Marine Metabolites for the Sustainable and Renewable Production of Key Platform Chemicals
Abstract
1. Introduction
2. Petroleum-Derived Platform Chemicals and Biobased Production
2.1. Two-Carbon Petroleum-Derived Chemicals
2.1.1. Ethylene
2.1.2. Acetic Acid
2.2. Three-Carbon Petroleum-Derived Chemicals
2.2.1. Lactic Acid
- (a)
- Parenteral/I.V. solutions: Used to replenish body fluids and electrolytes [102] like Lactated Ringer’s and dialysis solutions;
- (b)
- Dialysis solutions: Sodium acetate is used as a dialysate fluid, but researchers recommend L(+) lactate for its fewer side effects [103];
- (c)
- (d)
- (e)
- Mineral lactate formulations: Effective in treating anemia, hypertension, and osteoporosis, with key minerals including ferrous, calcium, manganese, magnesium, and zinc lactates [109];
- (f)
- Chiral synthesis: Central to pharmaceuticals, using natural chiral building blocks like lactic acid, with both (R) and (S) isomers available in high purities for cost-effective and versatile production [110].
2.2.2. 1-Propanol and Isopropanol
2.2.3. Propanediols
2.3. Four-Carbon Petroleum-Derived Chemicals
2.3.1. Butyric Acid
2.3.2. Butanol
2.3.3. Succinic Acid
2.3.4. 2,3-Butanediol
2.3.5. Malic Acid
2.3.6. Fumaric Acid
2.4. Five-Carbon Petroleum-Derived Chemicals
Isoprenes
2.5. Six-Carbon Petroleum-Derived Chemicals
2.5.1. Adipic Acid
2.5.2. Anthranilic Acids, Catechols, and Phenols
2.5.3. Styrene
2.5.4. 5-Hydroxymethylfurfural
2.5.5. Citric Acid
3. Challenges, Limitations, and Potentials of Petroleum-Derived Platform Chemicals from Marine Sources
3.1. Commercial Potential
3.2. Scalability Challenges and Limitations
3.3. Sustainable Marine Sources
4. Biorefinery
4.1. Biomass vs. Fossils as Source Raw Materials
4.2. Algal Biorefinery
Carbohydrate Bioconversion in Marine Algae
5. Monoterpenes
5.1. Marine Source Monoterpenes
5.2. Fungi
5.3. Algae
5.4. Emission Rates of Isoprenes and Monoterpenes from Marine Photosynthetic Organisms
Compound(s) | Species | Emission Rate | References |
---|---|---|---|
Limonene (cyclic monoterpene) | Nereocystis luetkeana, Alaria marginata (Brown algae) | ∼2.1 ppbV and 1.8 ppbV | [266] |
Isoprene | Laminaria digitata, Ascophylum nodosum, Pelvetia canaliculata, Fucus vesiculosus, Fucus serratus, Halidrys siliquosa, Laminaria saccharina (Brown algae); Chondrus Crispis (Red alga); Asparagopsis armata (Red alga); Ulva intestinalis (Green alga) | 0.3–1.4 pmolesg−1 dry weighthr−1 3.5–5.3 pmolesg−1 dry weighthr−1 | [93,262,267] |
Myrcene (E)-10-bromomyrcene (short-chained monoterpenes) | Ochtodes secundiramea (Red macroalga) | Myrcene- 32.6% (E)-10-bromomyrcene 33.2%* | [250,258] |
Monoterpenes—N/A | Chaetoceros neogracilis, Chaetoceros debilis, Phaeodactylum tricornutum, Skeletonema costatum, Fragilariopsis kerguuellensis (Diatoms); Emiliania huxleyi (Coccolithophore); Trichodesmium sp., Synechococcus sp. (Cyanobacteria) | 0.3–68 nmol g [chlorophyll a]−1 day−1) | [250] |
(–)-/(+)-pinene, myrcene, (+)-camphene, (–)-sabinene, (+)-3-carene, (–)-pinene, (–)-limonene, and p-ocimene (37% of total monoterpenes emitted) | Dunaliella tertiolecta (Green alga) | 226 nmol g [chlorophyll a]−1 day−1) | [250] |
Isoprene | Phaeodactylum tricornutum, Chaetoceros neogracilis (Diatoms); Calcidiscus leptoporus, Emiliania huxleyi (Coccolithophores:); Dunaliella tertiolecta (Green alga | 2.8–28.5 pmol L−1-Chl a−1 (biomass-normalized concentration for C. neogracilis) | [250,262,268] |
Isoprene | Prochlorococcus, Synechococcus (Cyanobacteria); Micromonas pusilla (Green alga); Pelagomonas calceolata (Flagellate); Emiliania huxleyi (Coccolithophore); Skeletonema costatum (Diatom) | 1–1.6 µmolesg−1 Chlday−1 (0.2–3.8 × 10−19 molescell−1 day−1) | [267] |
Isoprene | Trichodesmium sp. (Cyanobacteria); Haptophytes, diatoms; Prochlorococcus sp. (Cyanobacteria) | 0–22 µmolesg−1 Chlday−1 | [269] |
Isoprene | Emiliania huxleyi (Coccolithophor); Thalassiosira weissflogii, Thalassiosira pseudonana, Chaetoceros neogracile (Diatoms) | 0–67 µmolesg−1 Chlday−1 | [270] |
Isoprene | Dunaliella tertiolecta, Phaeodactylum tricornutum, Thalassiosira pseudonana | 1 × 10−18–8.3 × 10−19 molescell−1 day−1 | [271,272] |
Isoprene | Diatoms, Emiliania huxleyi, other coccolithophores, and other dinoflagellates | 0–6 × 109 moleculescm-2 sec−1 0.32 TgCyr−1 bottom-up; 11.6 TgCyr−1 top-down | [93,267,269,273,274,275,276,277,278,279,280,281] |
α-Pinene | Diatoms | 0.013 bottom-up; 29.5 top-down | [281] |
6. Materials Processes of Marine Monoterpenes
6.1. Biotransformation of Marine Monoterpenes to Produce Biobased-Platform Chemicals
6.1.1. Homogeneous Catalysts
6.1.2. Heterogeneous Catalysts
6.2. Olefin Metathesis of Marine Monoterpenes and Potential for Petroleum Product Replacement
Synthesized Polyolefins from Biobased Monomers
7. Marine Algal-Derived Fatty Acids
8. Phlorotannins
9. Replacement of Petrochemicals Utilized in the Chemical Synthesis of Nonsteroidal Anti-Inflammatory Drugs (NSAIDs) and Other Pharmaceuticals with Natural Counterparts
10. Solutions and Perspectives
- Commercial Scale: Omega-3 fatty acids (EPA, DHA)
- Not Scaled yet: Marine monoterpenes remain at laboratory scale due to economic and technical challenges.
- Metabolic Engineering for Higher Yields: The strategic overexpression of essential enzymes in MVA and MEP pathways, particularly limonene synthase, has proven successful, achieving production levels of up to 393.5 mgL−1 of limonene in R. toruloides [373]. With continued optimization, we are confident that we can reach yields of 1 to 5 gL−1, positioning us firmly within the realm of commercial viability. Furthermore, pilot-scale bioreactors designed to operate at 100 to 1000 L, utilizing these engineered strains, will be operational within the next 3 to 5 years. This advancement will enable the production of monoterpenes like limonene for high-value applications in fragrances and pharmaceuticals [373].
- Advanced Cultivation and ISPR: ISPR techniques, including small molecule in situ resin capture (SMIRC), reliably mitigate cytotoxicity by continuously removing volatile monoterpenes. The pilot-scale trials with Saccharomyces cerevisiae have consistently achieved stable production in 20-L bioreactors [338]. It firmly asserts that hybrid photobioreactor (PBR) systems utilizing ISPR are poised to scale up to 10,000-L pilot plants in the next 3–5 years [338]. This robust approach will not only significantly reduce energy costs but also drive industrial-scale production, particularly when integrated with renewable energy sources.
11. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
PE | Polyethylene |
TLA | Three-letter acronym |
ACCO | 1-aminocyclopropane-1-carboxylic acid oxidase |
CoA | Coenzyme A |
TCA | Tricarboxylic cycle |
MVA | Mevalonate |
MEP | Methylerythritol phosphate |
BVOC | Biogenic volatile organic compound |
N/A | Not available |
Et | Ethylene |
PET | Polyethylene terephthalate |
NREL | National Renewable Energy Laboratory |
DMS | Dimethylsulphide |
DMSP | Dimethylsulphoniopropionate |
PVA | Polyvinyl acetate |
LA | Lactic acid |
PLA | Polylactide |
TCA | Tricarboxylic acid cycle |
PDO/PD | Propanediol |
ABE | Acetone, butanol, and ethanol |
EMA | European Medicines Agency |
SA | Succinic acid |
BDO | Butanediol |
MS | Multiple sclerosis |
DMAPP | Dimethylallyl diphosphate |
IPP | Isopentenyl diphosphate |
GPP | Geranyl pyrophosphate |
FPP | Farnesyl pyrophosphate |
GGPP | Geranylgeranyl pyrophosphate |
IEA | International Energy Agency |
5-HMF | 5-Hydroxymethylfurfural |
FDCA | 2,5-furandicaboxylic acid |
PEF | Polyethylene furanoate |
CA | Citric acid |
BTX | Aromatics benzene, toluene, and xylene |
bPMs | Bio-platform molecules |
HMF | Hydroxymethylfuran |
DOE | Department of Energy |
VAM | Vinyl acetate monomer |
M-terpenes | Monoterpenes |
NPs | Natural products |
HDR | 4-hydroxy-3-methylbut-2-enyl diphosphate reductase |
DXP | Deoxyxylulose-5-phosphate |
G3P | Glyceraldehyde-3-phosphate |
LPP | Linalyl pyrophosphate |
NPP | Neryl pyrophosphate |
GDP | Geranyl diphosphate |
LDP | Linalyldiphosphate |
BDP | Bornyldiphosphate |
la | Adriadysiolide |
PKS | Polyketide synthetase |
Pd | Palladium |
MTO | Methyltrioxorhenium |
TBAB | Tetrabutylammonium bromide |
PMMA | Poly(methyl methacrylate) |
PC | Polycarbonate |
COPs | Cyclic olefin polymers |
VOC | Volatile organic compound |
OM | Olefin metathesis |
POs | Polyolefins |
PP | Polypropylene |
SOA | Secondary organic aerosol |
ppb | Parts per billion |
V | Volume |
nmol | Nanomole |
pmol | Picomole |
TIC | Total ion current |
Chl a | Chlorophyll a |
1pmol/L/Chl a | Picomol per liter of chlorophyll a |
TgC/yr | Tetragrams of carbon per year |
PUFAs | Polyunsaturated fatty acids |
EPA | Eicosapentaenoic acid |
DHA | Docosahexaenoic acid |
ISPR | In situ product recovery |
SMIRC | Small molecule in situ resin capture |
PBR | Hybrid photobioreactor |
TEA | Techno-economic analysis |
LCA | Life cycle assessment |
References
- Mani, R.; Bhattacharya, M. Properties of injection moulded blends of starch and modified biodegradable polyesters. Eur. Polym. J. 2001, 37, 515–526. [Google Scholar] [CrossRef]
- Dhurjati, P. Biorefineries-Industrial Processes and Products, Status Quo and Future Directions: Volumes 1 and 2 By Birgit Kamm, Patrick Gruber and Michael Kamm; Wiley Online Library: Hoboken, NJ, USA, 2008. [Google Scholar]
- Sharma, B.; Shrestha, A. Petroleum dependence in developing countries with an emphasis on Nepal and potential keys. Energy Strat. Rev. 2023, 45, 101053. [Google Scholar] [CrossRef]
- Iqbal, H.M.N.; Kyazze, G.; Tron, T.; Keshavarz, T. Laccase-Assisted Approach to Graft Multifunctional Materials of Interest: Keratin-EC Based Novel Composites and their Characterisation. Macromol. Mater. Eng. 2015, 300, 712–720. [Google Scholar] [CrossRef]
- Iqbal, H.M.N. Development of Bio-Composites with Novel Characteristics Through Enzymatic Grafting. Ph.D. Thesis, University of Westminster, London, UK, 2015. [Google Scholar]
- Huda, M.S.; Drzal, L.T.; Misra, M.; Mohanty, A.K.; Williams, K.; Mielewski, D.F. A Study on Biocomposites from Recycled Newspaper Fiber and Poly(lactic acid). Ind. Eng. Chem. Res. 2005, 44, 5593–5601. [Google Scholar] [CrossRef]
- Pachapur, V.L.; Sarma, S.J.; Brar, S.K.; Chaabouni, E. Platform chemicals: Significance and need. In Platform Chemical Biorefinery; Elsevier: Amsterdam, The Netherlands, 2016; pp. 1–20. [Google Scholar]
- Iqbal, H.M.N.; Kyazze, G.; Keshavarz, T. Advances in the Valorization of Lignocellulosic Materials by Biotechnology: An Overview. BioResources 2013, 8, 3157–3176. [Google Scholar] [CrossRef]
- Kissman, E.N.; Sosa, M.B.; Millar, D.C.; Koleski, E.J.; Thevasundaram, K.; Chang, M.C.Y. Expanding chemistry through in vitro and in vivo biocatalysis. Nature 2024, 631, 37–48. [Google Scholar] [CrossRef]
- Johnson, E.T.; Schmidt-Dannert, C. Light-energy conversion in engineered microorganisms. Trends Biotechnol. 2008, 26, 682–689. [Google Scholar] [CrossRef]
- Koeller, K.M.; Wong, C.-H. Enzymes for chemical synthesis. Nature 2001, 409, 232–240. [Google Scholar] [CrossRef]
- Keasling, J.D. Synthetic biology for synthetic chemistry. ACS Chem. Biol. 2008, 3, 64–76. [Google Scholar] [CrossRef]
- Hara, K.Y.; Araki, M.; Okai, N.; Wakai, S.; Hasunuma, T.; Kondo, A. Development of bio-based fine chemical production through synthetic bioengineering. Microb. Cell Factories 2014, 13, 173. [Google Scholar] [CrossRef]
- Odian, G. Principles of Polymerization; John Wiley & Sons. Inc.: Hoboken, NJ, USA, 2004. [Google Scholar]
- Hausinger, R.P.; Rifayee, S.B.; Thomas, M.G.; Chatterjee, S.; Hu, J.; Christov, C.Z. Biological formation of ethylene. RSC Chem. Biol. 2023, 4, 635–646. [Google Scholar] [CrossRef]
- Plettner, I.; Steinke, M.; Malin, G. Ethene (ethylene) production in the marine macroalga Ulva (Enteromorpha) intestinalis L.(Chlorophyta, Ulvophyceae): Effect of light-stress and co-production with dimethyl sulphide. Plant Cell Environ. 2005, 28, 1136–1145. [Google Scholar] [CrossRef]
- Market Size of Ethylene Worldwide in 2021, with a Forecast Until 2030. 2023. Available online: https://www.statista.com/statistics/1349781/ethylene-global-market-size/ (accessed on 24 March 2023).
- Production Capacity of Ethylene Worldwide from 2018 to 2023. 2023. Available online: https://www.statista.com/statistics/1067372/global-ethylene-production-capacity/#statisticContainer (accessed on 24 March 2023).
- Bloch, K.; Rittenberg, D. Sources of Acetic Acid in the Animal Body. J. Biol. Chem. 1944, 155, 243–254. [Google Scholar] [CrossRef]
- Yang, H.; Chen, T.; Wang, M.; Zhou, J.; Liebl, W.; Barja, F.; Chen, F. Molecular biology: Fantastic toolkits to improve knowledge and application of acetic acid bacteria. Biotechnol. Adv. 2022, 58, 107911. [Google Scholar] [CrossRef]
- Market Volume of Acetic Acid Worldwide from 2015 to 2022, with a Forecast for 2023 to 2030. 2023. Available online: https://www.statista.com/statistics/1245203/acetic-acid-market-volume-worldwide/ (accessed on 20 March 2023).
