Research on Gas Concentration Anomaly Detection in Coal Mining Based on SGDBO-Transformer-LSSVM
Abstract
1. Introduction
2. Concentration Anomaly Diagnosis Theory and Algorithm
2.1. CH4 Concentration Anomaly Diagnosis Process and Feature Engineering
2.1.1. CH4 Concentration Anomaly Diagnosis Process
2.1.2. Feature Engineering
2.2. Construction of Prediction Model
2.2.1. Transformer Encoder
2.2.2. Least Squares Support Vector Machine (LSSVM)
2.2.3. Classification Model Based on Transformer-LSSVM
2.3. Algorithm Improvement and Transformer-LSSVM Model Hyperparameter Optimization
2.3.1. Dung Beetle Optimization Algorithm (DBO)
2.3.2. Multi-Strategy Enhanced Dung Beetle Optimization Algorithm
2.3.3. Hyperparameter Optimization Framework
2.4. Evaluation Metric System
3. Experiments and Discussion
3.1. Original Sample Analysis and Sample Classification
3.2. Reconstruction Based on Sample Features
3.3. Analysis of Classification Results Based on SGDBO-Transformer-LSSVM Model
3.3.1. Algorithm Performance Comparison Based on IEEE CEC 2022
3.3.2. Hyperparameter Optimization Results
3.3.3. Performance Comparison of Transformer-LSSVM
4. Conclusions and Prospects
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gasparotto, J.; Da Boit Martinello, K. Coal as an Energy Source and Its Impacts on Human Health. Energy Geosci. 2021, 2, 113–120. [Google Scholar] [CrossRef]
- Wang, T.; Wu, F.; Dickinson, D.; Zhao, W. Energy Price Bubbles and Extreme Price Movements: Evidence from China’s Coal Market. Energy Econ. 2024, 129, 107253. [Google Scholar] [CrossRef]
- Cloney, C.T.; Ripley, R.C.; Pegg, M.J.; Khan, F.; Amyotte, P.R. Lower Flammability Limits of Hybrid Mixtures Containing 10 Micron Coal Dust Particles and Methane Gas. Process Saf. Environ. Prot. 2018, 120, 215–226. [Google Scholar] [CrossRef]
- Ray, S.K.; Khan, A.M.; Mohalik, N.K.; Mishra, D.; Mandal, S.; Pandey, J.K. Review of Preventive and Constructive Measures for Coal Mine Explosions: An Indian Perspective. Int. J. Min. Sci. Technol. 2022, 32, 471–485. [Google Scholar] [CrossRef]
- Qiu, L.; Peng, Y.; Song, D. Risk Prediction of Coal and Gas Outburst Based on Abnormal Gas Concentration in Blasting Driving Face. Geofluids 2022, 2022, 3917846. [Google Scholar] [CrossRef]
- Yang, D.; Peng, K.; Zheng, Y. Study on the Characteristics of Coal and Gas Outburst Hazard under the Influence of High Formation Temperature in Deep Mines. Energy 2023, 268, 126645. [Google Scholar] [CrossRef]
- Diaz, J.; Agioutantis, Z.; Hristopulos, D.T.; Schafrik, S.; Luxbacher, K. Time Series Modeling of Methane Gas in Underground Mines. Min. Metall. Explor. 2022, 39, 1961–1982. [Google Scholar] [CrossRef]
- Martirosyan, A.V.; Ilyushin, Y.V. The Development of the Toxic and Flammable Gases Concentration Monitoring System for Coalmines. Energies 2022, 15, 8917. [Google Scholar] [CrossRef]
- Morris, P.; Simon, C.M. Computationally Predicting the Performance of Gas Sensor Arrays for Anomaly Detection. Sens. Diagn. 2024, 3, 1699–1713. [Google Scholar] [CrossRef]
- Sorg, D. Measuring Livestock CH4 Emissions with the Laser Methane Detector: A Review. Methane 2022, 1, 38–57. [Google Scholar] [CrossRef]
