A Comprehensive Study of Machine Learning for Waste-to-Energy Process Modeling and Optimization
Abstract
1. Introduction
- (1)
- Developing and comparing four distinct machine learning models to predict environmental performance of a promising MW-to-FT process, providing clear guidance on their relative accuracy and generalizability.
- (2)
- Coupling each surrogate with different optimization algorithms to reveal model performance in the efficiency and robustness of process optimization, highlighting the importance of effective optimization in unlocking waste-to-energy process’s potential.
2. Methodology
2.1. Process Development
2.2. Life Cycle Assessment
2.3. Data Collection
2.4. Machine Learning Techniques
2.4.1. Support Vector Machine (SVM)
2.4.2. Artificial Neural Network (ANN)
2.4.3. Gaussian Process Regression (GPR)
2.4.4. Extreme Gradient Boosting (XGBoost)
2.4.5. Evaluation Metrics
2.5. Process Optimization
2.5.1. Genetic Algorithms (GAs)
2.5.2. Particle Swarm Optimization (PSO)
2.5.3. Simulated Annealing Algorithm (SA)
3. Results and Discussion
4. Conclusions, Limitations and Outlook
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Items | Compositions | Values |
---|---|---|
Proximate analysis (wt.%) a | Moisture | 5.00 |
Ash | 0.20 | |
Volatiles | 92.90 | |
Fixed carbon | 1.90 | |
Ultimate analysis (wt.%) b | C | 84.17 |
H | 14.93 | |
O | 0.7 | |
Higher heating value (MJ/kg) c | - | 46.9 |
Processes | Operating Conditions | Values | Units |
---|---|---|---|
Plasma gasification | Temperature | 2000–3000 | °C |
Equivalent ratio (ER) | 0.1–0.5 | - | |
Steam-to-waste ratio (SWR) | 0.5–1 | - | |
RWGS | Temperature | 600 | °C |
Pressure | 24.5 | bar | |
CO2 conversion rate | 36 | % | |
FT synthesis | Temperature | 220 | °C |
Pressure | 30 | Bar | |
Splitting ratio of light gases (LGSR) | 0–1 | - | |
PSA | H2 purity | 99.9 | % |
H2 recovery rate | 85 | % | |
Duty | 0.657 | kWh/kg | |
Combined heat and power generation | Combustion temperature | 900 | °C |
Inlet pressure of turbine | 70 | Bar | |
Outlet pressure of turbine | 7 | kPa | |
MEA-based carbon capture | Capture efficiency | 85 | % |
Duty | 4 | MJ/kg |
Items | MW | H2O | O2 | S1 | S2 | S3 | S4 | Water-1 | S5 | S6 | S7 | S8 | S9 | S10 | S11 | S12 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Temperature | 25.00 | 25.00 | 25.00 | 2500.00 | 25.00 | 18.80 | 2500.00 | 25.00 | 25.00 | 43.30 | 150.00 | 600.00 | 600.00 | 140.00 | 140.00 | 140.00 |
Pressure | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 24.20 | 24.20 | 24.20 | 24.20 | 24.20 | 24.20 |
Mass flowrate | 1000.00 | 750.00 | 1030.00 | 2780.00 | 2780.00 | 1780.00 | 1780.00 | 615.00 | 2160.00 | 4220.00 | 4220.00 | 4220.00 | 4220.00 | 4220.00 | 1210.00 | 3010.00 |
XMW | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
XH2 | 0.00 | 0.00 | 0.00 | 0.42 | 0.42 | 0.00 | 0.00 | 0.00 | 0.52 | 0.45 | 0.45 | 0.45 | 0.36 | 0.36 | 0.00 | 0.42 |
XO2 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.44 | 0.44 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
XCH4 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
XCO | 0.00 | 0.00 | 0.00 | 0.34 | 0.34 | 0.00 | 0.00 | 0.00 | 0.42 | 0.29 | 0.29 | 0.29 | 0.38 | 0.38 | 0.00 | 0.44 |
XCO2 | 0.00 | 0.00 | 0.00 | 0.03 | 0.03 | 0.00 | 0.00 | 0.00 | 0.03 | 0.24 | 0.24 | 0.24 | 0.15 | 0.15 | 1.00 | 0.03 |
XH2O | 1.00 | 1.00 | 0.00 | 0.21 | 0.21 | 0.56 | 0.56 | 1.00 | 0.03 | 0.02 | 0.02 | 0.02 | 0.11 | 0.11 | 0.00 | 0.12 |