- Acetic Acid Market Size, Share & Industry Analysis, by Application (Vinyl Acetate Monomer (VAM), Purified Tereph-Thalic Acid (PTA), Ester Solvents, Acetic Anhydride, and Others), by End-Use Industry (Plastics & Polymers, Food & Beverages, Adhesives, Paints, and Coatings, Textile, and Others) and Regional Forecast, 2024–2032. 2021. Available online: https://www.fortunebusinessinsights.com/acetic-acid-market-103386 (accessed on 4 August 2025).
- Eş, I.; Khaneghah, A.M.; Hashemi, S.M.B.; Koubaa, M. Current advances in biological production of propionic acid. Biotechnol. Lett. 2017, 39, 635–645. [Google Scholar] [CrossRef]
- Market Volume of Propionic acid Worldwide from 2015 to 2022, with a Forecast for 2023 to 2030. 2023. Available online: https://www.statista.com/statistics/1245247/propionic-acid-market-volume-worldwide/ (accessed on 20 March 2023).
- Global Propionic Acid Market–Industry Trends and Forecast to 2029. 2022. Available online: https://www.databridgemarketresearch.com/reports/global-propionic-acid-market (accessed on 4 August 2022).
- Nguyen, N.K.; Dong, N.T.N.; Nguyen, H.T.; Le, P.H. Lactic acid bacteria: Promising supplements for enhancing the biological activities of kombucha. SpringerPlus 2015, 4, 91. [Google Scholar] [CrossRef]
- Lin, H.T.; Huang, M.Y.; Kao, T.Y.; Lu, W.J.; Lin, H.J.; Pan, C.L. Production of lactic acid from seaweed hydrolysates via lactic acid bacteria fermentation. Fermentation 2020, 6, 37. [Google Scholar] [CrossRef]
- Nagarajan, D.; Chen, C.-Y.; Ariyadasa, T.U.; Lee, D.-J.; Chang, J.-S. Macroalgal biomass as a potential resource for lactic acid fermentation. Chemosphere 2022, 309, 136694. [Google Scholar] [CrossRef]
- Sudhakar, M.; Dharani, G. Evaluation of seaweed for the production of lactic acid by fermentation using Lactobacillus plantarum. Bioresour. Technol. Rep. 2021, 17, 100890. [Google Scholar] [CrossRef]
- Lactic Acid Market Size, Share & Industry Analysis, by Raw Material (Sugarcane, Corn, Yeast Extract, and Others), by Form (Liquid and Dry), by Application (Polylactic Acid, Food & Beverages, Pharmaceutical, Cosmetics & Personal Care, and Others), and Regional Forecast, 2024–2032. 2022. Available online: https://www.fortunebusinessinsights.com/lactic-acid-market-102119 (accessed on 4 January 2022).
- Market Volume of Lactic Acid Worldwide from 2015 to 2022, with a Forecast for 2023 to 2030. 2023. Available online: https://www.statista.com/statistics/1310495/lactic-acid-market-volume-worldwide/ (accessed on 20 March 2023).
- Yang, H.; Zhang, C.; Lai, N.; Huang, B.; Fei, P.; Ding, D.; Hu, P.; Gu, Y.; Wu, H. Efficient isopropanol biosynthesis by engineered Escherichia coli using biologically produced acetate from syngas fermentation. Bioresour. Technol. 2020, 296, 122337. [Google Scholar] [CrossRef] [PubMed]
- Le, H.T.Q.; Lee, E.Y. Biological production of 2-propanol from propane using a metabolically engineered type I methanotrophic bacterium. Bioresour. Technol. 2022, 362, 127835. [Google Scholar] [CrossRef]
- Market Volume of Isopropyl Alcohol Worldwide from 2015 to 2022, with a Forecast for 2023 to 2030. 2023. Available online: https://www.statista.com/statistics/1245200/isopropyl-alcohol-market-volume-worldwide/ (accessed on 20 March 2023).
- Tao, Y.M.; Bu, C.Y.; Zou, L.H.; Hu, Y.L.; Zheng, Z.J.; Ouyang, J. A comprehensive review on microbial production of 1,2-propanediol: Micro-organisms, metabolic pathways, and metabolic engineering. Biotechnol. Biofuels 2021, 14, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Saxena, R.K.; Anand, P.; Saran, S.; Isar, J.; Agarwal, L. Microbial production and applications of 1,2-propanediol. Indian J. Microbiol. 2010, 50, 2–11. [Google Scholar] [CrossRef] [PubMed]
- Merriman, L.R. Algae to Propellants: Biosynthesis of 1,2-Propanediol from Algal Derived Sugars, in Chemical Engineering. Ph.D. Thesis, University Of Arkansas, Fayetteville, AR, USA, 2013. [Google Scholar]
- Saxena, R.; Anand, P.; Saran, S.; Isar, J. Microbial production of 1,3-propanediol: Recent developments and emerging opportunities. Biotechnol. Adv. 2009, 27, 895–913. [Google Scholar] [CrossRef]
- 1,3-Propanediol Market—By Source (Bio-Based, Petrochemical-Based), by Application (Polyurethane {Textile, Footwear, Automotive, Furniture}, Polytrimethylene Terephthalate, Personal Care & Detergents, Pharmaceutical, Food & Beverages, Heat Transfer Fluid, Inks and Coatings) & Global Forecasts to 2027. 2021. Available online: https://www.gminsights.com/industry-analysis/1-3-propanediol-market (accessed on 4 January 2021).
- Salvachúa, D.; Saboe, P.O.; Nelson, R.S.; Singer, C.; McNamara, I.; del Cerro, C.; Chou, Y.-C.; Mohagheghi, A.; Peterson, D.J.; Haugen, S.; et al. Process intensification for the biological production of the fuel precursor butyric acid from biomass. Cell Rep. Phys. Sci. 2021, 2, 100587. [Google Scholar] [CrossRef]
- Global Butyric Acid Market Size by Type (Synthetic, Renewable), by Application (Pharmaceutical, Biofuel, Food Additive & Flavoring, Animal Feed, Cosmetic, Plasticizer, Leather Tanning), Industry Analysis Report, Regional Outlook, Application Development Potential, Price Trend, Competitive Market Share & Forecast, 2021–2027. 2021. Available online: https://www.gminsights.com/industry-analysis/butyric-acid-market (accessed on 4 March 2021).
- Lan, E.I.; Liao, J.C. Microbial synthesis of n-butanol, isobutanol, and other higher alcohols from diverse resources. Bioresour. Technol. 2013, 135, 339–349. [Google Scholar] [CrossRef]
- Market Volume of n-Butanol Worldwide from 2015 to 2022, with a Forecast for 2023 to 2030. Available online: https://www.statista.com/statistics/1245211/n-butanol-market-volume-worldwide/ (accessed on 20 March 2023).
- Nghiem, N.P.; Kleff, S.; Schwegmann, S. Succinic Acid: Technology Development and Commercialization. Fermentation 2017, 3, 26. [Google Scholar] [CrossRef]
- Sahoo, K.K.; Datta, S.; Nayak, A.; Pranaw, K.; Dutta, D.; Goswami, G. Biological production of succinic acid: State of the art and future perspectives. Ind. Microbiol. Biotechnol. 2022, 427–461. [Google Scholar] [CrossRef]
- GVR Report Cover, Succinic Acid Market Size, Share & Trends Report. Succinic Acid Market Size, Share & Trends Analysis Report by Type (Petro-based, Bio-based), by End Use (Food & Beverages, Pharmaceuticals, Industrial), by Region (North America, Europe, APAC, CSA, MEA), and Segment Forecasts, 2022–2030. Available online: https://www.grandviewresearch.com/industry-analysis/succinic-acid-market (accessed on 4 January 2021).
- Goldberg, I.; Rokem, J.S.; Pines, O. Organic acids: Old metabolites, new themes. J. Chem. Technol. Biotechnol. Int. Res. Process Environ. Clean Technol. 2006, 81, 1601–1611. [Google Scholar] [CrossRef]
- Mondala, A.H. Direct fungal fermentation of lignocellulosic biomass into itaconic, fumaric, and malic acids: Current and future prospects. J. Ind. Microbiol. Biotechnol. 2015, 42, 487–506. [Google Scholar] [CrossRef] [PubMed]
- Wu, N.; Zhang, J.; Chen, Y.; Xu, Q.; Song, P.; Li, Y.; Li, K.; Liu, H. Recent advances in microbial production of L-malic acid. Appl. Microbiol. Biotechnol. 2022, 106, 7973–7992. [Google Scholar] [CrossRef]
- Malic Acid Market Size, Share & Trends Analysis Report by Product (L-Malic Acid, D-Malic Acid, DL-Malic Acid), by End-Use (Food & Beverage, Pharmaceuticals, Personal Care & Cosmetics, Textiles), by Region, and Segment Forecasts, 2025–2030. 2022. Available online: https://www.grandviewresearch.com/industry-analysis/malic-acid-market (accessed on 4 January 2022).
- Fumaric Acid Market Outlook (2023 to 2033). 2023. Available online: https://www.factmr.com/report/526/fumaric-acid-market (accessed on 4 January 2023).
- Mori, Y.; Noda, S.; Shirai, T.; Kondo, A. Direct 1,3-butadiene biosynthesis in Escherichia coli via a tailored ferulic acid decarboxylase mutant. Nat. Commun. 2021, 12, 2195. [Google Scholar] [CrossRef] [PubMed]
- 1,3 Butadiene (BD) Market Share, Size, Trends, Industry Analysis Report, by Type (Extractive Distillation, and Oxidative Dehydrogenation); By Application; By Region; Segment Forecast, 2022–2030. 2022. Available online: https://www.polarismarketresearch.com/industry-analysis/1-3-butadiene-market (accessed on 4 August 2022).
- Morais, A.R.; Dworakowska, S.; Reis, A.; Gouveia, L.; Matos, C.T.; Bogdał, D.; Bogel-Łukasik, R. Chemical and biological-based isoprene production: Green metrics. Catal. Today 2015, 239, 38–43. [Google Scholar] [CrossRef]
- Sharkey, T.D.; Monson, R.K. Isoprene research–60 years later, the biology is still enigmatic. Plant Cell Environ. 2017, 40, 1671–1678. [Google Scholar] [CrossRef]
- McGenity, T.J.; Crombie, A.T.; Murrell, J.C. Microbial cycling of isoprene, the most abundantly produced biological volatile organic compound on Earth. ISME J. 2018, 12, 931–941. [Google Scholar] [CrossRef]
- Isoprene Market Research Report Information by Grade (Polymer Grade And Chemical Grade), by Application (Styrene Isoprene Styrene, Isobutylene Isoprene, Polyisoprene, Block Co-Polymer, and Others), by End-Use Industry (Automotive, Medical, Construction, Personal Care, Sports & Leisure and Others) and by Region (North America, Europe, Asia-Pacific, and Rest of the World) –Market Forecast Till 2032. 2023. Available online: https://www.marketresearchfuture.com/reports/isoprene-industry-4799 (accessed on 4 August 2023).
- Deng, Y.; Ma, L.; Mao, Y. Biological production of adipic acid from renewable substrates: Current and future methods. Biochem. Eng. J. 2016, 105, 16–26. [Google Scholar] [CrossRef]
- Market Volume of Adipic Acid Worldwide in 2018 and 2023. 2023. Available online: https://www.statista.com/statistics/1113587/global-market-size-adipic-acid/ (accessed on 24 March 2023).
- Adipic Acid Market Size, Share & Trends Analysis Report by Application (Nylon 6, 6 Fiber, Nylon 6, 6 Resin, Polyurethane, Adipate Esters), by Region (North America, Europe, Asia Pacific), and Segment Forecasts, 2023–2030. 2022. Available online: https://www.grandviewresearch.com/industry-analysis/adipic-acid-market/toc (accessed on 24 March 2023).
- Aoki, K.; Uemori, T.; Shinke, R.; Nishira, H. Further Characterization of Bacterial Production of Anthranilic Acid from Aniline. Agric. Biol. Chem. 1985, 49, 1151–1158. [Google Scholar] [CrossRef]
- Anthranilic Acid Market- Size, Share, Industry Trends, and Forecasts (2025–2032). Available online: https://www.consegicbusinessintelligence.com/anthranilic-acid-market (accessed on 9 January 2025).
- Anthranilic Acid Market Size, Share, Growth, and Industry Analysis, by Types (Pharmaceutical Grade, Industrial Grade), Applications (Dye, Pharmaceutical, Others) and Regional Insights and Forecast to 2033. 2024. Available online: https://www.globalgrowthinsights.com/market-reports/anthranilic-acid-market-104384 (accessed on 23 May 2024).
- Ledesma, E.B.; Marsh, N.D.; Sandrowitz, A.K.; Wornat, M.J. An experimental study on the thermal decomposition of catechol. Proc. Combust. Inst. 2002, 29, 2299–2306. [Google Scholar] [CrossRef]
- Catechol Market Size, Share & Trends Analysis Report by End-Use, by Region, and Segment Forecasts, 2023 To 2030. 2023. Available online: https://www.grandviewresearch.com/industry-analysis/catechol-market-report (accessed on 27 January 2023).
- Roell, G.W.; Carr, R.R.; Campbell, T.; Shang, Z.; Henson, W.R.; Czajka, J.J.; Martín, H.G.; Zhang, F.; Foston, M.; Dantas, G.; et al. A concerted systems biology analysis of phenol metabolism in Rhodococcus opacus PD 630. Metab. Eng. 2019, 55, 120–130. [Google Scholar] [CrossRef]
- Phenol Industry Capacity and Capital Expenditure Forecasts with Details of Active and Planned Plants to 2028. 2024. Available online: https://www.globaldata.com/store/report/phenol-market-analysis/ (accessed on 4 June 2024).
- Market Volume of Phenols Worldwide from 2015 to 2022, with a Forecast for 2023 to 2030. 2023. Available online: https://www.statista.com/statistics/979265/global-phenol-market-volume/ (accessed on 11 July 2023).
- Lee, K.; Bang, H.B.; Lee, Y.H.; Jeong, K.J. Enhanced production of styrene by engineered Escherichia coli and in situ product recovery (ISPR) with an organic solvent. Microb. Cell Factories 2019, 18, 79. [Google Scholar] [CrossRef] [PubMed]
- Styrene Market Analysis: Plant Capacity, Production, Process, Technology, Operating Efficiency, Demand & Supply, End-Use, Foreign Trade, Sales, Channel, Regional Demand, Company Share, 2015–2035. 2022. Available online: https://www.chemanalyst.com/industry-report/styrene-market-650 (accessed on 4 December 2022).
- Jeong, G.-T.; Kim, S.-K.; Park, D.-H. Application of solid-acid catalyst and marine macro-algae Gracilaria verrucosa to production of fermentable sugars. Bioresour. Technol. 2015, 181, 1–6. [Google Scholar] [CrossRef]
- Hou, Q.; Qi, X.; Zhen, M.; Qian, H.; Nie, Y.; Bai, C.; Zhang, S.; Bai, X.; Ju, M. Biorefinery roadmap based on catalytic production and upgrading 5-hydroxymethylfurfural. Green Chem. 2020, 23, 119–231. [Google Scholar] [CrossRef]
- Global 5-hydroxymethylfurfural (5-HMF) Market Size by Source (Renewable Sources, Non-Renewable Sources), by Application (Food & Beverage, Pharmaceuticals), by End-User Industry (Food Industry, Healthcare Industry), by Formulation (Liquid Form, Powdered Form), by Distribution Channel (Online Retailing, Pharmacies), by Geographic Scope and Forecast. 2025. Available online: https://www.verifiedmarketreports.com/product/5-hydroxymethylfurfural-5-hmf-market/ (accessed on 4 April 2025).
