Dual-Scale Modelling of the Vacuum Drying Process for Transformer Cellulose-Based Insulation
Abstract
1. Introduction
2. Mathematical Model
2.1. Drying System Description
2.2. Governing Equations at the Scale of the Cellulose Insulation
2.3. Governing Equations at the Scale of the Vacuum Chamber
2.3.1. Convective Heat Transfer Coefficients Calculation
2.3.2. Radiative Heat Flow Rates Calculation
2.4. The Interface Between Transformer Cellulose Insulation and Vacuum Chamber Atmosphere
2.5. Initial Conditions
2.6. Numerical Solution Procedure
3. Results and Discussion
- IR heaters (when off, W);
- Vacuum pump (when off, m3/s);
- Venting/pressure relief valve (when off, ).
3.1. Test Case Results
3.2. Impact of the and K Parameters
3.3. Drying Case Results
3.4. Comparison with Existing Fickian Models
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations and Nomenclature
GAB | Guggenheim, Anderson, and de Boer |
0D | Zero-dimensional |
CFD | Computational fluid dynamics |
IR | Infrared |
ODE | Ordinary differential equation |
PDE | Partial differential equation |
Latin symbols | |
IR heater surface area, m2 | |
Transformer cellulose insulation outer surface area, m2 | |
Water activity, - | |
Vacuum chamber wall surface area, m2 | |
Klinkenberg parameter, Pa | |
Ambient dry air molar density, kmol/m3 | |
Dry air molar density of the vacuum chamber atmosphere, kmol/m3 | |
Ambient molar density, kmol/m3 | |
Molar density of the vacuum chamber atmosphere, kmol/m3 | |
Dry air molar heat capacity at constant pressure, J/(kmol∙K) | |
Gaseous-phase molar heat capacity at constant pressure, J/(kmol∙K) | |
Water vapor molar heat capacity at constant pressure, J/(kmol∙K) | |
Dry air molar heat capacity at constant volume, J/(kmol∙K) | |
Water vapor molar heat capacity at constant volume, J/(kmol∙K) | |
Gaseous-phase specific heat capacity at constant pressure, J/(kg∙K) | |
Ambient water vapor molar density, kmol/m3 | |
Water vapor molar density of the vacuum chamber atmosphere, kmol/m3 | |
Dry air molar density, kmol/m3 | |
Cellulose fibre specific heat capacity, J/(kg∙K) | |
Gaseous-phase molar density, kmol/m3 | |
IR heater specific heat capacity, J/(kg∙K) | |
Suction line conductance, m3/s | |
Water vapor molar density, kmol/m3 | |
Vacuum chamber wall specific heat capacity, J/(kg∙K) | |
Effective moisture diffusivity, m2/s | |
Effective binary diffusivity (water vapor and dry air), m2/s | |
Equivalent binary diffusivity (water vapor and dry air), m2/s | |
Knudsen diffusivity parameter, m2/s | |
View factor, - | |
Grashof number, - | |
Enthalpy flow rate, W | |
i-th transformer convective heat transfer coefficient, W/(m2∙K) | |
Vacuum chamber wall convective heat transfer coefficient, W/(m2∙K) | |
IR heater convective heat transfer coefficient, W/(m2∙K) | |
i-th transformer outer surface molar flux of dry air, kmol/(m2∙s) | |
i-th transformer outer surface molar flux of water vapor, kmol/(m2∙s) | |
Convective molar flux, kmol/(m2∙s) | |
Diffusive molar flux, kmol/(m2∙s) | |
Internal overall mass transfer coefficient, 1/s | |
Absolute permeability of the cellulose insulation, m2 | |
Effective permeability of the cellulose insulation, m2 | |
Venting/pressure relief valve flow coefficient, m3/s | |