Items | S13 | S14 | S15 | S16 | S17 | S18 | S19 | S20 | S21 | S22 | S23 | S24 | Wax | Naphtha | Jet fuel | |
Temperature | 187.00 | 150.00 | 220.00 | 25.00 | 25.00 | 220.00 | 25.00 | 25.00 | 25.00 | 25.00 | 5.74 | 5.74 | 5.74 | 5.74 | 5.74 | |
Pressure | 0.58 | 29.60 | 29.60 | 0.53 | 0.53 | 29.60 | 0.58 | 0.58 | 0.58 | 0.58 | 0.53 | 0.53 | 0.53 | 0.53 | 0.53 | |
Mass flowrate | 4010.00 | 4010.00 | 4010.00 | 2370.00 | 1640.00 | 2370.00 | 1610.00 | 754.00 | 807.00 | 807.00 | 3200.00 | 2900.00 | 301.00 | 219.00 | 224.00 | |
XH2 | 0.60 | 0.60 | 0.40 | 0.57 | 0.00 | 0.37 | 0.49 | 0.00 | 0.49 | 0.49 | 0.15 | 0.15 | 0.00 | 0.00 | 0.00 | |
XO2 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
XCH4 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
XCO | 0.29 | 0.29 | 0.19 | 0.28 | 0.00 | 0.18 | 0.25 | 0.00 | 0.25 | 0.25 | 0.08 | 0.08 | 0.00 | 0.00 | 0.00 | |
XCO2 | 0.03 | 0.03 | 0.04 | 0.06 | 0.00 | 0.09 | 0.12 | 0.00 | 0.12 | 0.12 | 0.04 | 0.04 | 0.00 | 0.00 | 0.00 | |
XH2O | 0.08 | 0.08 | 0.32 | 0.05 | 0.97 | 0.27 | 0.05 | 0.95 | 0.05 | 0.05 | 0.68 | 0.68 | 0.00 | 0.00 | 0.00 | |
XC1 | 0.00 | 0.00 | 0.01 | 0.01 | 0.00 | 0.01 | 0.02 | 0.00 | 0.02 | 0.02 | 0.01 | 0.01 | 0.00 | 0.00 | 0.00 | |
XC2 | 0.00 | 0.00 | 0.01 | 0.01 | 0.00 | 0.01 | 0.02 | 0.00 | 0.02 | 0.02 | 0.01 | 0.01 | 0.00 | 0.00 | 0.00 | |
XC3 | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.01 | 0.02 | 0.00 | 0.02 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
XC4 | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.01 | 0.01 | 0.00 | 0.01 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
XC5 | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.01 | 0.01 | 0.00 | 0.01 | 0.01 | 0.00 | 0.00 | 0.00 | 0.24 | 0.00 | |
XC6 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.01 | 0.00 | 0.01 | 0.01 | 0.00 | 0.00 | 0.00 | 0.22 | 0.00 | |
XC7 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.01 | 0.00 | 0.01 | 0.01 | 0.00 | 0.00 | 0.00 | 0.20 | 0.00 | |
XC8 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.18 | 0.00 | |
XC9 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.16 | 0.00 | |
XC10 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.24 | |
XC11 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.22 | |
XC12 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.20 | |
XC13 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.18 | |
XC14 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.16 | |
XC15 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
XC16 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
XC17 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
XC18 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
XC19 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.14 | 0.00 | 0.00 | |
XC20 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.13 | 0.00 | 0.00 | |
XC21 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.11 | 0.00 | 0.00 | |
XC22 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.10 | 0.00 | 0.00 | |
XC23 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.09 | 0.00 | 0.00 | |
XC24 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.08 | 0.00 | 0.00 | |
XC25 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.07 | 0.00 | 0.00 | |
XC26 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.07 | 0.00 | 0.00 | |
XC27 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.06 | 0.00 | 0.00 | |
XC28 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.05 | 0.00 | 0.00 | |
XC29 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.05 | 0.00 | 0.00 | |