- Citric Acid Market Size, Share & Trends Analysis Report by Form (Liquid, Powder), by Application (Pharmaceutical, Food & Beverages, Others), by Region, and Segment Forecasts, 2023–2030. 2023. Available online: https://www.grandviewresearch.com/industry-analysis/citric-acid-market (accessed on 4 January 2023).
- Citric Acid Market Analysis: Plant Capacity, Production, Operating Efficiency, Demand & Supply, End-User Industries, Type, Sales Channel, Redional Demand Comnany Share Trade 2015–203. 2023. Available online: https://www.chemanalyst.com/industry-report/citric-acid-market-695 (accessed on 4 September 2023).
- Angumeenal, A.; Venkappayya, D. An overview of citric acid production. LWT Food Sci. Technol. 2013, 50, 367–370. [Google Scholar] [CrossRef]
- Behera, B.C.; Mishra, R.; Mohapatra, S. Microbial citric acid: Production, properties, application, and future perspectives. Food Front. 2021, 2, 62–76. [Google Scholar] [CrossRef]
- Zimmermann, H.; Walzl, R. Ethylene. In Ullmann’s Encyclopedia of Industrial Chemistry; Wiley-VCH: Verlag, Germany, 2005. [Google Scholar]
- Chen, Y.; Kuo, M.J.; Lobo, R.; Ierapetritou, M. Ethylene production: Process design, techno-economic and life-cycle assessments. Green Chem. 2024, 26, 2903–2911. [Google Scholar] [CrossRef]
- Chadwick, S.S. Ullmann’s Encyclopedia of Industrial Chemistry. Ref. Serv. Rev. 1988, 16, 31–34. [Google Scholar] [CrossRef]
- Seddon, D. Petrochemical Economics: Technology Selection in a Carbon Constrained World; Imperial College Press: London, UK; World Scientific: London, UK, 2010; Volume 8. [Google Scholar]
- Ethylene Global Market Report 2023. 2023. Available online: https://www.researchandmarkets.com/reports/5733833/ethylene-global-market-report (accessed on 4 March 2023).
- Papa, A. Propanols. In Ullmann’s Encyclopedia of Industrial Chemistry; Wiley-VCH: Verlag, Germany, 2011. [Google Scholar]
- Jang, Y.S.; Kim, B.; Shin, J.H.; Choi, Y.J.; Choi, S.; Song, C.W.; Lee, J.; Park, H.G.; Lee, S.Y. Bio-based production of C2–C6 platform chemicals. Biotechnol. Bioeng. 2012, 109, 2437–2459. [Google Scholar] [CrossRef]
- De Bruycker, R.; Anthonykutty, J.M.; Linnekoski, J.; Harlin, A.; Lehtonen, J.; Van Geem, K.M.; Räsänen, J.; Marin, G.B. Assessing the potential of crude tall oil for the production of green-base chemicals: An experimental and kinetic modeling study. Ind. Eng. Chem. Res. 2014, 53, 18430–18442. [Google Scholar] [CrossRef]
- Watanabe, T.; Kondo, N. Ethylene evolution in marine algae and a proteinaceous inhibitor of ethylene biosynthesis from red alga. Plant Cell Physiol. 1976, 17, 1159–1166. [Google Scholar] [CrossRef]
- Abeles, F.B.; Morgan, P.W.; Saltveit, M.E., Jr. Ethylene in Plant Biology; Academic Press: Cambridge, MA, USA, 2012. [Google Scholar]
- Steinke, M.; Kirst, G.O. Enzymatic cleavage of dimethylsulfoniopropionate (DMSP) in cell-free extracts of the marine macroalga Enteromorpha clathrata (Roth) Grev. (Ulvales, Chlorophyta). J. Exp. Mar. Biol. Ecol. 1996, 201, 73–85. [Google Scholar] [CrossRef]
- Steinke, M.; Wolfe, G.; Kirst, G. Partial characterisation of dimethylsulfoniopropionate (DMSP) lyase isozymes in 6 strains of Emiliania huxleyi. Mar. Ecol. Prog. Ser. 1998, 175, 215–225. [Google Scholar] [CrossRef]
- Simó, R.; Archer, S.D.; Pedrós-Alió, C.; Gilpin, L.; Stelfox-Widdicombe, C.E. Coupled dynamics of dimethylsulfoniopropionate and dimethylsulfide cycling and the microbial food web in surface waters of the North Atlantic. Limnol. Oceanogr. 2002, 47, 53–61. [Google Scholar] [CrossRef]
- Gage, D.A.; Rhodes, D.; Nolte, K.D.; Hicks, W.A.; Leustek, T.; Cooper, A.J.L.; Hanson, A.D. A new route for synthesis of dimethylsulphoniopropionate in marine algae. Nature 1997, 387, 891–894. [Google Scholar] [CrossRef]
- Blunden, G.; Smith, B.E.; Irons, M.W.; Yang, M.-H.; Roch, O.G.; Patel, A.V. Betaines and tertiary sulphonium compounds from 62 species of marine algae. Biochem. Syst. Ecol. 1992, 20, 373–388. [Google Scholar] [CrossRef]
- Broadgate, W.J.; Malin, G.; Küpper, F.C.; Thompson, A.; Liss, P.S. Isoprene and other non-methane hydrocarbons from seaweeds: A source of reactive hydrocarbons to the atmosphere. Mar. Chem. 2004, 88, 61–73. [Google Scholar] [CrossRef]
- Edwards, D.M.; Reed, R.H.; Chudek, J.A.; Foster, R.; Stewart, W.D.P. Organic solute accumulation in osmotically-stressed Enteromorpha intestinalis. Mar. Biol. 1987, 95, 583–592. [Google Scholar] [CrossRef]
- Zhang, W.; Yamane, H.; Chapman, D.J. The Phytohormone Profile of the Red Alga Porphyra perforata. Bot. Mar. 1993, 36, 257–266. [Google Scholar] [CrossRef]
- Driessche, T.V.; Vries, G.M.P.-D.; Guisset, J.-L. Tansley Review No. 91 Differentiation, growth and morphogenesis: Acetabularia as a model system. New Phytol. 1997, 135, 1–20. [Google Scholar] [CrossRef]
- Ghooprasert, P.; Spencer, M. Preparation and purification of an enzyme system for ethylene synthesis from acrylate. Physiol. Veg. 1975, 13, 579–589. [Google Scholar]
- Sauer, M.; Porro, D.; Mattanovich, D.; Branduardi, P. Microbial production of organic acids: Expanding the markets. Trends Biotechnol. 2008, 26, 100–108. [Google Scholar] [CrossRef] [PubMed]
- Hohenschutz, H.; Dinkhauser, G.; Franz, D.; Buelow, H. Production of Propionic Acid. United States Patent 3835185, 1974. Available online: https://patents.google.com/patent/US3835185A/en (accessed on 4 August 2025).
- Ahmadi, N.; Khosravi-Darani, K.; Mortazavian, A.M. An overview of biotechnological production of propionic acid: From upstream to downstream processes. Electron. J. Biotechnol. 2017, 28, 67–75. [Google Scholar] [CrossRef]
- Boyaval, P.; Corre, C. Production of propionic acid. Le Lait 1995, 75, 453–461. [Google Scholar] [CrossRef]
- Patil, S.D.; Papadmitrakopoulos, F.; Burgess, D.J. Concurrent delivery of dexamethasone and VEGF for localized inflammation control and angiogenesis. J. Control. Release 2007, 117, 68–79. [Google Scholar] [CrossRef] [PubMed]
- Narěbska, A.; Staniszewski, M. Separation of fermentation products by membrane techniques. I. Separation of lactic acid/lactates by diffusion dialysis. Sep. Sci. Technol. 1997, 32, 1669–1682. [Google Scholar] [CrossRef]
- Athanasiou, K.A.; Niederauer, G.G.; Agrawal, C.M. Sterilization, toxicity, biocompatibility and clinical applications of polylactic acid/polyglycolic acid copolymers. Biomaterials 1996, 17, 93–102. [Google Scholar] [CrossRef]
- Rasal, R.M.; Janorkar, A.V.; Hirt, D.E. Poly (lactic acid) modifications. Prog. Polym. Sci. 2010, 35, 338–356. [Google Scholar] [CrossRef]
- Oliveira, J.E.; Medeiros, E.S.; Cardozo, L.; Voll, F.; Madureira, E.H.; Mattoso, L.H.; Assis, O.B. Development of poly (lactic acid) nanostructured membranes for the controlled delivery of progesterone to livestock animals. Mater. Sci. Eng. C 2013, 33, 844–849. [Google Scholar] [CrossRef]
- Ademola, J.; Frazier, C.; Kim, S.J.; Theaux, C.; Saudez, X. Clinical evaluation of 40% urea and 12% ammonium lactate in the treatment of xerosis. Am. J. Clin. Dermatol. 2002, 3, 217–222. [Google Scholar] [CrossRef]
- Pavicic, T.; Korting, H.C. Xerosis and callus formation as a key to the diabetic foot syndrome: Dermatologic view of the problem and its management. JDDG J. Der Dtsch. Dermatol. Ges. 2006, 4, 935–941. [Google Scholar] [CrossRef]
- Cadilla, R.; Larkin, A.; Stewart, E.; Trump, R.; Turnbull, P. Chemical Compounds. US Patent 20060142387 A1, 2004. Available online: https://patents.google.com/patent/WO2005011681A1/en (accessed on 4 August 2025).
- Datta, R.; Henry, M. Lactic acid: Recent advances in products, processes and technologies—A review. J. Chem. Technol. Biotechnol. Int. Res. Process Environ. Clean Technol. 2006, 81, 1119–1129. [Google Scholar] [CrossRef]
- Uchida, M.; Murata, M. Isolation of a lactic acid bacterium and yeast consortium from a fermented material of Ulva spp.(Chlorophyta). J. Appl. Microbiol. 2004, 97, 1297–1310. [Google Scholar] [CrossRef]
- Hwang, H.J.; Kim, S.M.; Chang, J.H.; Lee, S.B. Lactic acid production from seaweed hydrolysate of Enteromorpha prolifera (Chlorophyta). J. Appl. Phycol. 2012, 24, 935–940. [Google Scholar] [CrossRef]
- Hwang, H.J.; Lee, S.Y.; Kim, S.M.; Lee, S.B. Fermentation of seaweed sugars by Lactobacillus species and the potential of seaweed as a biomass feedstock. Biotechnol. Bioprocess Eng. 2011, 16, 1231–1239. [Google Scholar] [CrossRef]
- Mazumdar, S.; Bang, J.; Oh, M.-K. L-lactate production from seaweed hydrolysate of Laminaria japonica using metabolically engineered Escherichia coli. Appl. Biochem. Biotechnol. 2014, 172, 1938–1952. [Google Scholar] [CrossRef]
- Jang, S.-S.; Shirai, Y.; Uchida, M.; Wakisaka, M. Production of L (+)-lactic acid from mixed acid and alkali hydrolysate of brown seaweed. Food Sci. Technol. Res. 2011, 17, 155–160. [Google Scholar] [CrossRef]
- Jang, S.-S.; Shirai, Y.; Uchida, M.; Wakisaka, M. Potential use of Gelidium amansii acid hydrolysate for lactic acid production by Lactobacillus rhamnosus. Food Technol. Biotechnol. 2013, 51, 131–136. [Google Scholar]
- Hanai, T.; Atsumi, S.; Liao, J. Engineered synthetic pathway for isopropanol production in Escherichia coli. Appl. Environ. Microbiol. 2007, 73, 7814–7818. [Google Scholar] [CrossRef]
- Jain, R.; Yan, Y. Dehydratase mediated 1-propanol production in metabolically engineered Escherichia coli. Microb. Cell Factories 2011, 10, 1–10. [Google Scholar] [CrossRef]
- Corma, A.; Iborra, S.; Velty, A. Chemical routes for the transformation of biomass into chemicals. Chem. Rev. 2007, 107, 2411–2502. [Google Scholar] [CrossRef] [PubMed]
- Bikker, P.; van Krimpen, M.M.; van Wikselaar, P.; Houweling-Tan, B.; Scaccia, N.; van Hal, J.W.; Huijgen, W.J.; Cone, J.W.; López-Contreras, A.M. Biorefinery of the green seaweed Ulva lactuca to produce animal feed, chemicals and biofuels. J. Appl. Phycol. 2016, 28, 3511–3525. [Google Scholar] [CrossRef] [PubMed]
- Baroi, G.N.; Baumann, I.; Westermann, P.; Gavala, H.N. Butyric acid fermentation from pretreated and hydrolysed wheat straw by an adapted C lostridium tyrobutyricum strain. Microb. Biotechnol. 2015, 8, 874–882. [Google Scholar] [CrossRef]
- Zhang, A.; Yang, S.T. Engineering Propionibacterium acidipropionici for enhanced propionic acid tolerance and fermentation. Biotechnol. Bioeng. 2009, 104, 766–773. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.Y.; Park, J.H.; Jang, S.H.; Nielsen, L.K.; Kim, J.; Jung, K.S. Fermentative butanol production by Clostridia. Biotechnol. Bioeng. 2008, 101, 209–228. [Google Scholar] [CrossRef] [PubMed]
- Mascal, M. Chemicals from biobutanol: Technologies and markets. Biofuels Bioprod. Biorefining 2012, 6, 483–493. [Google Scholar] [CrossRef]
- MarketsandMarkets. n-Butanol Market by Grade (Industrial, Pharmaceutical, Distribution Channel, Feedstock, Application Butyl Carboxylate, Direct Solvents, Specialty Chemicals, Rubber & Plasticizers), End-Use Industry and Region—Global Forecast to 2029. Available online: https://www.marketsandmarkets.com/Market-Reports/n-butanol-market-1089.html (accessed on 4 October 2024).