Insulation thickness, mm | |
Mass of the IR heaters, kg | |
Water vapor molar mass, 18 kg/kmol | |
Mass of the vacuum chamber walls, kg | |
Molar flow rate, kmol/s | |
Nusselt number, - | |
Pressure of the gaseous phase, Pa | |
Dry air partial pressure in the vacuum chamber atmosphere, Pa | |
Water vapor partial pressure in the vacuum chamber atmosphere, Pa | |
Dry air partial pressure, Pa | |
Ambient pressure, Pa | |
Pressure of the vacuum chamber atmosphere, Pa | |
Pressure at the inlet of the vacuum pump, Pa | |
Water vapor saturation pressure, Pa | |
Water vapor partial pressure, Pa | |
Prandtl number, - | |
Convective heat flow rate to vacuum chamber atmosphere, W | |
Radiative heat flow rate from IR heater surface, W | |
Radiative heat flow rate from the surface of the i-th transformer, W | |
Radiative heat flow rate from vacuum chamber wall surface, W | |
IR heater input electrical power, W | |
Radiative heat flow from the surface of vacuum chamber walls, W | |
Vacuum pump inlet pumping speed, m3/s | |
Convective heat flux, W/m2 | |
Vacuum pump effective pumping speed, m3/s | |
Radiative heat flux, W/m2 | |
Volume flow rate through pressure relief valve, m3/s | |
Volume flow rate through venting valve, m3/s | |
Radius of the cellulose insulation, m | |
Inner radius, m | |
Universal gas constant, 8314.4 J/(kmol∙K) | |
Outer radius, m | |
Rayleigh number, - | |
Time variable, s | |
Cellulose insulation temperature, K | |
i-th transformer cellulose insulation outer surface temperature, K | |
Ambient temperature, K | |
Vacuum chamber atmosphere temperature, K | |
IR heater temperature, K | |
Vacuum chamber wall temperature, K | |
Vacuum chamber atmosphere volume, m3 | |
Darcy’s velocity of gaseous phase, m/s | |
Dry-basis moisture content of the cellulose fibres, kg/kg | |
Dry-basis average moisture content of the cellulose fibres, kg/kg | |
Dry-basis equilibrium moisture content of the cellulose fibres, kg/kg | |
Water vapor molar fraction, kmol/kmol | |
Greek symbols | |
Dry air specific heat ratio, - | |
Gaseous-phase specific heat ratio, - | |
Water vapor specific heat ratio, - | |
Vacuum chamber thermal insulation thickness, m | |
Specific evaporation heat, J/kg | |
Fibre volume fraction, - | |
j-th surface emissivity, - | |
Porosity of the cellulose insulation, - | |
Relative temperature, °C | |
Cellulose insulation effective thermal conductivity, W/(m∙K) | |
Cellulose fibre thermal conductivity, W/(m∙K) | |
Vacuum chamber thermal insulation thermal conductivity, W/(m∙K) | |
Gaseous-phase dynamic viscosity, Pa∙s | |
Cellulose insulation bulk density, kg/m3 | |
Cellulose fibre density, kg/m3 | |
Gaseous-phase density, kg/m3 | |
Stefan–Boltzmann constant, 5.67∙10−8 W/(m2∙K4) | |
Cellulose fibre tortuosity, - | |
Pore space tortuosity, - |
Appendix A
Parameter | Value/Relation | Unit |
---|---|---|
Fibre density, | 1550 [48] | kg/m3 |
Bulk density, | 1000 (typical value for Weidmann Kraft paper) | kg/m3 |
Fibre specific heat capacity, | 1340 [48] | J/(kg∙K) |
Fibre thermal conductivity, | 0.335 [48] | W/(m∙K) |
Porosity, | - | |
Fibre volume fraction, | - | |
Pore tortuosity, | [49] | - |
Fibre tortuosity, | [49] | - |
Klinkenberg parameter, | [50] | Pa |