XC30 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.04 | 0.00 | 0.00 | |
Items | Diesel | S26 | S27 | Air | S28 | S29 | S30 | S31 | S32 | S33 | S34 | S35 | S36 | Emitted gases | Water-2 | |
Temperature | 5.74 | 5.74 | 25.00 | 25.00 | 25.00 | 900.00 | 40.00 | 859.00 | 104.00 | 30.00 | 30.60 | 40.00 | 40.00 | 25.00 | 25.00 | |
Pressure | 0.53 | 0.53 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 69.10 | 0.07 | 0.04 | 69.10 | 1.00 | 1.00 | 1.00 | 1.00 | |
Mass flowrate | 154.00 | 2300.00 | 627.00 | 2540.00 | 35.70 | 3170.00 | 3170.00 | 859.00 | 859.00 | 859.00 | 859.00 | 2350.00 | 815.00 | 2130.00 | 223.00 | |
XMW | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
XH2 | 0.00 | 0.16 | 0.14 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
XO2 | 0.00 | 0.00 | 0.00 | 0.21 | 0.00 | 0.01 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.01 | 0.00 | |
XCH4 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
XC2H4 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
XC2H6 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
XCO | 0.00 | 0.08 | 0.47 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
XCO2 | 0.00 | 0.04 | 0.22 | 0.00 | 0.00 | 0.21 | 0.21 | 0.00 | 0.00 | 0.00 | 0.00 | 0.04 | 1.00 | 0.04 | 0.00 | |
XH2O | 0.00 | 0.70 | 0.05 | 0.01 | 0.00 | 0.14 | 0.14 | 1.00 | 1.00 | 1.00 | 1.00 | 0.17 | 0.00 | 0.03 | 1.00 | |
XN2 | 0.00 | 0.00 | 0.00 | 0.78 | 0.00 | 0.65 | 0.65 | 0.00 | 0.00 | 0.00 | 0.00 | 0.79 | 0.00 | 0.92 | 0.00 | |
XC1 | 0.00 | 0.01 | 0.03 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
XC2 | 0.00 | 0.01 | 0.03 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
XC3 | 0.00 | 0.01 | 0.03 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
XC4 | 0.00 | 0.00 | 0.03 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
XC15 | 0.29 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
XC16 | 0.26 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
XC17 | 0.24 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
XC18 | 0.21 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
References
- Mohee, R. Medical Wastes Characterisation in Healthcare Institutions in Mauritius. Waste Manag. 2005, 25, 575–581. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.; Song, Q.; Wu, N.; Li, J.; Zhong, Y.; Zeng, W. Repercussions of COVID-19 Pandemic on Solid Waste Generation and Management Strategies. Front. Environ. Sci. Eng. 2021, 15, 115. [Google Scholar] [CrossRef]
- You, S.; Sonne, C.; Ok, Y.S. COVID-19’s Unsustainable Waste Management. Science 2020, 368, 1438. [Google Scholar] [CrossRef]
- Ghasemi, M.K.; Yusuff, R.B.M. Advantages and Disadvantages of Healthcare Waste Treatment and Disposal Alternatives: Malaysian Scenario. Pol. J. Environ. Stud. 2016, 25, 17–25. [Google Scholar] [CrossRef]
- Mazzei, H.G.; Specchia, S. Latest Insights on Technologies for the Treatment of Solid Medical Waste: A review. J. Environ. Chem. Eng. 2023, 11, 109309. [Google Scholar] [CrossRef]
- Reyes-López, J.A.; Ramírez-Hernández, J.; Lázaro-Mancilla, O.; Carreón-Diazconti, C.; Garrido, M.M.L. Assessment of Groundwater Contamination by Landfill Leachate: A Case in México. Waste Manag. 2008, 28, S33–S39. [Google Scholar] [CrossRef]
- Mukherjee, S.; Mukhopadhyay, S.; Hashim, M.A.; Gupta, B. Sen Contemporary Environmental Issues of Landfill Leachate: Assessment and Remedies. Crit. Rev. Environ. Sci. Technol. 2015, 45, 472–590. [Google Scholar] [CrossRef]