- García Ibarra, V.; Sendón, R.; García-Fonte, X.X.; Paseiro Losada, P.; Rodríguez Bernaldo de Quirós, A. Migration studies of butylated hydroxytoluene, tributyl acetylcitrate and dibutyl phthalate into food simulants. J. Sci. Food Agric. 2019, 99, 1586–1595. [Google Scholar] [CrossRef]
- Huesemann, M.H.; Kuo, L.-J.; Urquhart, L.; Gill, G.A.; Roesijadi, G. Acetone-butanol fermentation of marine macroalgae. Bioresour. Technol. 2012, 108, 305–309. [Google Scholar] [CrossRef]
- Potts, T.; Du, J.; Paul, M.; May, P.; Beitle, R.; Hestekin, J. The production of butanol from Jamaica bay macro algae. Environ. Prog. Sustain. Energy 2011, 31, 29–36. [Google Scholar] [CrossRef]
- Van der Wal, H.; Sperber, B.L.; Houweling-Tan, B.; Bakker, R.R.; Brandenburg, W.; López-Contreras, A.M. Production of acetone, butanol, and ethanol from biomass of the green seaweed Ulva lactuca. Bioresour. Technol. 2013, 128, 431–437. [Google Scholar] [CrossRef] [PubMed]
- Qureshi, N.; Blaschek, H.P. Clostridia and Process Engineering for Energy Generation. In Biomass to Biofuels: Strategies for Global Industries; Vertès, A.A.N.Q., Blaschek, H.P., Yukawa, H., Eds.; Wiley: Chichester, UK; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2010. [Google Scholar]
- Takkellapati, S.; Li, T.; Gonzalez, M.A. An overview of biorefinery-derived platform chemicals from a cellulose and hemicellulose biorefinery. Clean Technol. Environ. Policy 2018, 20, 1615–1630. [Google Scholar] [CrossRef]
- Saxena, R.K.; Saran, S.; Isar, J.; Kaushik, R. Production and Applications of Succinic Acid. In Current Developments in Biotechnology and Bioengineering; Elsevier: Amsterdam, The Netherlands, 2017; pp. 601–630. [Google Scholar]
- Corona-González, R.I.; Bories, A.; González-Álvarez, V.; Snell-Castro, R.; Toriz-González, G.; Pelayo-Ortiz, C. Succinic Acid Production with Actinobacillus succinogenes ZT-130 in the Presence of Succinic Acid. Curr. Microbiol. 2009, 60, 71–77. [Google Scholar] [CrossRef]
- Glassner, D.A.; Elankovan, P.; Beacom, D.R.; Berglund, K.A. Purification process for succinic acid produced by fermentation. Appl. Biochem. Biotechnol. 1995, 51–52, 73–82. [Google Scholar] [CrossRef]
- Zeikus, J.G.; Jain, M.K.; Elankovan, P. Biotechnology of succinic acid production and markets for derived industrial products. Appl. Microbiol. Biotechnol. 1999, 51, 545–552. [Google Scholar] [CrossRef]
- Özcan, Y.; Osmanoğlu, S.; İde, S. Crystal Structure of 2,2-Dimethyl Succinic Acid. Anal. Sci. 2003, 19, 1221–1222. [Google Scholar] [CrossRef]
- Bergen, W.G.; Bates, D.B. Ionophores: Their Effect on Production Efficiency and Mode of Action. J. Anim. Sci. 1984, 58, 1465–1483. [Google Scholar] [CrossRef]
- Bai, B.; Zhou, J.-M.; Yang, M.-H.; Liu, Y.-L.; Xu, X.-H.; Xing, J.-M. Efficient production of succinic acid from macroalgae hydrolysate by metabolically engineered Escherichia coli. Bioresour. Technol. 2015, 185, 56–61. [Google Scholar] [CrossRef]
- Alvarado-Morales, M.; Gunnarsson, I.B.; Fotidis, I.A.; Vasilakou, E.; Lyberatos, G.; Angelidaki, I. Laminaria digitata as a potential carbon source for succinic acid and bioenergy production in a biorefinery perspective. Algal Res. 2015, 9, 126–132. [Google Scholar] [CrossRef]
- Celińska, E.; Grajek, W. Biotechnological production of 2, 3-butanediol—Current state and prospects. Biotechnol. Adv. 2009, 27, 715–725. [Google Scholar] [CrossRef] [PubMed]
- Mazumdar, S.; Lee, J.; Oh, M.-K. Microbial production of 2,3 butanediol from seaweed hydrolysate using metabolically engineered Escherichia coli. Bioresour. Technol. 2013, 136, 329–336. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.W.; Kim, H.U.; Choi, S.; Yi, J.; Lee, S.Y. Microbial production of building block chemicals and polymers. Curr. Opin. Biotechnol. 2011, 22, 758–767. [Google Scholar] [CrossRef]
- Abbott, D.A.; Zelle, R.M.; Pronk, J.T.; Van Maris, A.J. Metabolic engineering of Saccharomyces cerevisiae for production of carboxylic acids: Current status and challenges. FEMS Yeast Res. 2009, 9, 1123–1136. [Google Scholar] [CrossRef]
- Kawagoe, M.; Hyakumura, K.; Suye, S.-I.; Miki, K.; Naoe, K. Application of bubble column fermentors to submerged culture of Schizophyllum commune for production of l-malic acid. J. Ferment. Bioeng. 1997, 84, 333–336. [Google Scholar] [CrossRef]
- Roa Engel, C.A.; Straathof, A.J.; Zijlmans, T.W.; van Gulik, W.M.; van der Wielen, L.A. Fumaric acid production by fermentation. Appl. Microbiol. Biotechnol. 2008, 78, 379–389. [Google Scholar] [CrossRef]
- Fox, R.J.; Gold, R. Dimethyl fumarate to treat multiple sclerosis. In Multiple Sclerosis Therapeutics; Cohen, J.A., Rudeck, R.A., Eds.; Cambridge University Press: Cambridge, UK, 2011; pp. 387–392. [Google Scholar]
- Goldberg, I.; Rokem, J.S. Fumaric acid biosynthesis and accumulation. In Bioprocessing of Renewable Resources to Commodity Bioproducts; Bisaria, V.S., Kondo, A., Eds.; John Wiley & Sons: Hoboken, NJ, USA, 2014; pp. 409–434. [Google Scholar]
- He, C.L.; Fu, B.D.; Shen, H.Q.; Jiang, X.L.; Wei, X.B. Fumaric acid, an antibacterial component of Aloe vera L. Afr. J. Biotechnol. 2011, 10, 2973–2977. [Google Scholar]
- Gershenzon, J.; Dudareva, N. The function of terpene natural products in the natural world. Nat. Chem. Biol. 2007, 3, 408–414. [Google Scholar] [CrossRef]
- Wong, J.; Rios-Solis, L.; Keasling, J. Microbial production of isoprenoids. In Consequences of Microbial Interactions with Hydrocarbons, Oils, and Lipids: Production of Fuels and Chemicals; Springer: Berlin/Heidelberg, Germany, 2017; pp. 359–382. [Google Scholar]
- Chang, M.C.Y.; Keasling, J.D. Production of isoprenoid pharmaceuticals by engineered microbes. Nat. Chem. Biol. 2006, 2, 674–681. [Google Scholar] [CrossRef]
- Misawa, N. Pathway engineering for functional isoprenoids. Curr. Opin. Biotechnol. 2011, 22, 627–633. [Google Scholar] [CrossRef]
- Yang, J.; Zhao, G.; Sun, Y.; Zheng, Y.; Jiang, X.; Liu, W.; Xian, M. Bio-isoprene production using exogenous MVA pathway and isoprene synthase in Escherichia coli. Bioresour. Technol. 2012, 104, 642–647. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Pfeifer, B.A. Heterologous production of plant-derived isoprenoid products in microbes and the application of metabolic engineering and synthetic biology. Curr. Opin. Plant Biol. 2014, 19, 8–13. [Google Scholar] [CrossRef] [PubMed]
- Paddon, C.J.; Keasling, J.D. Semi-synthetic artemisinin: A model for the use of synthetic biology in pharmaceutical development. Nat. Rev. Microbiol. 2014, 12, 355–367. [Google Scholar] [CrossRef]
- Jongedijk, E.; Cankar, K.; Buchhaupt, M.; Schrader, J.; Bouwmeester, H.; Beekwilder, J. Biotechnological production of limonene in microorganisms. Appl. Microbiol. Biotechnol. 2016, 100, 2927–2938. [Google Scholar] [CrossRef] [PubMed]
- Diamond, G.M.; Murphy, V.; Boussie, T.R. Application of high throughput experimentation to the production of commodity chemicals from renewable feedstocks. In Modern Applications of High Throughput R&D in Heterogeneous Catalysis; Hagemeyer, A., Volpe, A.F., Eds.; Bentham Science Publishers: Sharjah, United Arab Emirates, 2014; pp. 288–309. [Google Scholar]
- Wang, J.; Lin, M.; Xu, M.; Yang, S.T. Anaerobic fermentation for production of carboxylic acids as bulk chemicals from renewable biomass. In Anaerobes in Biotechnology; Hatti-Kaul, R., Mamo, G., Mattiasson, B., Eds.; Springer: Cham, Switzerland, 2016; pp. 323–361. [Google Scholar]
- Skoog, E.; Shin, J.H.; Saez-Jimenez, V.; Mapelli, V.; Olsson, L. Biobased adipic acid—The challenge of developing the production host. Biotechnol. Adv. 2018, 36, 2248–2263. [Google Scholar] [CrossRef]
- Schmidt, R.J. Industrial catalytic processes—Phenol production. Appl. Catal. A Gen. 2005, 280, 89–103. [Google Scholar] [CrossRef]
- E Balderas-Hernández, V.; Sabido-Ramos, A.; Silva, P.; Cabrera-Valladares, N.; Hernández-Chávez, G.; Báez-Viveros, J.L.; Martínez, A.; Bolívar, F.; Gosset, G. Metabolic engineering for improving anthranilate synthesis from glucose in Escherichia coli. Microb. Cell Factories 2009, 8, 19. [Google Scholar] [CrossRef]
- Pasquardini, L.; Lunelli, L.; Vanzetti, L.; Anderle, M.; Pederzolli, C. Immobilization of cationic rifampicin-loaded liposomes on polystyrene for drug-delivery applications. Colloids Surfaces B Biointerfaces 2008, 62, 265–272. [Google Scholar] [CrossRef] [PubMed]
- Jabbar, A.H.; Hamzah, M.Q.; Mezan, S.O.; Ameruddin, A.B.; Agam, M.A. Green Synthesis of Silver/Polystyrene Nano Composite (Ag/PS NCs) via Plant Extracts Beginning a New Era in Drug Delivery. Indian J. Sci. Technol. 2018, 11, 1–9. [Google Scholar] [CrossRef]
- McKenna, R.; Nielsen, D.R. Styrene biosynthesis from glucose by engineered E. coli. Metab. Eng. 2011, 13, 544–554. [Google Scholar] [CrossRef]
- Hayes, G.; Laurel, M.; MacKinnon, D.; Zhao, T.; Houck, H.A.; Becer, C.R. Polymers without Petrochemicals: Sustainable Routes to Conventional Monomers. Chem. Rev. 2022, 123, 2609–2734. [Google Scholar] [CrossRef]
- Wang, T.; Nolte, M.W.; Shanks, B.H. Catalytic dehydration of C6carbohydrates for the production of hydroxymethylfurfural (HMF) as a versatile platform chemical. Green Chem. 2013, 16, 548–572. [Google Scholar] [CrossRef]
- Patwardhan, P.R.; Brown, R.C.; Shanks, B.H. Product Distribution from the Fast Pyrolysis of Hemicellulose. ChemSusChem 2011, 4, 636–643. [Google Scholar] [CrossRef] [PubMed]
- Mathew, A.K.; Abraham, A.; Mallapureddy, K.K.; Sukumaran, R.K. Lignocellulosic biorefinery wastes, or resources? In Waste Biorefinery; Elsevier: Amsterdam, The Netherlands, 2018; pp. 267–297. [Google Scholar]
- Martins, F.C.; Alcantara, G.M.; Silva, A.F.S.; Melchert, W.R.; Rocha, F.R. The role of 5-hydroxymethylfurfural in food and recent advances in analytical methods. Food Chem. 2022, 395, 133539. [Google Scholar] [CrossRef]
- Yang, C.-F.; Huang, C.-R. Isolation of 5-hydroxymethylfurfural biotransforming bacteria to produce 2,5-furan dicarboxylic acid in algal acid hydrolysate. J. Biosci. Bioeng. 2018, 125, 407–412. [Google Scholar] [CrossRef]
- Park, J.-H.; Yoon, J.-J.; Park, H.-D.; Kim, Y.J.; Lim, D.J.; Kim, S.-H. Feasibility of biohydrogen production from Gelidium amansii. Int. J. Hydrogen Energy 2011, 36, 13997–14003. [Google Scholar] [CrossRef]
- Wu, C.-H.; Chien, W.-C.; Chou, H.-K.; Yang, J.; Lin, H.-T.V. Sulfuric Acid Hydrolysis and Detoxification of Red Alga Pterocladiella capillacea for Bioethanol Fermentation with Thermotolerant Yeast Kluyveromyces marxianus. J. Microbiol. Biotechnol. 2014, 24, 1245–1253. [Google Scholar] [CrossRef]
- Mirzaei, H.M.; Karimi, B. Sulphanilic acid as a recyclable bifunctional organocatalyst in the selective conversion of lignocellulosic biomass to 5-HMF. Green Chem. 2015, 18, 2282–2286. [Google Scholar] [CrossRef]
- Nangare, S.; Vispute, Y.; Tade, R.; Dugam, S.; Patil, P. Pharmaceutical applications of citric acid. Futur. J. Pharm. Sci. 2021, 7, 1–23. [Google Scholar] [CrossRef]
- Research, E.M. Citric Acid Market Report and Forecast 2024–2029. 2024. Available online: https://www.expertmarketresearch.com/reports/citric-acid-market (accessed on 4 November 2024).
- Insights, F.M. Citric Acid Market Size, Growth, and Forecast for 2025 to 2035. 2025. Available online: https://www.futuremarketinsights.com/reports/citric-acid-market (accessed on 4 February 2024).