Knudsen diffusivity parameter, | 10−5 | m2/s |
Emissivity, | 0.9 | - |
GAB isotherm parameter, | 0.05128 [29] | kg/kg |
GAB isotherm parameter, | 0.716 [29] | - |
GAB isotherm parameter, | 6.1446 [29] | - |
GAB isotherm parameter, | 323.15 [29] | K |
GAB isotherm parameter, | 19,319.76 [29] | kJ/kmol |
Parameter | Value/Relation | Unit |
---|---|---|
Vacuum chamber wall specific heat capacity, | 461 (stainless steel) | J/(kg∙K) |
Vacuum chamber wall emissivity, | 0.1 | - |
Vacuum chamber wall thermal insulation conductivity, | W/(m∙K) | |
IR heater specific heat capacity, | 800 (ceramics) | J/(kg∙K) |
IR heater emissivity, | 0.95 | - |
Parameter | Value/Relation | Unit |
---|---|---|
Transformer inner radius, | 40 | mm |
Transformer cellulose insulation thickness, | 50 | mm |
Transformer outer radius, | mm | |
Transformer height, | 0.8 | m |
Transformer surface area, | m2 | |
Number of transformers in the vacuum chamber, | 9 | - |
Spacing between transformers | 0.08 | m |
Vacuum chamber wall mass, | 370.389 | kg |
Vacuum chamber atmosphere volume, | 1.7567 | m2 |
Vacuum chamber wall surface area, | 7.86388 | m2 |
Vacuum chamber shell height, | 1.21 | m |
Vacuum chamber thermal insulation thickness, | 32 | mm |
IR heater width, | 62.5 | mm |
IR heater height, | 0.75 | m |
IR heater number, | 4 | - |
IR heater total mass, | 2.7 | kg |
IR heater total electrical power, | 3000 | W |
Vacuum pump nominal pumping speed | 65 (Leybold VD65) | m3/h |
Vacuum pump inlet pumping speed, | Linearly interpolated from the data for Leybold VD65 (gas ballast valve closed) | m3/s |
Suction line conductance, | 0.01 | m3/s |
Venting/pressure relief valve flow coefficient, | 0.00005 | - |
Parameter | Value/Relation | Unit |
---|---|---|
Dry air molar mass, | 28.96 | kg/kmol |
Water vapor molar mass, | 18 | kg/kmol |
Gaseous-phase molar mass, | kg/kmol | |
Universal gas constant, | 8314.4 | J/(kmol∙K) |
Stefan–Boltzmann constant, | 5.6703∙10−8 | W/(m2∙K4) |
Water specific evaporation heat, | 2.5∙106 | J/kg |
Dry air constant-pressure specific heat capacity *, | [51] | J/(kg∙K) |
Water vapor constant pressure specific heat capacity *, | [51] | J/(kg∙K) |
Gaseous phase constant-pressure specific heat capacity *, | J/(kg∙K) | |
Dry air constant-pressure molar heat capacity, | J/(kmol∙K) | |
Water vapor constant-pressure molar heat capacity, | J/(kmol∙K) | |
Gaseous-phase constant-pressure molar heat capacity, | J/(kmol∙K) | |
Water vapor dynamic viscosity, | [51] | Pa∙s |
Dry air dynamic viscosity, | [51] | Pa∙s |
Gaseous-phase dynamic viscosity, | Pa∙s | |
Water vapor saturation pressure, | Calculated for given temperature according to IAPWS 95 [30] | Pa |
Gaseous-phase density *, | kg/m3 | |
Water vapor thermal conductivity *, | [51] | W/(m∙K) |
Dry air thermal conductivity *, | [51] | W/(m∙K) |
Water vapor thermal conductivity *, | W/(m∙K) |
References
- Zhang, D.; Zhai, X.; Wang, S.; Li, X.; Xu, P.; Zhao, H.; Zhang, G.J. Study on Mechanical and Electrical Properties Improvement of Insulating Paper Modified by Cellulose Nanocrystals. J. Appl. Phys. 2024, 136, 125108. [Google Scholar] [CrossRef]