- Khan, M.S.; Mubeen, I.; Caimeng, Y.; Zhu, G.; Khalid, A.; Yan, M. Waste to Energy Incineration Technology: Recent Development under Climate Change Scenarios. Waste Manag. Res. 2022, 40, 1708–1729. [Google Scholar] [CrossRef]
- Imran, M.; Jijian, Z.; Sharif, A.; Magazzino, C. Evolving Waste Management: The Impact of Environmental Technology, Taxes, and Carbon Emissions on Incineration in EU Countries. J. Environ. Manag. 2024, 364, 121440. [Google Scholar] [CrossRef] [PubMed]
- Li, C.H.; Lee, T.T.; Lau, S.S.Y. Enhancement of Municipal Solid Waste Management in Hong Kong through Innovative Solutions: A Review. Sustainability 2023, 15, 3310. [Google Scholar] [CrossRef]
- Zhu, J.; Fei, X.; Yin, K. Assessment of Waste-to-Energy Conversion Technologies for Biomass Waste under Different Shared Socioeconomic Pathways. Energy Environ. Sustain. 2025, 1, 100021. [Google Scholar] [CrossRef]
- Chaiyat, N. Energy, Exergy, Economic, and Environmental Analysis of an Organic Rankine Cycle Integrating with Infectious Medical Waste Incinerator. Therm. Sci. Eng. Prog. 2021, 22, 100810. [Google Scholar] [CrossRef]
- Su, L.; Wu, S.; Fu, G.; Zhu, W.; Zhang, X.; Liang, B. Creep Characterisation and Microstructural Analysis of Municipal Solid Waste Incineration Fly Ash Geopolymer Backfill. Sci. Rep. 2024, 14, 29828. [Google Scholar] [CrossRef]
- Zhao, X.; You, F. Waste Respirator Processing System for Public Health Protection and Climate Change Mitigation under COVID-19 Pandemic: Novel Process Design and Energy, Environmental, and Techno-Economic Perspectives. Appl. Energy 2021, 283, 116129. [Google Scholar] [CrossRef] [PubMed]
- Kuo, P.C.; Illathukandy, B.; Wu, W.; Chang, J.S. Plasma Gasification Performances of Various Raw and Torrefied Biomass Materials Using Different Gasifying Agents. Bioresour. Technol. 2020, 314, 123740. [Google Scholar] [CrossRef]
- Zhou, J.; Liu, C.; Ren, J.; He, C. Targeting Carbon-Neutral Waste Reduction: Novel Process Design, Modelling and Optimization for Converting Medical Waste into Hydrogen. Energy 2024, 310, 133272. [Google Scholar] [CrossRef]
- Li, J.; Wang, H.; Chen, H.; Wu, H.; Xu, G.; Dong, Y.; Zhao, Q.; Liu, T. Comparative Thermodynamic and Techno-Economic Analysis of Various Medical Waste-to-Hydrogen/Methanol Pathways Based on Plasma Gasification. Appl. Therm. Eng. 2023, 221, 119762. [Google Scholar] [CrossRef]
- Zhou, J.; Ren, J.; Zhu, L.; He, C. Turning Waste into Energy through a Solar-Powered Multi-Generation System with Novel Machine Learning-Based Life Cycle Optimization. Chem. Eng. Sci. 2025, 307, 121348. [Google Scholar] [CrossRef]
- Mehdi, M.; Ammar Taqvi, S.A.; Shaikh, A.A.; Khan, S.; Naqvi, S.R.; Shahbaz, M.; Juchelková, D. Aspen plus Simulation Model of Municipal Solid Waste Gasification of Metropolitan City for Syngas Production. Fuel 2023, 344, 128128. [Google Scholar] [CrossRef]
- Ali, A.M.; Shahbaz, M.; Inayat, M.; Shahzad, K.; Al-Zahrani, A.A.; Mahpudz, A.B. Conversion of Municipals Waste into Syngas and Methanol via Steam Gasification Using CaO as Sorbent: An Aspen Plus Modelling. Fuel 2023, 349, 128640. [Google Scholar] [CrossRef]
- Zhu, X.; Li, Y.; Wang, X. Machine Learning Prediction of Biochar Yield and Carbon Contents in Biochar Based on Biomass Characteristics and Pyrolysis Conditions. Bioresour. Technol. 2019, 288, 121527. [Google Scholar] [CrossRef]
- Tang, Q.; Chen, Y.; Yang, H.; Liu, M.; Xiao, H.; Wang, S.; Chen, H.; Raza Naqvi, S. Machine Learning Prediction of Pyrolytic Gas Yield and Compositions with Feature Reduction Methods: Effects of Pyrolysis Conditions and Biomass Characteristics. Bioresour. Technol. 2021, 339, 125581. [Google Scholar] [CrossRef] [PubMed]
