N.K.Z.; Abas, F. Potentially Bioactive Metabolites from Pineapple Waste Extracts and Their Antioxidant and α-Glucosidase Inhibitory Activities by 1H NMR. Foods 2020, 9, 173. [Google Scholar] [CrossRef]
- Lourenço, S.C.; Campos, D.A.; Gómez-García, R.; Pintado, M.; Oliveira, M.C.; Santos, D.I.; Corrêa-Filho, L.C.; Moldão-Martins, M.; Alves, V.D. Optimization of Natural Antioxidants Extraction from Pineapple Peel and Their Stabilization by Spray Drying. Foods 2021, 10, 1255. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, F.; Gorissen, K.; Delerue-Matos, C.; Grosso, C. Valorisation of Agro-Food By-Products for the Extraction of Phenolic Compounds. Biol. Life Sci. Forum 2022, 18, 61. [Google Scholar] [CrossRef]
- Tapia-Quirós, P.; Granados, M.; Sentellas, S.; Saurina, J. Microwave-Assisted Extraction with Natural Deep Eutectic Solvents for Polyphenol Recovery From Agrifood Waste: Mature for Scaling-Up? Sci. Total Environ. 2023, 912, 168716. [Google Scholar] [CrossRef] [PubMed]
- Shen, L.; Pang, S.; Zhong, M.; Sun, Y.; Qayum, A.; Liu, Y.; Rashid, A.; Xu, B.; Liang, Q.; Ma, H.; et al. A Comprehensive Review of Ultrasonic Assisted Extraction (UAE) for Bioactive Components: Principles, Advantages, Equipment, and Combined Technologies. Ultrason. Sonochem. 2023, 101, 106646. [Google Scholar] [CrossRef]
- Chy, M.W.R.; Ahmed, T.; Iftekhar, J.; Islam, M.Z.; Rana, M.R. Optimization of Microwave-Assisted Polyphenol Extraction and Antioxidant Activity from Papaya Peel Using Response Surface Methodology and Artificial Neural Network. Appl. Food Res. 2024, 4, 100591. [Google Scholar] [CrossRef]
Treatment | Ratio (m/v) | Time (min) | Temperature (°C) | Solvent Concentration (%) |
---|---|---|---|---|
1 | −1 | −1 | −1 | 1 |
2 | 1 | −1 | −1 | −1 |
3 | −1 | 1 | −1 | −1 |
4 | 1 | 1 | −1 | 1 |
5 | −1 | −1 | 1 | 1 |
6 | 1 | −1 | 1 | −1 |
7 | −1 | 1 | 1 | −1 |
8 | 1 | 1 | 1 | 1 |
Levels | ||||
Factors | 1 | −1 | ||
Ratio (m/v) | 1:5 | 1:10 | ||
Time (min) | 30 | 10 | ||
Temperature (°C) | 40 | 20 | ||
Solvent concentration (%) | 50 | 0 |
Treatment | Power (W) | Ratio (m/v) | Time (min) | Temperature (°C) | Solvent Concentration (%) |
---|---|---|---|---|---|
1 | −1 | −1 | −1 | 1 | 1 |
2 | 1 | −1 | −1 | −1 | −1 |
3 | −1 | 1 | −1 | −1 | 1 |
4 | 1 | 1 | −1 | 1 | −1 |
5 | −1 | −1 | 1 | 1 | −1 |
6 | 1 | −1 | 1 | −1 | 1 |
7 | −1 | 1 | 1 | −1 | −1 |
8 | 1 | 1 | 1 | 1 | 1 |
Levels | |||||
Factors | 1 | −1 | |||
Power (W) | 300 | 100 | |||
Ratio (m/v) | 1:5 | 1:10 | |||
Time (min) | 10 | 5 | |||
Temperature (°C) | 40 | 20 | |||
Solvent concentration (%) | 50 | 0 |
Compound | Family | Structure 1 | Elemental Formula | [M-H]− |
---|---|---|---|---|
Treatment 3 (Ultrasound) | ||||
1-Caffeoylquinic acid | Hydroxycinnamic acids | C16H18O9 | 352.8 | |
p-Coumaric acid 4-O-glucoside | Hydroxycinnamic acids | C15H18O8 | 325.8 | |
Gardenin B | Methoxyflavones | C19H18O7 | 356.6 | |
Treatment 6 (Microwave) | ||||
Caffeic acid 4-O-glucoside | Hydroxycinnamic acids | C15H18O9 | 340.9 | |
1-Caffeoylquinic acid | Hydroxycinnamic acids | C16H18O9 | 352.8 | |
Caffeoyl tartaric acid | Hydroxycinnamic acids | C13H12O9 | 310.7 | |
Quercetin 3-O-rutinoside | Flavonols | C27H30O16 | 608.6 |
Treatment | DPPH (%) | ABTS (%) | FRAP (mgEqTrolox/g) |
---|---|---|---|
3 (Ultrasound) | 47.21 ± 8.06 | 54.70 ± 5.97 | 72.16 ± 27.20 |
6 (Microwave) | 52.17 ± 1.05 | 67.3 ± 0.13 | 90.40 ± 26.90 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Casas-Rodríguez, A.D.; Contreras, S.A.C.; González-Martínez, D.W.; Meléndez-Rentería, N.P.; Sáenz-Galindo, A.; Morales-Martínez, T.K.; Ascacio-Valdés, J.A.; Sepúlveda-Torre, L. Evaluation of Process Parameters on Phenolic Recovery and Antioxidant Activity Using Ultrasonic and Microwave-Assisted Extraction from Pineapple Peel. Processes 2025, 13, 2500. https://doi.org/10.3390/pr13082500
Casas-Rodríguez AD, Contreras SAC, González-Martínez DW, Meléndez-Rentería NP, Sáenz-Galindo A, Morales-Martínez TK, Ascacio-Valdés JA, Sepúlveda-Torre L. Evaluation of Process Parameters on Phenolic Recovery and Antioxidant Activity Using Ultrasonic and Microwave-Assisted Extraction from Pineapple Peel. Processes. 2025; 13(8):2500. https://doi.org/10.3390/pr13082500
Chicago/Turabian StyleCasas-Rodríguez, A. Danitza, S. Arturo C. Contreras, Dulce W. González-Martínez, Norma Paola Meléndez-Rentería, Aidé Sáenz-Galindo, Thelma K. Morales-Martínez, Juan A. Ascacio-Valdés, and Leonardo Sepúlveda-Torre. 2025. "Evaluation of Process Parameters on Phenolic Recovery and Antioxidant Activity Using Ultrasonic and Microwave-Assisted Extraction from Pineapple Peel" Processes 13, no. 8: 2500. https://doi.org/10.3390/pr13082500
APA StyleCasas-Rodríguez, A. D., Contreras, S. A. C., González-Martínez, D. W., Meléndez-Rentería, N. P., Sáenz-Galindo, A., Morales-Martínez, T. K., Ascacio-Valdés, J. A., & Sepúlveda-Torre, L. (2025). Evaluation of Process Parameters on Phenolic Recovery and Antioxidant Activity Using Ultrasonic and Microwave-Assisted Extraction from Pineapple Peel. Processes, 13(8), 2500. https://doi.org/10.3390/pr13082500