- Dhillon, G.S.; Brar, S.K.; Verma, M.; Tyagi, R.D. Recent Advances in Citric Acid Bio-production and Recovery. Food Bioprocess Technol. 2010, 4, 505–529. [Google Scholar] [CrossRef]
- Lambros, M.; Tran, T.; Fei, Q.; Nicolaou, M. Citric Acid: A Multifunctional Pharmaceutical Excipient. Pharmaceutics 2022, 14, 972. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.J.; Koo, J.M.; Kim, S.H.; Hwang, S.Y.; Im, S.S. Synthesis of super absorbent polymer using citric acid as a bio-based monomer. Polym. Degrad. Stab. 2017, 144, 128–136. [Google Scholar] [CrossRef]
- Ramesh, T.; Kalaiselvam, M. An Experimental Study on Citric Acid Production by Aspergillus niger Using Gelidiella acerosa as a Substrate. Indian J. Microbiol. 2011, 51, 289–293. [Google Scholar] [CrossRef]
- Espinosa-Ramírez, J.; Mondragón-Portocarrero, A.C.; Rodríguez, J.A.; Lorenzo, J.M.; Santos, E.M. Algae as a potential source of protein meat alternatives. Front. Nutr. 2023, 10, 1254300. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.; Akbar, S.; Okonkwo, V.; Smith, C.; Khan, S.; Shah, A.A.; Adnan, F.; Ijaz, U.Z.; Ahmed, S.; Badshah, M. Enrichment of the hydrogenotrophic methanogens for, in-situ biogas up-gradation by recirculation of gases and supply of hydrogen in methanogenic reactor. Bioresour. Technol. 2022, 345, 126219. [Google Scholar] [CrossRef]
- Kostas, E.T.; White, D.A.; Cook, D.J. Development of a bio-refinery process for the production of speciality chemical, biofuel and bioactive compounds from Laminaria digitata. Algal Res. 2017, 28, 211–219. [Google Scholar] [CrossRef]
- Popa, V.; Volf, I. Biomass as Renewable Raw Material to Obtain Bioproducts of High-Tech Value; Elsevier: Amsterdam, The Netherlands, 2018. [Google Scholar]
- Arroyo, M.F.R.; Miguel, L.J. Low-carbon energy governance: Scenarios to accelerate the change in the energy matrix in ecuador. Energies 2020, 13, 4731. [Google Scholar] [CrossRef]
- Chemat, F.; Vian, M.A.; Ravi, H.K. Toward petroleum-free with plant-based chemistry. Curr. Opin. Green Sustain. Chem. 2021, 28, 100450. [Google Scholar] [CrossRef]
- Solomon, S.; Qin, D.; Manning, M.; Chen, Z.; Marquis, M.; Averyt, K.; Tignor, M.; Miller, H. IPCC fourth assessment report (AR4). Clim. Chang. 2007, 374, 996. [Google Scholar]
- Cakmak, E.K.; Atasoy, M.; Owusu-Agyeman, I.; Khatami, K.; Cetecioglu, Z. Circular city concept for future biorefineries. In Clean Energy and Resource Recovery; Elsevier: Amsterdam, The Netherlands, 2022; pp. 335–352. [Google Scholar]
- Ahorsu, R.; Medina, F.; Constantí, M. Significance and Challenges of Biomass as a Suitable Feedstock for Bioenergy and Biochemical Production: A Review. Energies 2018, 11, 3366. [Google Scholar] [CrossRef]
- Okolie, J.A.; Mukherjee, A.; Nanda, S.; Dalai, A.K.; Kozinski, J.A. Next-generation biofuels and platform biochemicals from lignocellulosic biomass. Int. J. Energy Res. 2021, 45, 14145–14169. [Google Scholar] [CrossRef]
- Cherubini, F. The biorefinery concept: Using biomass instead of oil for producing energy and chemicals. Energy Convers. Manag. 2010, 51, 1412–1421. [Google Scholar] [CrossRef]
- Kamm, B.; Schönicke, P.; Hille, C. Green biorefinery–industrial implementation. Food Chem. 2016, 197, 1341–1345. [Google Scholar] [CrossRef]
- Haveren, J.V.; Scott, E.L.; Sanders, J. Bulk chemicals from biomass. Biofuels Bioprod. Biorefining 2008, 2, 41–57. [Google Scholar] [CrossRef]
- Zakzeski, J.; Bruijnincx, P.C.A.; Jongerius, A.L.; Weckhuysen, B.M. The Catalytic Valorization of Lignin for the Production of Renewable Chemicals. Chem. Rev. 2010, 110, 3552–3599. [Google Scholar] [CrossRef]
- Besson, M.; Gallezot, P.; Pinel, C. Conversion of Biomass into Chemicals over Metal Catalysts. Chem. Rev. 2013, 114, 1827–1870. [Google Scholar] [CrossRef]
- Delidovich, I.; Hausoul, P.J.C.; Deng, L.; Pfützenreuter, R.; Rose, M.; Palkovits, R. Alternative Monomers Based on Lignocellulose and Their Use for Polymer Production. Chem. Rev. 2015, 116, 1540–1599. [Google Scholar] [CrossRef]
- Danner, H.; Braun, R. Biotechnology for the production of commodity chemicals from biomass. Chem. Soc. Rev. 1999, 28, 395–405. [Google Scholar] [CrossRef]
- Bozell, J.J.; Moens, L.; Elliott, D.; Wang, Y.; Neuenscwander, G.; Fitzpatrick, S.; Bilski, R.; Jarnefeld, J. Production of levulinic acid and use as a platform chemical for derived products. Resour. Conserv. Recycl. 2000, 28, 227–239. [Google Scholar] [CrossRef]
- Hayes, D.J.; Fitzpatrick, S.; Hayes, M.H.; Ross, J.R. The biofine process–production of levulinic acid, furfural, and formic acid from lignocellulosic feedstocks. In Biorefineries–Industrial Processes and Product; Kamm, B., Gruber, P.R., Kamm, M., Eds.; Wiley-VCH: Weinheim, Germany, 2006; pp. 139–164. [Google Scholar]
- Cherubini, F.; Strømman, A.H. Chemicals from lignocellulosic biomass: Opportunities, perspectives, and potential of biorefinery systems. Biofuels Bioprod. Biorefining 2011, 5, 548–561. [Google Scholar] [CrossRef]
- Van Putten, R.J.; Van Der Waal, J.C.; De Jong, E.D.; Rasrendra, C.B.; Heeres, H.J.; de Vries, J.G. Hydroxymethylfurfural, a versatile platform chemical made from renewable resources. Chem. Rev. 2013, 113, 1499–1597. [Google Scholar] [CrossRef]
- Farmer, T.J.; Mascal, M. Platform molecules. In Introduction to Chemicals From Biomass; James, C., Fabien, D., Eds.; John Wiley & Sons: Hoboken, NJ, USA, 2015; pp. 89–155. [Google Scholar]
- Kang, S.; Fu, J.; Zhang, G. From lignocellulosic biomass to levulinic acid: A review on acid-catalyzed hydrolysis. Renew. Sustain. Energy Rev. 2018, 94, 340–362. [Google Scholar] [CrossRef]
- Gerardy, R.; Debecker, D.P.; Estager, J.; Luis, P.; Monbaliu, J.C. Continuous flow upgrading of selected C2–C6 platform chemicals derived from biomass. Chem. Rev. 2020, 120, 7219–7347. [Google Scholar] [CrossRef]
- Vu, H.P.; Nguyen, L.N.; Vu, M.T.; Johir, M.A.H.; McLaughlan, R.; Nghiem, L.D. A comprehensive review on the framework to valorise lignocellulosic biomass as biorefinery feedstocks. Sci. Total Environ. 2020, 743, 140630. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.B.; Wu, T.Y. A review on solvent systems for furfural production from lignocellulosic biomass. Renew. Sustain. Energy Rev. 2021, 137, 110172. [Google Scholar] [CrossRef]
- Wijffels, R.H.; Barbosa, M.J.; Eppink, M.H. Microalgae for the production of bulk chemicals and biofuels. Biofuels Bioprod. Biorefining Innov. A Sustain. Econ. 2010, 4, 287–295. [Google Scholar] [CrossRef]
- Chew, K.W.; Yap, J.Y.; Show, P.L.; Suan, N.H.; Juan, J.C.; Ling, T.C.; Lee, D.-J.; Chang, J.-S. Microalgae biorefinery: High value products perspectives. Bioresour. Technol. 2017, 229, 53–62. [Google Scholar] [CrossRef]
- Cesário, M.T.; da Fonseca, M.M.R.; Marques, M.M.; de Almeida, M.C.M. Marine algal carbohydrates as carbon sources for the production of biochemicals and biomaterials. Biotechnol. Adv. 2018, 36, 798–817. [Google Scholar] [CrossRef] [PubMed]
- De Jong, E.; Jungmeier, G. Biorefinery concepts in comparison to petrochemical refineries. In Industrial Biorefineries & White Biotechnology; Pandey, A., Höfer, R., Larroche, C., Taherzadeh, M., Nampoothiri, K.M., Eds.; Elsevier: Amsterdam, The Netherlands, 2015; pp. 3–33. [Google Scholar]
- Bwapwa, J.K.; Anandraj, A.; Trois, C. Possibilities for conversion of microalgae oil into aviation fuel: A review. Renew. Sustain. Energy Rev. 2017, 80, 1345–1354. [Google Scholar] [CrossRef]
- Kraan, S. Mass-cultivation of carbohydrate rich macroalgae, a possible solution for sustainable biofuel production. Mitig. Adapt. Strat. Glob. Chang. 2010, 18, 27–46. [Google Scholar] [CrossRef]
- Shukla, R.; Kumar, M.; Chakraborty, S.; Gupta, R.; Kumar, S.; Sahoo, D.; Kuhad, R.C. Process development for the production of bioethanol from waste algal biomass of Gracilaria verrucosa. Bioresour. Technol. 2016, 220, 584–589. [Google Scholar] [CrossRef]
- Varejão, J.M.; Nazaré, R. Ethanol production from macroalgae biomass. In Algal Biofuels; CRC Press: Boca Raton, FL, USA, 2017; pp. 189–200. [Google Scholar]
- Delattre, C.; Pierre, G.; Laroche, C.; Michaud, P. Production, extraction and characterization of microalgal and cyanobacterial exopolysaccharides. Biotechnol. Adv. 2016, 34, 1159–1179. [Google Scholar] [CrossRef]
- Brown, M.; Jeffrey, S.; Volkman, J.; Dunstan, G. Nutritional properties of microalgae for mariculture. Aquaculture 1997, 151, 315–331. [Google Scholar] [CrossRef]
- Renaud, S.M.; Thinh, L.-V.; Parry, D.L. The gross chemical composition and fatty acid composition of 18 species of tropical Australian microalgae for possible use in mariculture. Aquaculture 1999, 170, 147–159. [Google Scholar] [CrossRef]
- Knoshaug, E.; Laurens, L.; Kinchin, C.; Davis, R. Use of Cultivation Data from the Algae Testbed Public Private Partnership as Utilized in NREL’s Algae State of Technology Assessments; National Renewable Energy Lab. (NREL): Golden, CO, USA, 2016.
- Yim, J.H.; Kim, S.J.; Ahn, S.H.; Lee, H.K. Characterization of a novel bioflocculant, p-KG03, from a marine dinoflagellate, Gyrodinium impudicum KG03. Bioresour. Technol. 2007, 98, 361–367. [Google Scholar] [CrossRef] [PubMed]
- de Jesus Raposo, M.F.; de Morais, A.M.; de Morais, R.M. Bioactivity and applications of sulphated polysaccharides from marine microalgae. Mar. Drugs 2013, 11, 233–252. [Google Scholar] [CrossRef]
- Jung, K.A.; Lim, S.-R.; Kim, Y.; Park, J.M. Potentials of macroalgae as feedstocks for biorefinery. Bioresour. Technol. 2013, 135, 182–190. [Google Scholar] [CrossRef]
- Werpy, T.; Holladay, J.; White, J. Top Value Added Chemicals From Biomass: Volume I. In Results of Screening for Potential Candidates from Sugars and Synthesis Gas; U.S. Department of Energy Office of Scientific and Technical Information: Oak Ridge, TN, USA, 2004. [Google Scholar]
- Zwenger, S.; Basu, C. Plant terpenoids: Applications and future potentials. Biotechnol. Mol. Biol. Rev. 2008, 3, 1. [Google Scholar]
- Zielińska-Błajet, M.; Feder-Kubis, J. Monoterpenes and Their Derivatives—Recent Development in Biological and Medical Applications. Int. J. Mol. Sci. 2020, 21, 7078. [Google Scholar] [CrossRef]
- Naylor, S.; Hanke, F.J.; Manes, L.V.; Crews, P. Chemical and biological aspects of marine monoterpenes. In Fortschritte der Chemie organischer Naturstoffe/Progress in the Chemistry of Organic Natural Products; Springer: Vienna, Austria, 1983; pp. 189–241. [Google Scholar]
- Davis, E.M.; Croteau, R. Cyclization enzymes in the biosynthesis of monoterpenes, sesquiterpenes, and diterpenes. In Biosynthesis: Aromatic Polyketides, Isoprenoids, Alkaloids; Springer: Berlin/Heidelberg, Germany, 2000; pp. 53–95. [Google Scholar]
- Breitmaier, E. Terpenes: Flavors, Fragrances, Pharmaca, Pheromones; John Wiley & Sons: Hoboken, NJ, USA, 2006. [Google Scholar]
- Marmulla, R.; Harder, J. Microbial monoterpene transformations—A review. Front. Microbiol. 2014, 5, 346. [Google Scholar] [CrossRef] [PubMed]
- Vil’, V.A.; Yaremenko, I.A.; Ilovaisky, A.I.; Terent’ev, A.O. Peroxides with Anthelmintic, Antiprotozoal, Fungicidal and Antiviral Bioactivity: Properties, Synthesis and Reactions. Molecules 2017, 22, 1881. [Google Scholar] [CrossRef] [PubMed]
- Jiang, M.; Wu, Z.; Guo, H.; Liu, L.; Chen, S. A review of terpenes from marine-derived fungi: 2015–2019. Mar. Drugs 2020, 18, 321. [Google Scholar] [CrossRef]
- Ma, L.F.; Chen, M.J.; Liang, D.E.; Shi, L.M.; Ying, Y.M.; Shan, W.G.; Li, G.Q.; Zhan, Z.J. Streptomyces albogriseolus SY67903 produces eunicellin diterpenoids structurally similar to terpenes of the gorgonian Muricella sibogae, the bacterial source. J. Nat. Prod. 2020, 83, 1641–1645. [Google Scholar] [CrossRef]
- Gong, K.; Yong, D.; Fu, J.; Li, A.; Zhang, Y.; Li, R. Diterpenoids from Streptomyces: Structures, biosyntheses and bioactivities. ChemBioChem 2022, 23, e202200231. [Google Scholar] [CrossRef]
- Avila, C. Terpenoids in Marine Heterobranch Molluscs. Mar. Drugs 2020, 18, 162. [Google Scholar] [CrossRef]
- Chen, B.; Qiu, P.; Xu, B.; Zhao, Q.; Gu, Y.-C.; Fu, L.; Bi, S.; Lan, L.; Wang, C.-Y.; Guo, Y.-W. Cytotoxic and Antibacterial Isomalabaricane Terpenoids from the Sponge Rhabdastrella globostellata. J. Nat. Prod. 2022, 85, 1799–1807. [Google Scholar] [CrossRef]
- Majer, T.; Bhattarai, K.; Straetener, J.; Pohlmann, J.; Cahill, P.; Zimmermann, M.O.; Hübner, M.P.; Kaiser, M.; Svenson, J.; Schindler, M.; et al. Discovery of Ircinianin Lactones B and C—Two New Cyclic Sesterterpenes from the Marine Sponge Ircinia wistarii. Mar. Drugs 2022, 20, 532. [Google Scholar] [CrossRef] [PubMed]
- Elkhateeb, A.; El-Beih, A.A.; Gamal-Eldeen, A.M.; Alhammady, M.A.; Ohta, S.; Paré, P.W.; Hegazy, M.-E.F. New Terpenes from the Egyptian Soft Coral Sarcophyton ehrenbergi. Mar. Drugs 2014, 12, 1977–1986. [Google Scholar] [CrossRef] [PubMed]
- Ye, F.; Zhu, Z.D.; Chen, J.S.; Li, J.; Gu, Y.C.; Zhu, W.L.; Li, X.W.; Guo, Y.W. Xishacorenes A–C, diterpenes with bicyclo [3.3. 1] nonane nucleus from the Xisha soft coral Sinularia polydactyla. Org. Lett. 2017, 19, 4183–4186. [Google Scholar] [CrossRef]
- Bu, Q.; Yang, M.; Yan, X.Y.; Li, S.W.; Ge, Z.Y.; Zhang, L.; Yao, L.G.; Guo, Y.W.; Liang, L.F. Mililatensols A–C, new records of sarsolenane and capnosane diterpenes from soft coral Sarcophyton mililatensis. Mar. Drugs 2022, 20, 566. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, G.A.; Ibrahim, S.R.; Badr, J.M.; Youssef, D.T. Didemnaketals D and E, bioactive terpenoids from a Red Sea ascidian Didemnum species. Tetrahedron 2014, 70, 35–40. [Google Scholar] [CrossRef]
- Levert, A.; Foulon, V.; Fauchon, M.; Tapissier-Bontemps, N.; Banaigs, B.; Hellio, C. Antifouling Activity of Meroterpenes Isolated from the Ascidian Aplidium aff. densum. Mar. Biotechnol. 2020, 23, 51–61. [Google Scholar] [CrossRef]
- Degenhardt, J.; Köllner, T.G.; Gershenzon, J. Monoterpene and sesquiterpene synthases and the origin of terpene skeletal diversity in plants. Phytochemistry 2009, 70, 1621–1637. [Google Scholar] [CrossRef]
- Zhai, G.; Chen, S.; Shen, H.; Guo, H.; Jiang, M.; Liu, L. Bioactive monoterpenes and polyketides from the ascidian-derived fungus Diaporthe sp. SYSU-MS4722. Mar. Drugs 2022, 20, 553. [Google Scholar] [CrossRef]