- Timilsina, M.S.; Chaudhary, Y.; Shah, A.K.; Lohani, S.P.; Bhandari, R.; Uprety, B. Syngas Composition Analysis for Waste to Methanol Production: Techno-Economic Assessment Using Machine Learning and Aspen Plus. Renew. Energy 2024, 228, 120574. [Google Scholar] [CrossRef]
- Wang, Z.; Li, J.; Rangaiah, G.P.; Wu, Z. Machine Learning Aided Multi-Objective Optimization and Multi-Criteria Decision Making: Framework and Two Applications in Chemical Engineering. Comput. Chem. Eng. 2022, 165, 107945. [Google Scholar] [CrossRef]
- Fath, V.; Kockmann, N.; Otto, J.; Röder, T. Self-Optimising Processes and Real-Time-Optimisation of Organic Syntheses in a Microreactor System Using Nelder–Mead and Design of Experiments. React. Chem. Eng. 2020, 5, 1281–1299. [Google Scholar] [CrossRef]
- Diehl, M.; Bock, H.G.; Schlöder, J.P.; Findeisen, R.; Nagy, Z.; Allgöwer, F. Real-Time Optimization and Nonlinear Model Predictive Control of Processes Governed by Differential-Algebraic Equations. J. Process Control 2002, 12, 577–585. [Google Scholar] [CrossRef]
- Meng, Q.; Xu, J.; Luo, F.; Jin, X.; Xu, L.; Yao, W.; Jin, S. Collaborative and Effective Scheduling of Integrated Energy Systems with Consideration of Carbon Restrictions. IET Gener. Transm. Distrib. 2023, 17, 4134–4145. [Google Scholar] [CrossRef]
- Singh, D.K.; Tirkey, J.V. Valorisation of Hazardous Medical Waste Using Steam Injected Plasma Gasifier: A Parametric Study on the Modelling and Multi-Objective Optimisation by Integrating Aspen plus with RSM. Environ. Technol. 2022, 43, 4291–4305. [Google Scholar] [CrossRef]
- Kaushal, R.; Rohit; Dhaka, A.K. A Comprehensive Review of the Application of Plasma Gasification Technology in Circumventing the Medical Waste in a Post-COVID-19 Scenario. Biomass Convers. Biorefinery 2024, 14, 1427–1442. [Google Scholar] [CrossRef]
- Rosha, P.; Ibrahim, H. Hydrogen Production via Solid Waste Gasification with Subsequent Amine-Based Carbon Dioxide Removal Using Aspen Plus. Int. J. Hydrogen Energy 2023, 48, 24607–24618. [Google Scholar] [CrossRef]
- Rosha, P.; Kumar, S.; Vikram, S.; Ibrahim, H.; Al-Muhtaseb, A.H. H2-Enriched Gaseous Fuel Production via Co-Gasification of an Algae-Plastic Waste Mixture Using Aspen PLUS. Int. J. Hydrogen Energy 2022, 47, 26294–26302. [Google Scholar] [CrossRef]
- Zhou, J.; Ayub, Y.; Shi, T.; Ren, J.; He, C. Sustainable Co-Valorization of Medical Waste and Biomass Waste: Innovative Process Design, Optimization and Assessment. Energy 2024, 288, 129803. [Google Scholar] [CrossRef]
- Kim, D.H.; Park, J.L.; Park, E.J.; Kim, Y.D.; Uhm, S. Dopant Effect of Barium Zirconate-Based Perovskite-Type Catalysts for the Intermediate-Temperature Reverse Water Gas Shift Reaction. ACS Catal. 2014, 4, 3117–3122. [Google Scholar] [CrossRef]
- Fazeli, H.; Panahi, M.; Rafiee, A. Investigating the Potential of Carbon Dioxide Utilization in a Gas-to-Liquids Process with Iron-Based Fischer-Tropsch Catalyst. J. Nat. Gas Sci. Eng. 2018, 52, 549–558. [Google Scholar] [CrossRef]
- Zang, G.; Sun, P.; Delgado, H.E.; Cappello, V.; Ng, C.; Elgowainy, A. The Modeling of the Synfuel Production Process: Process Models of Fischer-Tropsch Production with Electricity and Hydrogen Provided by Various Scales of Nuclear Plants (Program Document). Available online: https://www.osti.gov/biblio/1868524 (accessed on 31 July 2023).