- Liang, Z.; Fang, Y.; Cheng, H.; Sun, Y.; Li, B.; Li, K.; Zhao, W.; Sun, Z.; Zhang, Y. Innovative Transformer Life Assessment Considering Moisture and Oil Circulation. Energies 2024, 17, 429. [Google Scholar] [CrossRef]
- Cong, H.; Quan, S.; Hu, X.; Zhang, X.; Li, Q.; Xu, M. Microscopic Mechanism Effect of Oxygen and Moisture on Pyrolysis of Transformer Insulating Paper. IEEE Trans. Dielectr. Electr. Insul. 2025, 32, 1008–1016. [Google Scholar] [CrossRef]
- Tazhibayev, A.; Amitov, Y.; Arynov, N.; Shingissov, N.; Kural, A. Experimental Investigation and Evaluation of Drying Methods for Solid Insulation in Transformers: A Comparative Analysis. Results Eng. 2024, 23, 102470. [Google Scholar] [CrossRef]
- Brahami, Y.; Betie, A.; Meghnefi, F.; Fofana, I.; Yeo, Z. Development of a Comprehensive Model for Drying Optimization and Moisture Management in Power Transformer Manufacturing. Energies 2025, 18, 789. [Google Scholar] [CrossRef]
- Du, Y. Measurement and Modeling of Moisture Diffusion Processes in Transformer Insulation Using Interdigital Dielectrometry Sensors. Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, 1999. [Google Scholar]
- García, D.F.; García, B.; Burgos, J.C.; García-Hernando, N. Determination of Moisture Diffusion Coefficient in Transformer Paper Using Thermogravimetric Analysis. Int. J. Heat Mass Transf. 2012, 55, 1066–1075. [Google Scholar] [CrossRef]
- Villarroel, R.; Garcia, D.; Garcia, B.; Burgos, J. Diffusion Coefficient in Transformer Pressboard Insulation Part 1: Non Impregnated Pressboard. IEEE Trans. Dielectr. Electr. Insul. 2014, 21, 360–368. [Google Scholar] [CrossRef]
- Wang, D.; Zhou, L.; Wang, L.; Guo, L.; Liao, W. Modified Expression of Moisture Diffusion Factor for Non-Oil-Immersed Insulation Paper. IEEE Access 2019, 7, 41315–41323. [Google Scholar] [CrossRef]
- Krabbenhoft, K.; Damkilde, L. A Model for Non-Fickian Moisture Transfer in Wood. Mater. Struct. 2004, 37, 615–622. [Google Scholar] [CrossRef]
- Perre, P. The Proper Use of Mass Diffusion Equation in Drying Modelling: From Simple Configurations to Non-Fickian Behaviours. In Proceedings of the 19th International Drying Symposium (IDS 2014), Lyon, France, 24–27 August 2014. [Google Scholar]
- Perré, P.; Rémond, R.; Almeida, G.; Augusto, P.; Turner, I. State-of-the-Art in the Mechanistic Modeling of the Drying of Solids: A Review of 40 Years of Progress and Perspectives. Dry. Technol. 2023, 41, 817–842 . [Google Scholar] [CrossRef]
- Garcia, D.F.; Villarroel, R.D.; Garcia, B.; Burgos, J.C. Effect of the Thickness on the Water Mobility Inside Transformer Cellulosic Insulation. IEEE Trans. Power Deliv. 2016, 31, 955–962. [Google Scholar] [CrossRef]
- Kang, M.; Yang, L.; Zhao, Y.; Wang, K.; He, Y. Diffusion Behavior of Free Water and Bound Water in Insulation Paper Based on Langmuir Model. Cellulose 2024, 31, 3275–3287. [Google Scholar] [CrossRef]
- Przybylek, P. A New Concept of Applying Methanol to Dry Cellulose Insulation at the Stage of Manufacturing a Transformer. Energies 2018, 11, 1658. [Google Scholar] [CrossRef]
- Siddiqui, T.; Pattiwar, J.T.; Paranjape, A.P. Statistical Analysis of the Influence of Various Temperatures on the Drying Time of Transformer Insulation in Vacuum Drying Process. In Proceedings of the 4th International Conference for Convergence in Technology (I2CT), Mangalore, India, 27–28 October 2018. [Google Scholar]