- Kladi, M.; Vagias, C.; Roussis, V. Volatile halogenated metabolites from marine red algae. Phytochem. Rev. 2004, 3, 337–366. [Google Scholar] [CrossRef]
- Cabrita, M.T.; Vale, C.; Rauter, A.P. Halogenated Compounds from Marine Algae. Mar. Drugs 2010, 8, 2301–2317. [Google Scholar] [CrossRef] [PubMed]
- El Gamal, A.A. Biological importance of marine algae. Saudi Pharm. J. 2010, 18, 1–25. [Google Scholar] [CrossRef]
- Peng, Y.; Hu, J.; Yang, B.; Lin, X.P.; Zhou, X.F.; Yang, X.W.; Liu, Y. Chemical composition of seaweeds. In Seaweed Sustainability; Tiwari, B.K., Troy, D.J., Eds.; Elsevier: Amsterdam, The Netherlands, 2015; pp. 79–124. [Google Scholar]
- Ibrahim, M.; Salman, M.; Kamal, S.; Rehman, S.; Razzaq, A.; Akash, S.H. Algae-based biologically active compounds. In Algae Based Polymers, Blends, and Composites; Zia, K.M., Zuber, M., Ali, M., Eds.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 155–271. [Google Scholar]
- Zatelli, G.A.; Philippus, A.C.; Falkenberg, M. An overview of odoriferous marine seaweeds of the Dictyopteris genus: Insights into their chemical diversity, biological potential and ecological roles. Rev. Bras. Farm. 2018, 28, 243–260. [Google Scholar] [CrossRef]
- Paul, V.J.; McConnell, O.J.; Fenical, W. Cyclic monoterpenoid feeding deterrents from the red marine alga Ochtodes crockeri. J. Org. Chem. 1980, 45, 3401–3407. [Google Scholar] [CrossRef]
- Yassaa, N.; Peeken, I.; Zöllner, E.; Bluhm, K.; Arnold, S.; Spracklen, D.; Williams, J. Evidence for marine production of monoterpenes. Environ. Chem. 2008, 5, 391–401. [Google Scholar] [CrossRef]
- Butler, A.; Walker, J.V. Marine haloperoxidases. Chem. Rev. 1993, 93, 1937–1944. [Google Scholar] [CrossRef]
- Barahona, L.F.; Rorrer, G.L. Isolation of Halogenated Monoterpenes from Bioreactor-Cultured Microplantlets of the Macrophytic Red Algae Ochtodes s ecundiramea and Portieria h ornemannii. J. Nat. Prod. 2003, 66, 743–751. [Google Scholar] [CrossRef]
- Miziorko, H.M. Enzymes of the mevalonate pathway of isoprenoid biosynthesis. Arch. Biochem. Biophys. 2011, 505, 131–143. [Google Scholar] [CrossRef]
- Lohr, M.; Schwender, J.; Polle, J.E. Isoprenoid biosynthesis in eukaryotic phototrophs: A spotlight on algae. Plant Sci. 2012, 185–186, 9–22. [Google Scholar] [CrossRef]
- Lombard, J.; Moreira, D. Origins and Early Evolution of the Mevalonate Pathway of Isoprenoid Biosynthesis in the Three Domains of Life. Mol. Biol. Evol. 2010, 28, 87–99. [Google Scholar] [CrossRef]
- Polzin, J.; Rorrer, G.L. Selective production of the acyclic monoterpene β-myrcene by microplantlet suspension cultures of the macrophytic marine red alga Ochtodes secundiramea under nutrient perfusion cultivation with bromide-free medium. Algal Res. 2018, 36, 159–166. [Google Scholar] [CrossRef]
- Wise, M.L. Monoterpene biosynthesis in marine algae. Phycologia 2003, 42, 370–377. [Google Scholar] [CrossRef]
- Wise, M.L.; Rorrer, G.L.; Polzin, J.J.; Croteau, R. Biosynthesis of Marine Natural Products: Isolation and Characterization of a Myrcene Synthase from Cultured Tissues of the Marine Red Alga Ochtodes secundiramea. Arch. Biochem. Biophys. 2002, 400, 125–132. [Google Scholar] [CrossRef] [PubMed]
- Hewson, W.D.; Hager, L.P. Bromoperoxidases and halogenated lipids in marine algae. J. Phycol. 1980, 16, 340–345. [Google Scholar] [CrossRef]
- Fenical, W. Natural Products Chemistry in the Marine Environment. Science 1982, 215, 923–928. [Google Scholar] [CrossRef] [PubMed]
- Maliakal, S.; Cheney, D.P.; Rorrer, G.L. Halogenated monoterpene production in regenerated plantlet cultures of Ochtodes secundiramea (Rhodophyta, Cryptonemiales). J. Phycol. 2001, 37, 1010–1019. [Google Scholar] [CrossRef]
- Shaw, S.L.; Gantt, B.; Meskhidze, N.; Stetzer, O. Production and Emissions of Marine Isoprene and Monoterpenes: A Review. Adv. Meteorol. 2010, 2010, 408696. [Google Scholar] [CrossRef]
- Dayan, C.; Fredj, E.; Misztal, P.K.; Gabay, M.; Guenther, A.B.; Tas, E. Emission of biogenic volatile organic compounds from warm and oligotrophic seawater in the Eastern Mediterranean. Atmos. Chem. Phys. 2020, 20, 12741–12759. [Google Scholar] [CrossRef]
- Novak, G.A.; Bertram, T.H. Reactive VOC Production from Photochemical and Heterogeneous Reactions Occurring at the Air–Ocean Interface. Accounts Chem. Res. 2020, 53, 1014–1023. [Google Scholar] [CrossRef]
- Davies, F.K.; Jinkerson, R.E.; Posewitz, M.C. Toward a photosynthetic microbial platform for terpenoid engineering. Photosynth. Res. 2014, 123, 265–284. [Google Scholar] [CrossRef]
- Tokarek, T.W.; Brownsey, D.K.; Jordan, N.; Garner, N.M.; Ye, C.Z.; Osthoff, H.D. Emissions of C9–C16 hydrocarbons from kelp species on Vancouver Island: Alaria marginata (winged kelp) and Nereocystis luetkeana (bull kelp) as an atmospheric source of limonene. Atmos. Environ. X 2019, 2, 100007. [Google Scholar] [CrossRef]
- Shaw, S.L.; Chisholm, S.W.; Prinn, R.G. Isoprene production by Prochlorococcus, a marine cyanobacterium, and other phytoplankton. Mar. Chem. 2003, 80, 227–245. [Google Scholar] [CrossRef]
- Colomb, A.; Yassaa, N.; Williams, J.; Peeken, I.; Lochte, K. Screening volatile organic compounds (VOCs) emissions from five marine phytoplankton species by head space gas chromatography/mass spectrometry (HS-GC/MS). J. Environ. Monit. 2008, 10, 325–330. [Google Scholar] [CrossRef]
- Arnold, S.R.; Spracklen, D.V.; Williams, J.; Yassaa, N.; Sciare, J.; Bonsang, B.; Gros, V.; Peeken, I.; Lewis, A.C.; Alvain, S.; et al. Evaluation of the global oceanic isoprene source and its impacts on marine organic carbon aerosol. Atmos. Chem. Phys. 2009, 9, 1253–1262. [Google Scholar] [CrossRef]
- Gantt, B.; Meskhidze, N.; Kamykowski, D. A new physically-based quantification of marine isoprene and primary organic aerosol emissions. Atmos. Chem. Phys. 2009, 9, 4915–4927. [Google Scholar] [CrossRef]
- Alvarez, L.A.; Exton, D.A.; Timmis, K.N.; Suggett, D.J.; McGenity, T.J. Characterization of marine isoprene-degrading communities. Environ. Microbiol. 2009, 11, 3280–3291. [Google Scholar] [CrossRef]
- Evans, T. Biological Volatile Organic Compounds (BVOCs) emissions from the planktonic diatom Thalassiosira pseudonana. Ph.D. Thesis, Stony Brook University, Stony Brook, NY, USA, 2009. [Google Scholar]
- Bonsang, B.; Polle, C.; Lambert, G. Evidence for marine production of isoprene. Geophys. Res. Lett. 1992, 19, 1129–1132. [Google Scholar] [CrossRef]
- Baker, A.R.; Turner, S.M.; Broadgate, W.J.; Thompson, A.; McFiggans, G.B.; Vesperini, O.; Nightingale, P.D.; Liss, P.S.; Jickells, T.D. Distribution and sea-air fluxes of biogenic trace gases in the eastern Atlantic Ocean. Glob. Biogeochem. Cycles 2000, 14, 871–886. [Google Scholar] [CrossRef]
- Erickson III, D.J.; Hernandez, J.L. A global, high resolution, satellite-based model of air-sea isoprene flux. Geophys. Monogr. Series. 2002, 127, 333–341. [Google Scholar]
- Matsunaga, S.; Mochida, M.; Saito, T.; Kawamura, K. In situ measurement of isoprene in the marine air and surface seawater from the western North Pacific. Atmos. Environ. 2002, 36, 6051–6057. [Google Scholar] [CrossRef]
- Palmer, P.I.; Shaw, S.L. Quantifying global marine isoprene fluxes using MODIS chlorophyll observations. Geophys. Res. Lett. 2005, 32, 1–5. [Google Scholar] [CrossRef]
- Meskhidze, N.; Nenes, A. Phytoplankton and Cloudiness in the Southern Ocean. Science 2006, 314, 1419–1423. [Google Scholar] [CrossRef]
- Liakakou, E.; Vrekoussis, M.; Bonsang, B.; Donousis, C.; Kanakidou, M.; Mihalopoulos, N. Isoprene above the Eastern Mediterranean: Seasonal variation and contribution to the oxidation capacity of the atmosphere. Atmos. Environ. 2007, 41, 1002–1010. [Google Scholar] [CrossRef]
- Sinha, V.; Williams, J.; Meyerhöfer, M.; Riebesell, U.; Paulino, A.I.; Larsen, A. Air-sea fluxes of methanol, acetone, acetaldehyde, isoprene and DMS from a Norwegian fjord following a phytoplankton bloom in a mesocosm experiment. Atmos. Chem. Phys. 2007, 7, 739–755. [Google Scholar] [CrossRef]
- Luo, G.; Yu, F. A numerical evaluation of global oceanic emissions of α-pinene and isoprene. Atmos. Chem. Phys. 2010, 10, 2007–2015. [Google Scholar] [CrossRef]
- Rubulotta, G.; Quadrelli, E.A. Terpenes: A valuable family of compounds for the production of fine chemicals. In Studies in Surface Science and Catalysis; Elsevier: Amsterdam, The Netherlands, 2019; pp. 215–229. [Google Scholar]
- Harman-Ware, A.E. Conversion of terpenes to chemicals and related products. In Chemical Catalysts for Biomass Upgrading; Crocker, M., Santillan-Jimenez, E., Eds.; John Wiley & Sons: Hoboken, NJ, USA, 2020; pp. 529–568. [Google Scholar]
- Güven, K.C.; Sezik, E.; Kaleağasıoğlu, F.; Erdugan, H.; Coban, B.; Karakaş, E. Vlatile Oils from Marine Macroalgae. In Natural Products; Ramawat, K., Merillom, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 2883–2912. [Google Scholar]
- Cikoš, A.-M.; Jurin, M.; Čož-Rakovac, R.; Jokić, S.; Jerković, I. Update on Monoterpenes from Red Macroalgae: Isolation, Analysis, and Bioactivity. Mar. Drugs 2019, 17, 537. [Google Scholar] [CrossRef]
- Singh-Sangwan, N.; Sangwan, R.S.; Luthra, R.; Thakur, R.S. Geraniol dehydrogenase: A determinant of essential oil quality in lemongrass1. Planta Medica 1993, 59, 168–170. [Google Scholar] [CrossRef]
- Gupta, A.K.; Ganjewala, D. A study on biosynthesis of “citral” in lemongrass (C. flexuosus) cv. Suvarna. Acta Physiol. Plant. 2015, 37, 240. [Google Scholar] [CrossRef]
- Gusevskaya, E.; Robles-Dutenhefner, P.A.; Ferreira, V.M. Palladium-catalyzed oxidation of bicyclic monoterpenes by hydrogen peroxide. Appl. Catal. A Gen. 1998, 174, 177–186. [Google Scholar] [CrossRef]
- Monteiro, J.L.F.; Veloso, C.O. Catalytic Conversion of Terpenes into Fine Chemicals. Top. Catal. 2004, 27, 169–180. [Google Scholar] [CrossRef]
- Van Leeuwen, P.W. Homogeneous Catalysis: Understanding the Art; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Meier, M.A.; Weckhuysen, B.M.; Bruijnincx, P.C. (Eds.) Organometallics and Renewables; Springer: Berlin/Heidelberg, Germany, 2012; Volume 39. [Google Scholar]
- Adolfsson, H.; Copéret, C.; Chiang, J.P.; Yudin, A.K. Efficient Epoxidation of Alkenes with Aqueous Hydrogen Peroxide Catalyzed by Methyltrioxorhenium and 3-Cyanopyridine. J. Org. Chem. 2000, 65, 8651–8658. [Google Scholar] [CrossRef] [PubMed]
- Whiteker, G.T.; Cobley, C.J. Applications of rhodium-catalyzed hydroformylation in the pharmaceutical, agrochemical, and fragrance industries. In Organometallics as Catalysts in the Fine Chemical Industry; Beller, M., Blaser, H., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; pp. 35–46. [Google Scholar]
- North, M.; Pasquale, R.; Young, C. Synthesis of cyclic carbonates from epoxides and CO2. Green Chem. 2010, 12, 1514–1539. [Google Scholar] [CrossRef]
- Schäffner, B.; Schäffner, F.; Verevkin, S.P.; Börner, A. Organic Carbonates as Solvents in Synthesis and Catalysis. Chem. Rev. 2010, 110, 4554–4581. [Google Scholar] [CrossRef]
- Bähr, M.; Bitto, A.; Mülhaupt, R. Cyclic limonene dicarbonate as a new monomer for non-isocyanate oligo- and polyurethanes (NIPU) based upon terpenes. Green Chem. 2012, 14, 1447–1454. [Google Scholar] [CrossRef]
- Hauenstein, O.; Agarwal, S.; Greiner, A. Bio-based polycarbonate as synthetic toolbox. Nat. Commun. 2016, 7, 11862. [Google Scholar] [CrossRef]
- Kukhta, N.A.; Vasilenko, I.V.; Kostjuk, S.V. Room temperature cationic polymerization of β-pinene using modified AlCl3 catalyst: Toward sustainable plastics from renewable biomass resources. Green Chem. 2011, 13, 2362–2364. [Google Scholar] [CrossRef]
- Gandini, A.; Lacerda, T.M. From monomers to polymers from renewable resources: Recent advances. Prog. Polym. Sci. 2015, 48, 1–39. [Google Scholar] [CrossRef]
- Winnacker, M.; Rieger, B. Recent Progress in Sustainable Polymers Obtained from Cyclic Terpenes: Synthesis, Properties, and Application Potential. ChemSusChem 2015, 8, 2455–2471. [Google Scholar] [CrossRef]
- Llevot, A.; Dannecker, P.; von Czapiewski, M.; Over, L.C.; Söyler, Z.; Meier, M.A.R. Renewability is not Enough: Recent Advances in the Sustainable Synthesis of Biomass-Derived Monomers and Polymers. Chem. A Eur. J. 2016, 22, 11510–11521. [Google Scholar] [CrossRef]
- Zhu, Y.; Romain, C.; Williams, C.K. Sustainable polymers from renewable resources. Nature 2016, 540, 354–362. [Google Scholar] [CrossRef]
- Satoh, K.; Nakahara, A.; Mukunoki, K.; Sugiyama, H.; Saito, H.; Kamigaito, M. Sustainable cycloolefin polymer from pine tree oil for optoelectronics material: Living cationic polymerization of β-pinene and catalytic hydrogenation of high-molecular-weight hydrogenated poly(β-pinene). Polym. Chem. 2013, 5, 3222–3230. [Google Scholar] [CrossRef]
- Firdaus, M. Terpenes as Renewable Resources for Organic and Macromolecular Chemistry. Ph.D. Thesis, Karlsruher Institut für Technologie (KIT), Karlsruhe, Germany, 2013. [Google Scholar]
- Firdaus, M.; Meier, M.A.R. Renewable polyamides and polyurethanes derived from limonene. Green Chem. 2012, 15, 370–380. [Google Scholar] [CrossRef]
- Neaţu, F.; Culică, G.; Florea, M.; Parvulescu, V.I.; Cavani, F. Synthesis of Terephthalic Acid by p-Cymene Oxidation using Oxygen: Toward a More Sustainable Production of Bio-Polyethylene Terephthalate. ChemSusChem 2016, 9, 3102–3112. [Google Scholar] [CrossRef]
- Buisman, G.J.H.; Lange, J.H.M. Arizona chemical: Refining and upgrading of bio-based and renewable feedstocks. In Industrial Biorenewables: A Practical Viewpoint; María, P.D.d., Ed.; Wiley: Hoboken, NJ, USA, 2016; pp. 21–62. [Google Scholar]
- Allenspach, M.; Steuer, C. α-Pinene: A never-ending story. Phytochem. 2021, 190, 112857. [Google Scholar] [CrossRef]
- Yang, J.; Nie, Q.; Ren, M.; Feng, H.; Jiang, X.; Zheng, Y.; Liu, M.; Zhang, H.; Xian, M. Metabolic engineering of Escherichia coli for the biosynthesis of alpha-pinene. Biotechnol. Biofuels 2013, 6, 1–10. [Google Scholar] [CrossRef]
- Alpha Pinene Market Size, Share, Growth, and Industry Analysis, by Type (≥95%, <95%), by Application (Aroma Chemicals, Adhesive & Tire Resins, Solvents & Cleaners, and Others), Regional Insights and Forecast from 2025 to 2033. 2021. Available online: https://www.businessresearchinsights.com/market-reports/alpha-pinene-market-101083 (accessed on 4 April 2021).