- Li, K.; Leigh, W.; Feron, P.; Yu, H.; Tade, M. Systematic study of aqueous monoethanolamine (MEA)-based CO2 capture process: Techno-economic assessment of the MEA process and its improvements. Appl. Energy 2016, 165, 648–659. [Google Scholar] [CrossRef]
- Zhou, J.; Ren, J.; He, C. Turning Sewage Sludge and Medical Waste into Energy: Sustainable Process Synthesis via Surrogate-Based Superstructure Optimization. Green Chem. 2025, 27, 1777–1788. [Google Scholar] [CrossRef]
- Sun, Z.; Zeng, L.; Russell, C.K.; Assabumrungrat, S.; Chen, S.; Duan, L.; Xiang, W.; Gong, J. Solar-Wind-Bio Ecosystem for Biomass Cascade Utilization with Multigeneration of Formic Acid, Hydrogen, and Graphene. ACS Sustain. Chem. Eng. 2019, 7, 2558–2568. [Google Scholar] [CrossRef]
- Paulillo, A.; Sebastiani, A.; Lettieri, P.; Materazzi, M. Decarbonising Waste-to-Energy: A Life Cycle Assessment Study. Resour. Conserv. Recycl. 2024, 209, 107812. [Google Scholar] [CrossRef]
- Solomon, S.; Qin, D.; Manning, M.; Marquis, M.; Averyt, K.; Tignor, M.M.B.; Miller, H.L., Jr.; Chen, Z. Climate Change 2007: The Physical Science Basis. In Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, MA, USA, 2007; Volume 446, pp. 727–728. [Google Scholar]
- Zhou, J.; Ren, J.; He, C. Improved Medical Waste Plasma Gasification Modelling Based on Implicit Knowledge-Guided Interpretable Machine Learning. Waste Manag. 2024, 188, 48–59. [Google Scholar] [CrossRef] [PubMed]
- Minghui, M.; Chuanfeng, Z. Application of Support Vector Machines to a Small-Sample Prediction. Adv. Pet. Explor. Dev. 2015, 10, 72–75. [Google Scholar] [CrossRef]
- Herceg, S.; Ujević Andrijić, Ž.; Bolf, N. Development of Soft Sensors for Isomerization Process Based on Support Vector Machine Regression and Dynamic Polynomial Models. Chem. Eng. Res. Des. 2019, 149, 95–103. [Google Scholar] [CrossRef]
- Alade, I.O.; Zhang, Y.; Xu, X. Modeling and Prediction of Lattice Parameters of Binary Spinel Compounds (AM2X4) Using Support Vector Regression with Bayesian Optimization. New J. Chem. 2021, 45, 15255–15266. [Google Scholar] [CrossRef]
- Schölkopf, B. SVMs—A Practical Consequence of Learning Theory. IEEE Intell. Syst. Their Appl. 1998, 13, 18–21. [Google Scholar] [CrossRef]
- Pisner, D.A.; Schnyer, D.M. Support Vector Machine. Machine Learning: Methods and Applications to Brain Disorders; Academic Press: Cambridge, MA, USA, 2020; pp. 101–121. [Google Scholar] [CrossRef]
- Understanding Support Vector Machine Regression—MATLAB & Simulink. Available online: https://ch.mathworks.com/help/stats/understanding-support-vector-machine-regression.html (accessed on 7 July 2025).
- Jain, A.K.; Mao, J.; Mohiuddin, K.M. Artificial Neural Networks: A Tutorial. Computer 1996, 29, 31–44. [Google Scholar] [CrossRef]
- Zhou, J.; Chu, Y.T.; Ren, J.; Shen, W.; He, C. Integrating Machine Learning and Mathematical Programming for Efficient Optimization of Operating Conditions in Organic Rankine Cycle (ORC) Based Combined Systems. Energy 2023, 281, 128218. [Google Scholar] [CrossRef]
- Schulz, E.; Speekenbrink, M.; Krause, A. A Tutorial on Gaussian Process Regression: Modelling, Exploring, and Exploiting Functions. J. Math. Psychol. 2018, 85, 1–16. [Google Scholar] [CrossRef]
- Jäkel, F.; Schölkopf, B.; Wichmann, F.A. A Tutorial on Kernel Methods for Categorization. J. Math. Psychol. 2007, 51, 343–358. [Google Scholar] [CrossRef]
- Rasmussen, C.E.; Williams, C.K.I. Gaussian Processes for Machine Learning; Mit Press: Cambridge, MA, USA, 2005. [Google Scholar] [CrossRef]
