This study introduces a two-step treatment method for synthetic and real electric arc furnace dust (EAFD) wastewater, integrating sorption with Mg–Al layered double hydroxides (LDHs) and electrodialysis (ED). The hydrotalcite (LDH), mainly Mg
6Al
2(CO
3)OH
16·4H
2O
[...] Read more.
This study introduces a two-step treatment method for synthetic and real electric arc furnace dust (EAFD) wastewater, integrating sorption with Mg–Al layered double hydroxides (LDHs) and electrodialysis (ED). The hydrotalcite (LDH), mainly Mg
6Al
2(CO
3)OH
16·4H
2O (hydrotalcite-2H), was characterized by XRD, FTIR, SEM, and EDX, confirming its layered structure and ion-exchange capacity. Calcination at 550 °C was identified as optimal, enhancing sorption efficiency while retaining rehydration potential. Sorption tests demonstrated high effectiveness in removing multivalent ions, achieving over 99% elimination of Ca
2+, SO
42−, and Pb
2+ ions and Cr from both synthetic and real wastewater. In contrast, monovalent ions such as Na
+ and K
+ were not effectively removed, except for partial removal of Cl
−. To overcome this limitation, electrodialysis was applied in the second step, successfully targeting the remaining monovalent ions and achieving more than 95% conductivity reduction. A key challenge of ED, salt precipitation caused by calcium and sulphate in the concentrate, was effectively mitigated by the prior LDH treatment. The combined process minimized scaling risks, improved overall ion removal (above 97% for Na
+ and K
+), and produced low-salinity effluents (0.84 mS cm
−1), suitable for reuse in hydrometallurgical operations. These findings demonstrate that coupling LDH sorption with electrodialysis provides a sustainable and efficient strategy for treating high-salinity industrial wastewaters, particularly those originating from EAFD processes.
Full article