- Perré, P.; Rémond, R.; Colin, J.; Mougel, E.; Almeida, G. Energy Consumption in the Convective Drying of Timber Analyzed by a Multiscale Computational Model. Dry. Technol. 2012, 30, 1136–1146. [Google Scholar] [CrossRef]
- Torres, S.S.; Jomaa, W.; Puiggali, J.R.; Avramidis, S. Multiphysics Modeling of Vacuum Drying of Wood. Appl. Math. Model. 2011, 35, 5006–5016. [Google Scholar] [CrossRef]
- Zadin, V.; Kasemägi, H.; Valdna, V.; Vigonski, S.; Veske, M.; Aabloo, A. Application of Multiphysics and Multiscale Simulations to Optimize Industrial Wood Drying Kilns. Appl. Math. Comput. 2015, 267, 465–475. [Google Scholar] [CrossRef]
- Jomaa, W.; Baixeras, O. Discontinuous Vacuum Drying of Oak Wood: Modelling and Experimental Investigations. Dry. Technol. 1997, 15, 2129–2144. [Google Scholar] [CrossRef]
- Rasetto, V.; Marchisio, D.L.; Fissore, D.; Barresi, A.A. On the Use of a Dual-Scale Model to Improve Understanding of a Pharmaceutical Freeze-Drying Process. J. Pharm. Sci. 2010, 99, 4337–4350. [Google Scholar] [CrossRef]
- Zhang, X.; Gan, H.; Xue, H.; Jiang, Q. Numerical Simulation of an Experimental Study on Structure Optimization for Compartment Dryers. Trans. FAMENA 2024, 48, 95–110. [Google Scholar] [CrossRef]
- Stéphan, A.; Perré, P.; Simo-Tagne, M.; L’Hostis, C.; Rémond, R. A Model-Based Advanced Control System to Cope with Energy Fluctuations in Industrial Wood Drying. Dry. Technol. 2025, 43, 1418–1428. [Google Scholar] [CrossRef]
- Simo-Tagne, M.; Stéphan, A.; Perré, P.; L’Hostis, C.; Rémond, R. On-Line Evaluation of Moisture Transfer Properties for a Feed-Forward Control of a Wood Drying Kiln with a Mechanistic Model. Dry. Technol. 2024, 42, 2348–2361. [Google Scholar] [CrossRef]
- Lienhard, J.H., IV; Lienhard, J.H., V. A Heat Transfer Textbook, 6th ed.; Phlogiston Press: Cambridge, MA, USA, 2024. [Google Scholar]
- Ashrafi Moghadam, A.; Chalaturnyk, R. Expansion of the Klinkenberg’s Slippage Equation to Low Permeability Porous Media. Int. J. Coal Geol. 2014, 123, 2–9. [Google Scholar] [CrossRef]
- Fessler, W.A.; Rouse, T.O.; McNutt, W.J.; Compton, O.R. A Refined Mathematical Model for Prediction of Bubble Evolution in Transformers. IEEE Trans. Power Deliv. 1989, 4, 391–404. [Google Scholar] [CrossRef]
- Du, Y.; Zahn, M.; Lesieutre, B.C.; Mamishev, A.V.; Lindgren, S.R. Moisture Equilibrium in Transformer Paper-Oil Systems. IEEE Electr. Insul. Mag. 1999, 15, 11–20. [Google Scholar] [CrossRef]
- Przybylek, P. Water Saturation Limit of Insulating Liquids and Hygroscopicity of Cellulose in Aspect of Moisture Determination in Oil-Paper Insulation. IEEE Trans. Dielectr. Electr. Insul. 2016, 23, 1886–1893. [Google Scholar] [CrossRef]
- Wagner, W.; Pruß, A. The IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use. J. Phys. Chem. Ref. Data 2002, 31, 387–535. [Google Scholar] [CrossRef]
- Staudt, P.B.; Tessaro, I.C.; Marczak, L.D.F.; Soares, R.d.P.; Cardozo, N.S.M. A New Method for Predicting Sorption Isotherms at Different Temperatures: Extension to the GAB Model. J. Food Eng. 2013, 118, 247–255. [Google Scholar] [CrossRef]