- Neal, R.M. Bayesian Learning for Neural Networks; Springer: Berlin/Heidelberg, Germany, 1996; p. 118. [Google Scholar] [CrossRef]
- Yang, D.; Zhang, X.; Pan, R.; Wang, Y.; Chen, Z. A Novel Gaussian Process Regression Model for State-of-Health Estimation of Lithium-Ion Battery Using Charging Curve. J. Power Sources 2018, 384, 387–395. [Google Scholar] [CrossRef]
- Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. In Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794. [Google Scholar] [CrossRef]
- Elavarasan, D.; Vincent, D.R. Reinforced XGBoost Machine Learning Model for Sustainable Intelligent Agrarian Applications. J. Intell. Fuzzy Syst. 2020, 39, 7605–7620. [Google Scholar] [CrossRef]
- Pekel, E. Estimation of Soil Moisture Using Decision Tree Regression. Theor. Appl. Clim. 2020, 139, 1111–1119. [Google Scholar] [CrossRef]
- Zhang, W.; Wu, C.; Tang, L.; Gu, X.; Wang, L. Efficient Time-Variant Reliability Analysis of Bazimen Landslide in the Three Gorges Reservoir Area Using XGBoost and LightGBM Algorithms. Gondwana Res. 2023, 123, 41–53. [Google Scholar] [CrossRef]
- Li, Y.; Jiang, W.; Sun, G. Predicting Environmental Pollution with Gradient Boosting: Application of GBDT Regression Models in Time Series Models. Lect. Notes Electr. Eng. 2025, 1328, 138–148. [Google Scholar] [CrossRef]
- Ma, M.; Zhao, G.; He, B.; Li, Q.; Dong, H.; Wang, S.; Wang, Z. XGBoost-Based Method for Flash Flood Risk Assessment. J Hydrol. 2021, 598, 126382. [Google Scholar] [CrossRef]
- Ullah, Z.; Khan, M.; Naqvi, S.R.; Farooq, W.; Yang, H.; Wang, S.; Vo, D.-V.N. A Comparative Study of Machine Learning Methods for Bio-Oil Yield Prediction—A Genetic Algorithm-Based Features Selection. Bioresour Technol. 2021, 335, 125292. [Google Scholar] [CrossRef]
- Suleman, F.; Dincer, I.; Agelin-Chaab, M. Comparative Impact Assessment Study of Various Hydrogen Production Methods in Terms of Emissions. Int. J. Hydrogen Energy 2016, 41, 8364–8375. [Google Scholar] [CrossRef]
- Heuristic Optimization. Portfolio Management with Heuristic Optimization; Springer: Boston, MA, USA, 2005; pp. 38–76. [Google Scholar] [CrossRef]
- Lambora, A.; Gupta, K.; Chopra, K. Genetic Algorithm—A Literature Review. In Proceedings of the International Conference on Machine Learning, Big Data, Cloud and Parallel Computing: Trends, Prespectives and Prospects, COMITCon 2019, Faridabad, India, 14–16 February 2019; pp. 380–384. [Google Scholar] [CrossRef]
- Zhong, J.; Hu, X.; Zhang, J.; Gu, M. Comparison of Performance between Different Selection Strategies on Simple Genetic Algorithms. In Proceedings of the International Conference on Computational Intelligence for Modelling, Control and Automation, Vienna, Austria, 28–30 November 2005; IEEE: New York, NY, USA; Volume 2, pp. 1115–1120. [Google Scholar] [CrossRef]
- Zambrano-Bigiarini, M.; Clerc, M.; Rojas, R. Standard Particle Swarm Optimisation 2011 at CEC-2013: A Baseline for Future PSO Improvements. In Proceedings of the 2013 IEEE Congress on Evolutionary Computation, CEC, Cancun, Mexico, 20–23 June 2013; pp. 2337–2344. [Google Scholar] [CrossRef]
- Henderson, D.; Jacobson, S.H.; Johnson, A.W. The Theory and Practice of Simulated Annealing. In Handbook of Metaheuristics; Springer: Boston, MA, USA, 2003; pp. 287–319. [Google Scholar] [CrossRef]
- Zhang, Z.; Lin, M.; Han, B.; Dai, S. Prediction of Local Scour Depth around Cylindrical Piles: Using Simulated Annealing Algorithm and Ensemble Learning. Ocean Eng. 2025, 330, 121221. [Google Scholar] [CrossRef]