- Rozza, A.L.; de Mello Moraes, T.; Kushima, H.; Tanimoto, A.; Marques, M.O.; Bauab, T.M.; Hiruma-Lima, C.A.; Pellizzon, C.H. Gastroprotective mechanisms of Citrus lemon (Rutaceae) essential oil and its majority compounds limonene and β-pinene: Involvement of heat-shock protein-70, vasoactive intestinal peptide, glutathione, sulfhydryl compounds, nitric oxide and prostaglandin E2. Chem. Biol. Interact. 2011, 189, 82–89. [Google Scholar] [CrossRef]
- Global-Beta-Pinene-Research. 2021. Available online: https://www.marketresearch.com/QYResearch-Group-v3531/Global-Beta-Pinene-Research-14725965/ (accessed on 4 June 2021).
- Global Beta Pinene Industry Research Report, Competitive Landscape, Market Size, Regional Status and Prospect. 2022. Available online: https://www.marketresearchguru.com/global-beta-pinene-industry-research-report-competitive-landscape-market-21956714 (accessed on 1 November 2022).
- Viswanathan, S.; Neerackal, G.; Buyuksonmez, F. Removal of beta-pinene and limonene using compost biofilter. J. Air Waste Manag. Assoc. 2012, 63, 237–245. [Google Scholar] [CrossRef]
- Clark, G. Aroma chemical profile: Menthol: History, world consumption, synthetics, by-products, substitutes and derivatives. Perfum. Flavorist 2007, 32, 38–47. [Google Scholar]
- Dylong, D.; Hausoul, P.J.; Palkovits, R.; Eisenacher, M. Synthesis of (−)-menthol: Industrial synthesis routes and recent development. Flavour Fragr. J. 2022, 37, 195–209. [Google Scholar] [CrossRef]
- Kamatou, G.P.; Vermaak, I.; Viljoen, A.M.; Lawrence, B.M. Menthol: A simple monoterpene with remarkable biological properties. Phytochemistry 2013, 96, 15–25. [Google Scholar] [CrossRef]
- Batool, I.; Nisar, S.; Hamrouni, L.; Jilani, M.I. Extraction, production and analysis techniques for menthol: A review. Int. J. Chem. Biochem. Sci. 2018, 14, 71–76. [Google Scholar]
- Behr, A.; Johnen, L. Myrcene as a Natural Base Chemical in Sustainable Chemistry: A Critical Review. ChemSusChem 2009, 2, 1072–1095. [Google Scholar] [CrossRef]
- Surendran, S.; Qassadi, F.; Surendran, G.; Lilley, D.; Heinrich, M. Myrcene—What are the potential health benefits of this flavouring and aroma agent? Front. Nutr. 2021, 8, 699666. [Google Scholar] [CrossRef]
- Esmaeili, A.; Mirmhadi, H.R.; Rafiee, F. Biotransformation of menthol by Chlorella vulgaris and study of the pathways involved. Chem. Nat. Compd. 2014, 49, 1160–1161. [Google Scholar] [CrossRef]
- Global-Myrcene-Insights-Forecast. Available online: https://www.marketresearch.com/QYResearch-Group-v3531/Global-Myrcene-Insights-Forecast-30260294/ (accessed on 4 November 2021).
- de Santana, M.T.; de Oliveira, M.G.B.; Santana, M.F.; De Sousa, D.P.; Santana, D.G.; Camargo, E.A.; de Oliveira, A.P.; Almeida, J.R.G.d.S.; Quintans-Júnior, L.J. Citronellal, a monoterpene present in Java citronella oil, attenuates mechanical nociception response in mice. Pharm. Biol. 2013, 51, 1144–1149. [Google Scholar] [CrossRef]
- Citronella Oil Market by Type (Java and Ceylon), Application (Food & Beverages, Cosmetics, Arc Citronella l Market Overvie naceuticals), Nature (Conventional and Organic) and Region—Global Forecast to 2027. 2023. Available online: https://www.marketsandmarkets.com/Market-Reports/citronella-oil-market-4836977.html (accessed on 3 May 2023).
- Solanki, K.P.; Desai, M.A.; Parikh, J.K. Microwave intensified extraction: A holistic approach for extraction of citronella oil and phenolic compounds. Chem. Eng. Process. Process. Intensif. 2019, 146, 107694. [Google Scholar] [CrossRef]
- Zhao, W.; Nomura, K. Design of Efficient Molecular Catalysts for Synthesis of Cyclic Olefin Copolymers (COC) by Copolymerization of Ethylene and α-Olefins with Norbornene or Tetracyclododecene. Catalysts 2016, 6, 175. [Google Scholar] [CrossRef]
- Edwards, J.P.; Wolf, W.J.; Grubbs, R.H. The synthesis of cyclic polymers by olefin metathesis: Achievements and challenges. J. Polym. Sci. Part A Polym. Chem. 2018, 57, 228–242. [Google Scholar] [CrossRef]
- Cyclic Olefin Polymer Market by Type (Homopolymers, Copolymers), Process Type (Injection Molding, Extrusion), End-use Industry (Packaging, Automotive, Healthcare & Medical, Food & Beverages, Electrical & Electronics) and Region—Global Forecast to 2029. 2025. Available online: https://www.marketsandmarkets.com/Market-Reports/cyclic-olefin-polymer-market-220794705.html (accessed on 4 March 2025).
- Hassanien, M.F.R.; Assiri, A.M.A.; Alzohairy, A.M.; Oraby, H.F. Health-promoting value and food applications of black cumin essential oil: An overview. J. Food Sci. Technol. 2015, 52, 6136–6142. [Google Scholar] [CrossRef]
- Kurkcuoglu, M.; Tumen, G.; Baser, K.H.C. Essential Oil Constituents of Satureja boissieri from Turkey. Chem. Nat. Compd. 2001, 37, 329–331. [Google Scholar] [CrossRef]
- Dougnon, G.; Ito, M. Role of Ascaridole and p-Cymene in the Sleep-Promoting Effects of Dysphania ambrosioides Essential Oil via the GABAergic System in a ddY Mouse Inhalation Model. J. Nat. Prod. 2020, 84, 91–100. [Google Scholar] [CrossRef]
- Martín-Luengo, M.; Yates, M.; Domingo, M.M.; Casal, B.; Iglesias, M.; Esteban, M.; Ruiz-Hitzky, E. Synthesis of p-cymene from limonene, a renewable feedstock. Appl. Catal. B Environ. 2008, 81, 218–224. [Google Scholar] [CrossRef]
- Global p-Cymene Market Size By Application (Fragrance Industry, Pharmaceuticals), by End Use (Industrial, Commercial), by Source (Natural, Synthetic), by Purity Level (High Purity (99% and Above), Medium Purity (90%-99%)), by Distribution Channel (Direct Sales, Online Sales), by Geographic Scope and Forecast. 2025. Available online: https://www.verifiedmarketreports.com/product/p-cymene-market/ (accessed on 4 February 2023).
- Thielmann, J.; Muranyi, P. Review on the chemical composition of Litsea cubeba essential oils and the bioactivity of its major constituents citral and limonene. J. Essent. Oil Res. 2019, 31, 361–378. [Google Scholar] [CrossRef]
- Nhu-Trang, T.-T.; Casabianca, H.; Grenier-Loustalot, M.-F. Authenticity control of essential oils containing citronellal and citral by chiral and stable-isotope gas-chromatographic analysis. Anal. Bioanal. Chem. 2006, 386, 2141–2152. [Google Scholar] [CrossRef]
- Takabe, K.; Yamada, T.; Katagiri, T. A Facile Synthesis of Citral. Synth. Commun. 1983, 13, 297–301. [Google Scholar] [CrossRef]
- Citral Market Analysis and Forecast: 2025–2032. Available online: https://www.coherentmarketinsights.com/market-insight/citral-market-4436 (accessed on 4 April 2025).
- Wu, W.; Maravelias, C.T. Synthesis and techno-economic assessment of microbial-based processes for terpenes production. Biotechnol. Biofuels 2018, 11, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Meskhidze, N.; Sabolis, A.; Reed, R.; Kamykowski, D. Quantifying environmental stress-induced emissions of algal isoprene and monoterpenes using laboratory measurements. Biogeosciences 2015, 12, 637–651. [Google Scholar] [CrossRef]
- Qi, C.; Zhao, H.; Li, W.; Li, X.; Xiang, H.; Zhang, G.; Liu, H.; Wang, Q.; Wang, Y.; Xian, M.; et al. Production of γ-terpinene by metabolically engineered Escherichia coli using glycerol as feedstock. RSC Adv. 2018, 8, 30851–30859. [Google Scholar] [CrossRef] [PubMed]
- Calderon, N.; Ofstead, E.A.; Ward, J.P.; Judy, W.A.; Scott, K.W. Olefin metathesis. I. Acyclic vinylenic hydrocarbons. J. Am. Chem. Soc. 1968, 90, 4133–4140. [Google Scholar] [CrossRef]
- Schuster, M.; Blechert, S. Olefin metathesis in organic chemistry. Angew. Chem. Int. Ed. Engl. 1997, 36, 2036–2056. [Google Scholar] [CrossRef]
- Sanchis, R.; Fenollar, O.; García, D.; Sánchez, L.; Balart, R. Improved adhesion of LDPE films to polyolefin foams for automotive industry using low-pressure plasma. Int. J. Adhes. Adhes. 2008, 28, 445–451. [Google Scholar] [CrossRef]
- Soares, J.B.; McKenna, T.F. Polyolefin Reaction Engineering, 1st ed.; Wiley Online Library: Hoboken, NJ, USA, 2012. [Google Scholar]
- Chen, G.-Q.; Patel, M.K. Plastics Derived from Biological Sources: Present and Future: A Technical and Environmental Review. Chem. Rev. 2012, 112, 2082–2099. [Google Scholar] [CrossRef] [PubMed]
- Nagakawa, Y.; Yunoki, S.; Saito, M. Liquid scintillation counting of solid-state plastic pellets to distinguish bio-based polyethylene. Polym. Test. 2014, 33, 13–15. [Google Scholar] [CrossRef]
- Zuber, M.; Zia, K.M.; Noreen, A.; Bukhari, S.A.; Aslam, N.; Sultan, N.; Jabeen, M.; Shi, B. Algae-Based Polyolefins. In Algae Based Polymers, Blends, and Composites; Zia, K.M., Zuber, M., Ali, M., Eds.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 499–529. [Google Scholar]
- Saini, R.K.; Keum, Y.-S. Omega-3 and omega-6 polyunsaturated fatty acids: Dietary sources, metabolism, and significance—A review. Life Sci. 2018, 203, 255–267. [Google Scholar] [CrossRef] [PubMed]
- Adarme-Vega, T.C.; Lim, D.K.Y.; Timmins, M.; Vernen, F.; Li, Y.; Schenk, P.M. Microalgal biofactories: A promising approach towards sustainable omega-3 fatty acid production. Microb. Cell Factories 2012, 11, 96. [Google Scholar] [CrossRef]
- Swanson, D.; Block, R.; Mousa, S.A. Omega-3 Fatty Acids EPA and DHA: Health Benefits Throughout Life. Adv. Nutr. 2012, 3, 1–7. [Google Scholar] [CrossRef]
- AlFadhly, N.K.Z.; Alhelfi, N.; Altemimi, A.B.; Verma, D.K.; Cacciola, F.; Narayanankutty, A. Trends and Technological Advancements in the Possible Food Applications of Spirulina and Their Health Benefits: A Review. Molecules 2022, 27, 5584. [Google Scholar] [CrossRef]
- Stokes, J.; Tu, R.; Peters, M.; Yadav, G.; Fabiano, L.A.; Seider, W.D. Omega-3 fatty acids from algae produced biodiesel. Algal Res. 2020, 51, 102047. [Google Scholar] [CrossRef]
- Levasseur, W.; Perré, P.; Pozzobon, V. A review of high value-added molecules production by microalgae in light of the classification. Biotechnol. Adv. 2020, 41, 107545. [Google Scholar] [CrossRef]
- Balk, E.M.; Lichtenstein, A.H. Omega-3 Fatty Acids and Cardiovascular Disease: Summary of the 2016 Agency of Healthcare Research and Quality Evidence Review. Nutrients 2017, 9, 865. [Google Scholar] [CrossRef]
- Uauy, R.; Hoffman, D.R.; Birch, E.E.; Birch, D.G.; Jameson, D.M.; Tyson, J. Safety and efficacy of omega-3 fatty acids in the nutrition of very low birth weight infants: Soy oil and marine oil supplementation of formula. J. Pediatr. 1994, 124, 612–620. [Google Scholar] [CrossRef]
- Dokholyan, R.S.; Albert, C.M.; Appel, L.J.; Cook, N.R.; Whelton, P.; Hennekens, C.H. A trial of omega-3 fatty acids for prevention of hypertension. Am. J. Cardiol. 2004, 93, 1041–1043. [Google Scholar] [CrossRef]
- Layé, S.; Nadjar, A.; Joffre, C.; Bazinet, R.P. Anti-Inflammatory Effects of Omega-3 Fatty Acids in the Brain: Physiological Mechanisms and Relevance to Pharmacology. Pharmacol. Rev. 2018, 70, 12–38. [Google Scholar] [CrossRef]
- Labrousse, V.; Leyrolle, Q.; Amadieu, C.; Aubert, A.; Sere, A.; Coutureau, E.; Grégoire, S.; Bretillon, L.; Pallet, V.; Gressens, P.; et al. Dietary omega-3 deficiency exacerbates inflammation and reveals spatial memory deficits in mice exposed to lipopolysaccharide during gestation. Brain Behav. Immun. 2018, 73, 427–440. [Google Scholar] [CrossRef]
- Catarino, M.D.; Silva, A.M.S.; Cardoso, S.M. Fucaceae: A Source of Bioactive Phlorotannins. Int. J. Mol. Sci. 2017, 18, 1327. [Google Scholar] [CrossRef]
- Meng, W.; Mu, T.; Sun, H.; Garcia-Vaquero, M. Phlorotannins: A review of extraction methods, structural characteristics, bioactivities, bioavailability, and future trends. Algal Res. 2021, 60, 102484. [Google Scholar] [CrossRef]
- Cassani, L.; Gomez-Zavaglia, A.; Jimenez-Lopez, C.; Lourenço-Lopes, C.; Prieto, M.A.; Simal-Gandara, J. Seaweed-based natural ingredients: Stability of phlorotannins during extraction, storage, passage through the gastrointestinal tract and potential incorporation into functional foods. Food Res. Int. 2020, 137, 109676. [Google Scholar] [CrossRef]
- Purcell-Meyerink, D.; Packer, M.A.; Wheeler, T.T.; Hayes, M. Aquaculture Production of the Brown Seaweeds Laminaria digitata and Macrocystis pyrifera: Applications in Food and Pharmaceuticals. Molecules 2021, 26, 1306. [Google Scholar] [CrossRef]
- Wekre, M.E.; Holmelid, B.; Underhaug, J.; Pedersen, B.; Kopplin, G.; Jordheim, M. Characterization of high value products in the side-stream of Laminaria hyperborea alginate production—Targeting the phenolic content. Algal Res. 2023, 72, 103109. [Google Scholar] [CrossRef]
- Filote, C.; Santos, S.C.R.; Popa, V.I.; Botelho, C.M.S.; Volf, I. Biorefinery of marine macroalgae into high-tech bioproducts: A review. Environ. Chem. Lett. 2020, 19, 969–1000. [Google Scholar] [CrossRef]