- Zhao, J. Thermodynamics and Particle Formation during Vacuum Pump Down. Ph.D. Thesis, University of Minnesota, Minneapolis, MN, USA, 1990. [Google Scholar]
- González-Bárcena, D.; Martínez-Figueira, N.; Fernández-Soler, A.; Torralbo, I.; Bayón, M.; Piqueras, J.; Pérez-Grande, I. Experimental Correlation of Natural Convection in Low Rayleigh Atmospheres for Vertical Plates and Comparison between CFD and Lumped Parameter Analysis. Int. J. Heat Mass Transf. 2024, 222, 125140. [Google Scholar] [CrossRef]
- Howell, J.R.; Pinar Mengüç, M.; Daun, K.; Siegel, R. Thermal Radiation Heat Transfer, 7th ed.; Taylor & Francis Group, LLC: Boca Raton, FL, USA, 2021; ISBN 978-0-367-34707-9. [Google Scholar]
- Virtanen, P.; Gommers, R.; Oliphant, T.E.; Haberland, M.; Reddy, T.; Cournapeau, D.; Burovski, E.; Peterson, P.; Weckesser, W.; Bright, J.; et al. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nat. Methods 2020, 17, 261–272. [Google Scholar] [CrossRef]
- Filipov, S.M.; Hristov, J.; Avdzhieva, A.; Faragó, I. A Coupled PDE-ODE Model for Nonlinear Transient Heat Transfer with Convection Heating at the Boundary: Numerical Solution by Implicit Time Discretization and Sequential Decoupling. Axioms 2023, 12, 323. [Google Scholar] [CrossRef]
- Sullivan, C.; Kaszynski, A. PyVista: 3D Plotting and Mesh Analysis through a Streamlined Interface for the Visualization Toolkit (VTK). J. Open Source Softw. 2019, 4, 1450. [Google Scholar] [CrossRef]
- Bogdan, M.; Walther, E.; Alecian, M.; Chapon, M. Calcul Des Facteurs de Forme Entre Polygones-Application à La Thermique Urbaine et Aux Études de Confort. In Proceedings of the IBPSA, Châlons-en-Champagne, France, 19–20 May 2022. [Google Scholar]
- Pakowski, Z.; Adamski, R. Formation of Underpressure in an Apple Cylinder during Convective Drying. Dry. Technol. 2012, 30, 1238–1246. [Google Scholar] [CrossRef]
- Erriguible, A.; Bernada, P.; Couture, F.; Roques, M.A. Simulation of Vacuum Drying by Coupling Models. Chem. Eng. Process. Process Intensif. 2007, 46, 1274–1285. [Google Scholar] [CrossRef]
- Zhang, Z.; Kong, N. Nonequilibrium Thermal Dynamic Modeling of Porous Medium Vacuum Drying Process. Math. Probl. Eng. 2012, 2012, 347598. [Google Scholar] [CrossRef]
- Oksana, M.; Alexander, D. Comparative Analysis of Transformer Solid Insulation Drying Methods. In Proceedings of the 2022 IEEE Electrical Insulation Conference, Knoxville, TN, USA, 19–23 June 2022; pp. 385–389. [Google Scholar] [CrossRef]
- Przybylek, P.; Gielniak, J. The Use of Methanol Vapour for Effective Drying of Cellulose Insulation. Energies 2023, 16, 4465. [Google Scholar] [CrossRef]
- Liu, W.; Wang, J.; Li, Y.; Zhu, Z.; Qie, D.; Ding, L. Natural Convection Heat Transfer at Reduced Pressures. Exp. Heat Transf. 2019, 32, 14–24. [Google Scholar] [CrossRef]
- Siddiqui, M.T. Cycle Time Reduction Using Intermittent DC Internal Heating in Vapour Phase Drying of Cellulose-Based Insulation Used in Transformers. Aust. J. Electr. Electron. Eng. 2024, 22, 431–436. [Google Scholar] [CrossRef]
- Rasi, M. Permeability Properties of Paper Materials. Ph.D. Thesis, University of Jyväskylä, Jyväskylä, Finland, 2013. [Google Scholar]
- García, D.F.; García, B.; Burgos, J.C. A Review of Moisture Diffusion Coefficients in Transformer Solid Insulation-Part 1: Coefficients for Paper and Pressboard. IEEE Electr. Insul. Mag. 2013, 29, 46–54. [Google Scholar] [CrossRef]