- Zhao, S.; Lu, J.; Yang, J.; Chow, E.; Xi, Y. Efficient Two-Stage Gaussian Process Regression Via Automatic Kernel Search and Subsampling. arXiv 2024, arXiv:2405.13785. [Google Scholar] [CrossRef]
- Baziar, M.; Yousefi, M.; Oskoei, V.; Makhdoomi, A.; Abdollahzadeh, R.; Dehghan, A. Machine Learning-Based Prediction of Heating Values in Municipal Solid Waste. Sci. Rep. 2025, 15, 14589. [Google Scholar] [CrossRef] [PubMed]
- Bala, I.; Chauhan, D.; Mitchell, L. Orthogonally Initiated Particle Swarm Optimization with Advanced Mutation for Real-Parameter Optimization. arXiv 2024, arXiv:2405.12542. [Google Scholar] [CrossRef]
- Zhou, J.; Ren, J.; He, C. Wind Energy-Driven Medical Waste Treatment with Polygeneration and Carbon Neutrality: Process Design, Advanced Exergy Analysis and Process Optimization. Process Saf. Environ. Prot. 2023, 178, 342–359. [Google Scholar] [CrossRef]
- Lei, Q.; Zhang, S.; Li, Y.; Ding, X.; Wang, Y.; Zheng, L.; Wu, L. Design and Optimization of Poly-Generation System for Municipal Solid Waste Disposal. J. Clean. Prod. 2022, 370, 133611. [Google Scholar] [CrossRef]
- Abhilash; Inamdar, I. Recycling of Plastic Wastes Generated from COVID-19: A Comprehensive Illustration of Type and Properties of Plastics with Remedial Options. Sci. Total Environ. 2022, 838, 155895. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.; Cui, M.; Ye, Z.; Guo, Q. Environmental Challenges from the Increasing Medical Waste since SARS Outbreak. J. Clean. Prod. 2021, 291, 125246. [Google Scholar] [CrossRef]
- Brillard, A.; Kehrli, D.; Douguet, O.; Gautier, K.; Tschamber, V.; Bueno, M.A.; Brilhac, J.F. Pyrolysis and Combustion of Community Masks: Thermogravimetric Analyses, Characterizations, Gaseous Emissions, and Kinetic Modeling. Fuel 2021, 306, 121644. [Google Scholar] [CrossRef]
Models | RMSE | MAE | MRE |
---|---|---|---|
LR | 0.2781 | 0.1826 | 0.0796 |
SVM | 0.2609 | 0.1467 | 0.0617 |
ANN | 0.2581 | 0.1599 | 0.0700 |
GPR | 0.2548 | 0.1540 | 0.0689 |
XGBoost | 0.2669 | 0.1646 | 0.0710 |
Models | Paradigms | Prediction Latencies (s/100 calls) * | Training Performances (R2) | Test Accuracies (R2) | Main Technical Limits |
---|---|---|---|---|---|
SVM | Kernel-based | 0.0103–0.0118 | 0.9009 | 0.8789 | Less expressive for very complex and high-dimensional relationships. |
ANN | Connectionist | 0.1617–0.2172 | 0.9130 | 0.8851 | Requires careful hyper-parameter tuning, regularization, and larger datasets for stability. |
GPR | Probabilistic | 0.0021–0.0337 | 0.9171 | 0.8845 | Scalability with large training set is limited for exact GPR. |
XGBoost | Ensemble | 4.9508–5.1171 | 0.9998 | 0.8732 | Per-call latency higher (many trees) and modest overfitting risk without regularization. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, J.; Liu, J.; Ren, J.; He, C. A Comprehensive Study of Machine Learning for Waste-to-Energy Process Modeling and Optimization. Processes 2025, 13, 2691. https://doi.org/10.3390/pr13092691
Zhou J, Liu J, Ren J, He C. A Comprehensive Study of Machine Learning for Waste-to-Energy Process Modeling and Optimization. Processes. 2025; 13(9):2691. https://doi.org/10.3390/pr13092691
Chicago/Turabian StyleZhou, Jianzhao, Jingyuan Liu, Jingzheng Ren, and Chang He. 2025. "A Comprehensive Study of Machine Learning for Waste-to-Energy Process Modeling and Optimization" Processes 13, no. 9: 2691. https://doi.org/10.3390/pr13092691
APA StyleZhou, J., Liu, J., Ren, J., & He, C. (2025). A Comprehensive Study of Machine Learning for Waste-to-Energy Process Modeling and Optimization. Processes, 13(9), 2691. https://doi.org/10.3390/pr13092691