- Johnston, K.G.; Abomohra, A.; French, C.E.; Zaky, A.S. Recent Advances in Seaweed Biorefineries and Assessment of Their Potential for Carbon Capture and Storage. Sustainability 2023, 15, 13193. [Google Scholar] [CrossRef]
- Ashokkumar, V.; Jayashree, S.; Kumar, G.; Sharmili, S.A.; Gopal, M.; Dharmaraj, S.; Chen, W.-H.; Kothari, R.; Manasa, I.; Park, J.H.; et al. Recent developments in biorefining of macroalgae metabolites and their industrial applications—A circular economy approach. Bioresour. Technol. 2022, 359, 127235. [Google Scholar] [CrossRef]
- Hess, J.; Bednarz, D.; Bae, J.; Pierce, J. Petroleum and health care: Evaluating and managing health care’s vulnerability to petroleum supply shifts. Am. J. Public Health 2011, 101, 1568–1579. [Google Scholar] [CrossRef]
- Desborough, M.J.; Keeling, D.M. The aspirin story–from willow to wonder drug. Br. J. Haematol. 2017, 177, 674–683. [Google Scholar] [CrossRef]
- Rinsema, T.J. One hundred years of aspirin. Med. Hist. 1999, 43, 502–507. [Google Scholar] [CrossRef]
- Arnold, T.M.; Targett, N.M. Marine Tannins: The Importance of a Mechanistic Framework for Predicting Ecological Roles. J. Chem. Ecol. 2002, 28, 1919–1934. [Google Scholar] [CrossRef]
- Shirmohammadli, Y.; Efhamisisi, D.; Pizzi, A. Tannins as a sustainable raw material for green chemistry: A review. Ind. Crop. Prod. 2018, 126, 316–332. [Google Scholar] [CrossRef]
- Fordjour, E.; Mensah, E.O.; Hao, Y.; Yang, Y.; Liu, X.; Li, Y.; Liu, C.-L.; Bai, Z. Toward improved terpenoids biosynthesis: Strategies to enhance the capabilities of cell factories. Bioresour. Bioprocess. 2022, 9, 1–33. [Google Scholar] [CrossRef]
- Liu, S.; Zhang, M.; Ren, Y.; Jin, G.; Tao, Y.; Lyu, L.; Zhao, Z.K.; Yang, X. Engineering Rhodosporidium toruloides for limonene production. Biotechnol. Biofuels 2021, 14, 1–11. [Google Scholar] [CrossRef]
- Martínez, H.; Santos, M.; Pedraza, L.; Testera, A.M. Advanced Technologies for Large Scale Supply of Marine Drugs. Mar. Drugs 2025, 23, 69. [Google Scholar] [CrossRef]
- Borowitzka, M.A.; Vonshak, A. Scaling up microalgal cultures to commercial scale. Eur. J. Phycol. 2017, 52, 407–418. [Google Scholar] [CrossRef]
- Jiang, H.; Wang, X. Biosynthesis of monoterpenoid and sesquiterpenoid as natural flavors and fragrances. Biotechnol. Adv. 2023, 65, 108151. [Google Scholar] [CrossRef]
- Thomassen, G.; Vila, U.E.; Van Dael, M.; Lemmens, B.; Van Passel, S. A techno-economic assessment of an algal-based biorefinery. Clean Technol. Environ. Policy 2016, 18, 1849–1862. [Google Scholar] [CrossRef]
- Slegers, P.M.; Olivieri, G.; Breitmayer, E.; Sijtsma, L.; Eppink, M.H.M.; Wijffels, R.H.; Reith, J.H. Design of Value Chains for Microalgal Biorefinery at Industrial Scale: Process Integration and Techno-Economic Analysis. Front. Bioeng. Biotechnol. 2020, 8, 550758. [Google Scholar] [CrossRef]
- Osman, A.I.; Fang, B.; Zhang, Y.; Liu, Y.; Yu, J.; Farghali, M.; Rashwan, A.K.; Chen, Z.; Chen, L.; Ihara, I.; et al. Life cycle assessment and techno-economic analysis of sustainable bioenergy production: A review. Environ. Chem. Lett. 2024, 22, 1115–1154. [Google Scholar] [CrossRef]
- Kulas, D.G.; Thies, M.C.; Shonnard, D.R. Techno-Economic Analysis and Life Cycle Assessment of Waste Lignin Fractionation and Valorization Using the ALPHA Process. ACS Sustain. Chem. Eng. 2021, 9, 5388–5395. [Google Scholar] [CrossRef]
- Bhagwat, S.S.; Li, Y.; Cortés-Peña, Y.R.; Brace, E.C.; Martin, T.A.; Zhao, H.; Guest, J.S. Sustainable Production of Acrylic Acid via 3-Hydroxypropionic Acid from Lignocellulosic Biomass. ACS Sustain. Chem. Eng. 2021, 9, 16659–16669. [Google Scholar] [CrossRef]
- Sanjeewa, K.K.A.; Kim, E.-A.; Son, K.-T.; Jeon, Y.-J. Bioactive properties and potentials cosmeceutical applications of phlorotannins isolated from brown seaweeds: A review. J. Photochem. Photobiol. B Biol. 2016, 162, 100–105. [Google Scholar] [CrossRef] [PubMed]
- Obluchinskaya, E.D.; Pozharitskaya, O.N.; Shevyrin, V.A.; Kovaleva, E.G.; Flisyuk, E.V.; Shikov, A.N. Optimization of Extraction of Phlorotannins from the Arctic Fucus vesiculosus Using Natural Deep Eutectic Solvents and Their HPLC Profiling with Tandem High-Resolution Mass Spectrometry. Mar. Drugs 2023, 21, 263. [Google Scholar] [CrossRef]
Compound | Amount of Production | Market Size (Price) | Biological Sources | References |
---|---|---|---|---|
Ethylene | 214 million metric tons (2023) | USD 176 billion (2023) | Biological synthesis (metabolized via many microorganisms by ethylene-forming enzyme and ACCO; Ethene production from acrylate [H2C=CH-COO–] in marine algae; Acrylate has been considered as a precursor of ethylene | [15,16,17,18] |
Acetic acid | >16.7 million metric tons (2023) | USD 16.13 billion (2023) | Biological synthesis (fermentation via Acetobacteraceae- acetic acid bacteria); Found to be metabolized in marine animal tissue | [19,20,21,22] |
Propionic acid | 446,440 metric tons (2023) | USD 1.18 billion (2024) | Biological synthesis (fermentation via Propionibacterium and some anaerobic bacteria) | [23,24,25] |
Lactic acid | ≈1.39 million metric tons (2023) | Approx. USD 1.2 billion (2022) | Biological synthesis (fermentation via Lactobacillus—lactic acid bacteria); The use of lactic acid bacteria for the fermentation of the marine algae Gracilaria sp., Sargassum siliquosum, and Ulva lactuca for lactic acid production | [26,27,28,29,30,31] |
Isopropanol | ≈2.2 million metric tons (2023) | N/A | Biological synthesis (fermentation via Escherichia coli using syngas, cultivation of methylotuvimicrobium alcaliphilum with propane) | [32,33,34] |
1,2-Propanediol | N/A | Approx. USD 0.373 billion (2021) [35] | Biological synthesis (fermentation via Bacteroides ruminocola, E. coli, etc., using sugars, such as rhamnose or fucose; The use of Thermoanaerobacterium thermosaccharolyticum bacteria to produce 1,2-propanediol from algal biomass | [36,37] |
1,3-propanediol | N/A | Over USD 450 million (2021) | Biological synthesis (fermentation via Klebsiella, Clostridia, Citrobacter, Enterobacter, Lactobacilli, Clostridial, etc., using glycerol) | [38,39] |
Butyric acid | N/A | >USD 175 million (2021) | Biological synthesis (fermentation via Clostridium tyrobutyricum, C. butyricum, etc., using lignocellulosic sugars) | [40,41] |
n-Butanol | Over 5.2 million metric tons (2023) | N/A | Biological synthesis (fermentation via E. coli, Synechococcus, etc., using glucose by CoA or Valine pathways) | [42,43] |
Succinic acid | N/A | USD 222.9 million (2021) | Biological synthesis (fermentation via Anaerobiospirillum succiniciproducens, E. coli, Saccharomyces cerevisiae, etc.) using glucose by TCA cycle+ | [44,45,46] |
Malic acid | N/A | USD 216.21 million (2022) | Biological synthesis (metabolized via Bevibacterium flavum by fumarase enzyme conversion produced in various fruits, fermentation via Aspergillus flavus, etc., using glucose) | [47,48,49,50] |
Fumaric acid | N/A | USD 501.9 million (2023) | Biological synthesis (fermentation via Rhizopus oryzae, metabolized via fumarase enzyme conversion of malate by TCA cycle) | [47,51] |
1,3-Butadiene | N/A | USD 2.47 billion (2022) | Biological synthesis (fermentation via E. coli using glucose combined with ferulic acid decarboxylase mutant) | [52,53] |
Isoprene | Close to 1 million tons | USD 2.9 billion (2023) | Biological synthesis (metabolized via terrestrial plants and some microorganisms by MVA and MEP pathway enzymes) Emitted as a BVOC | [54,55,56,57] |
Adipic acid | Approx. 3.9 million metric tons (2023) | USD 4887.59 million (2022) | Biological synthesis (fermentation via Thermobifida fusca using glucose, as well as engineered/mutated microorganisms with modified lignocellulosic biomass) | [58,59,60] |
Anthranilic acid | N/A | USD 129.2 million (2023) | Biological synthesis (fermentation via Rhodococcus erythropolis strains using aniline) | [61,62,63] |
Catechol | N/A | USD 118.6 million (2023) | Structural entity of coal, lignin (wood), and tars | [64,65] |
Phenol | 11.37 million metric tons (2023) | USD 12.5 million (2021) | Biological synthesis (metabolized via Rhodococcus opacus by the ortho-cleavage pathway) | [66,67,68] |
Styrene | Approx. 30 million tons (2022) | N/A | Biological synthesis (fermented via an engineered E. coli strain using glucose) | [69,70] |
5-Hydroxymethylfurfural | N/A | Approx. USD 60 million (2023) | Red-algae Gracilaria verrucosa conversion to sugars (glucose, galactose), levulinic acid, and 5-HMF by acidic hydrolysis | [71,72,73] |
Citric acid | 2.8 million tons (2023) | USD 2.8 billion (2023) | Biosynthesis of citric acid by fungi Penicilium and Aspergillus sp. | [74,75,76,77] |
Compound | Year of Production | Amount of Production (Volume) | Market Size (Price) | Biological Sources | References |
---|---|---|---|---|---|
α-Pinene | 2021 | N/A | USD 195.4 million (2021) | Found in some higher gymnosperms (e.g., Juniper spp., Cannabis spp.), essential oils from some flowering plants (e.g., thyme). Biological synthesis (fermented via engineered E. coli strain using glucose by MVA pathway). VOC emitted from diatoms. | [281,308,309,310,311] |
β-Pinene | 2020 | N/A | USD 171.64 million (2021) | Essential oils from some flowering plants (e.g., lemon). VOC emitted from compost. Phytolanktons-emission. | [278,312,313,314] |
2021 | N/A | USD 178.05 million (2022) | |||
Menthol | Annually | Around 34,000 metric tons | N/A | Chemical synthesis via natural gas/petroleum (fossil fuels) feedstock. Found in essential oils of Mentha canadensis, M. piperita, and M. arvensis. Found in essential oils of Mycia acris, hops, cannabis, bay leaves (anise and clove), lemongrass, thyme, verbena, citrus fruits, etc. Biological synthesis (metabolized via Ochtodes secundiramea by myrcene synthase using GDP as a substrate). Biotransformation and bioconversion of menthol by Chlorella vulgaris. | [315,316,317,318,319,320,321] |
Myrcene | 2020 | 23.15 K metric tons (2021) | N/A | Production of β-Myrcene, by red algae Ochtodes secundiramea. | [256,322] |
Citronella | 2021 | N/A | USD 107 million (2023) | Found in essential oils of Cymbopogon winterianus (Java citronella), C. citratus (lemongrass), C. nardus (citronella), etc. Major components: linalool, citronellal, citronellol, and elemol. Biological synthesis (metabolized via Cymbopogon spp. by GDP-based pathways). | [323,324,325] |
Cyclic Olefin Polymer (COP) | 2022 | N/A | USD 954.5 million (2023) | Chemical synthesis via natural gas/petroleum (fossil fuels) feedstock, olefin metathesis using ethylene or olefins. | [326,327,328] |
p-Cymene | 2021 | N/A | USD million (2023) | Found in essential oils of Nigella sativa (black cumin), Satureja boissieri, Dysphania ambrosioidea (Mexican tea). | [284,329,330,331,332,333] |
Citral | 2022 | N/A | USD 985.73 million (2023) | Found in essential oils of Litsea cubeba (may chang), Cymboopogon spp. (lemon grass), and Backhousia citriodora (lemon myrtle). Mixture of geranial and neral Biotransformation of citral by various marine/fungi, including A. niger and Penicillium spp. | [321,334,335,336,337] |
Compound | Amount of Production (Volume, 106 kg year−1) | Market Size (Price, 106 USD year−1) | Source of Production | References |
---|---|---|---|---|
α-Pinene | 22 | 56 | Diatoms | [281] |
β-Pinene | 20 | 102 | Phytoplanktons | [339] |
d-Limonene | 23 | 160 | Citrus peel Nereocystis luetkeana, Alaria marginata | [266,338] |
3-Carene | <0.5 | <23 | Dunaliella tertiolecta | [250] |
γ-Terpinene | <0.5 | <16 | Plants and citrus fruit | [340] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baharlooeian, M.; Benjamin, M.M.; Choudhary, S.; Hosseinian, A.; Hanna, G.S.; Hamann, M.T. Marine Metabolites for the Sustainable and Renewable Production of Key Platform Chemicals. Processes 2025, 13, 2685. https://doi.org/10.3390/pr13092685
Baharlooeian M, Benjamin MM, Choudhary S, Hosseinian A, Hanna GS, Hamann MT. Marine Metabolites for the Sustainable and Renewable Production of Key Platform Chemicals. Processes. 2025; 13(9):2685. https://doi.org/10.3390/pr13092685
Chicago/Turabian StyleBaharlooeian, Maedeh, Menny M. Benjamin, Shifali Choudhary, Amin Hosseinian, George S. Hanna, and Mark T. Hamann. 2025. "Marine Metabolites for the Sustainable and Renewable Production of Key Platform Chemicals" Processes 13, no. 9: 2685. https://doi.org/10.3390/pr13092685
APA StyleBaharlooeian, M., Benjamin, M. M., Choudhary, S., Hosseinian, A., Hanna, G. S., & Hamann, M. T. (2025). Marine Metabolites for the Sustainable and Renewable Production of Key Platform Chemicals. Processes, 13(9), 2685. https://doi.org/10.3390/pr13092685