- Nilsson, J.; Stenström, S. Modelling of Heat Transfer in Hot Pressing and Impulse Drying of Paper. Dry. Technol. 2001, 19, 2469–2485. [Google Scholar] [CrossRef]
- Foss, W.R.; Bronkhorst, C.A.; Bennett, K.A. Simultaneous Heat and Mass Transport in Paper Sheets during Moisture Sorption from Humid Air. Int. J. Heat Mass Transf. 2003, 46, 2875–2886. [Google Scholar] [CrossRef]
- Chen, X.; Liu, Y.; Zhang, R.; Zhu, H.; Li, F.; Yang, D.; Jiao, Y. Radio Frequency Drying Behavior in Porous Media: A Case Study of Potato Cube with Computer Modeling. Foods 2022, 11, 3279. [Google Scholar] [CrossRef]
- Alexandersson, M.; Ristinmaa, M. Coupled Heat, Mass and Momentum Transport in Swelling Cellulose Based Materials with Application to Retorting of Paperboard Packages. Appl. Math. Model. 2021, 92, 848–883. [Google Scholar] [CrossRef]
View Factor/ Surface | IR Heaters | Vacuum Chamber Walls | Corner Transformer Sample | Side Transformer Sample | Center Transformer Sample |
---|---|---|---|---|---|
Fheaters-i | 0.0000 | 0.4102 | 0.2604 | 0.3295 | 0.0000 |
Fwalls-i | 0.0098 | 0.7060 | 0.1533 | 0.1125 | 0.0183 |
Fcorner t-i | 0.0271 | 0.6667 | 0.0000 | 0.2406 | 0.0657 |
Fside t-i | 0.0343 | 0.4892 | 0.2406 | 0.1313 | 0.1046 |
Fcenter t-i | 0.0000 | 0.3189 | 0.2626 | 0.4185 | 0.0000 |
Order | Component Status | Duration | ||
---|---|---|---|---|
IR Heaters | Vacuum Pump | Venting/ Pressure Relief Valve | ||
1 | on | off | on | 2.5 h |
2 | off | on | off | 2.5 h |
3 | off | off | on | 2.5 h |
Order | Controlled Variable | Component Status | Duration 1 | ||
---|---|---|---|---|---|
IR Heaters | Vacuum Pump | Venting/ Pressure Relief Valve | |||
1 | 130 ± 1 °C | on/off | off | on | 10 h |
2 | 25 ± 0.5 kPa | off | on/off | off | 2 h |
3 | 130 ± 1 °C | on/off | off | on | 10 h |
4 | 15 ± 0.5 kPa | off | on/off | off | 2 h |
5 | 130 ± 1 °C | on/off | off | on | 10 h |
6 | 10 ± 0.5 kPa | off | on/off | off | 2 h |
7 | 130 ± 1 °C | on/off | off | on | 10 h |
8 | 5 ± 0.5 kPa | off | on/off | off | 2 h |
9 | 130 ± 1 °C | on/off | off | on | 10 h |
10 | min. pressure | off | on | off | 24 h |
Author | [m2/s] | [-] | [K] | [K] |
---|---|---|---|---|
Foss | 2.62∙10−11 | 0.5 | 8140 | 298 |
Du | 2.25∙10−11 | 0.1955 | 8834 | 298 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Borovnik, N.; Mudrinić, S.; Ferdelji, N. Dual-Scale Modelling of the Vacuum Drying Process for Transformer Cellulose-Based Insulation. Processes 2025, 13, 2676. https://doi.org/10.3390/pr13092676
Borovnik N, Mudrinić S, Ferdelji N. Dual-Scale Modelling of the Vacuum Drying Process for Transformer Cellulose-Based Insulation. Processes. 2025; 13(9):2676. https://doi.org/10.3390/pr13092676
Chicago/Turabian StyleBorovnik, Nikola, Saša Mudrinić, and Nenad Ferdelji. 2025. "Dual-Scale Modelling of the Vacuum Drying Process for Transformer Cellulose-Based Insulation" Processes 13, no. 9: 2676. https://doi.org/10.3390/pr13092676
APA StyleBorovnik, N., Mudrinić, S., & Ferdelji, N. (2025). Dual-Scale Modelling of the Vacuum Drying Process for Transformer Cellulose-Based Insulation. Processes, 13(9), 2676. https://doi.org/10.3390/pr13092676