- Chang, G.; Chang, H. Underground Abnormal Sensor Condition Detection Based on Gas Monitoring Data and Deep Learning Image Feature Engineering. Heliyon 2023, 9, e22026. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, S.; Lavin, A.; Purdy, S.; Agha, Z. Unsupervised Real-Time Anomaly Detection for Streaming Data. Neurocomputing 2017, 262, 134–147. [Google Scholar] [CrossRef]
- Jo, B.; Khan, R. An Event Reporting and Early-Warning Safety System Based on the Internet of Things for Underground Coal Mines: A Case Study. Appl. Sci. 2017, 7, 925. [Google Scholar] [CrossRef]
- Praveenchandar, J.; Vetrithangam, D.; Kaliappan, S.; Karthick, M.; Pegada, N.K.; Patil, P.P.; Rao, S.G.; Umar, S. IoT-based Harmful Toxic Gases Monitoring and Fault Detection on the Sensor Dataset Using Deep Learning Techniques. Sci. Program. 2022, 2022, 7516328. [Google Scholar] [CrossRef]
- Rezazadeh, N.; De Luca, A.; Perfetto, D. Systematic Critical Review of Structural Health Monitoring under Environmental and Operational Variability: Approaches for Baseline Compensation, Adaptation, and Reference-Free Techniques. Smart Mater. Struct. 2025, 34, 73001. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, L.; Yan, Z.; Deng, J.; Huang, Y.; Qin, Z.; Cao, Y.; Wang, Y. TCN-Transformer Spatio-Temporal Feature Decoupling and Dynamic Kernel Density Estimation for Gas Concentration Fluctuation Warning. Fire 2025, 8, 175. [Google Scholar] [CrossRef]
- Liu, C.; Wang, E.; Li, Z.; Zang, Z.; Li, B.; Yin, S.; Zhang, C.; Liu, Y.; Wang, J. Research on Multi-Factor Adaptive Integrated Early Warning Method for Coal Mine Disaster Risks Based on Multi-Task Learning. Reliab. Eng. Syst. Saf. 2025, 260, 111002. [Google Scholar] [CrossRef]
- Dey, P.; Chaulya, S.K.; Kumar, S. Hybrid CNN-LSTM and IoT-Based Coal Mine Hazards Monitoring and Prediction System. Process Saf. Environ. Prot. 2021, 152, 249–263. [Google Scholar] [CrossRef]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention Is All You Need. arXiv 2017, arXiv:1706.03762. [Google Scholar]
- Kumar, L.; Sripada, S.K.; Sureka, A.; Rath, S.K. Effective Fault Prediction Model Developed Using Least Square Support Vector Machine (LSSVM). J. Syst. Softw. 2018, 137, 686–712. [Google Scholar] [CrossRef]
- Xue, J.; Shen, B. Dung Beetle Optimizer: A New Meta-Heuristic Algorithm for Global Optimization. J. Supercomput. 2023, 79, 7305–7336. [Google Scholar] [CrossRef]
- Alzaidi, A.A.; Ahmad, M.; Ahmed, H.S.; Solami, E.A. Sine-cosine Optimization-based Bijective Substitution-boxes Construction Using Enhanced Dynamics of Chaotic Map. Complexity 2018, 2018, 9389065. [Google Scholar] [CrossRef]
- Tanyildizi, E.; Demir, G. Golden Sine Algorithm: A Novel Math-Inspired Algorithm. Adv. Electr. Comput. Eng. 2017, 17, 71–78. [Google Scholar] [CrossRef]
Sample Type | Normal Sample | Drilling Gas Outburst | Reverse Wind Drill | Local Wind Stoppage | Roof Collapse | Sensor Calibration Is Not Standardized | Sensor-Type Impact Failure |
---|---|---|---|---|---|---|---|
Sample labels | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
Sample Type | |||||||
---|---|---|---|---|---|---|---|
Normal sample | 0.580 | 0.292 | 0.122 | 2.685 | 0.032 | 0.066 | 32.156 |
Drilling gas outburst | 3.190 | 1.256 | 0.881 | 2.470 | 0.050 | 0.150 | 69.488 |
Reverse wind drill | 1.040 | 0.593 | 0.319 | 1.686 | 0.007 | 0.006 | 7.149 |
Local wind stoppage | 1.770 | 1.366 | 0.290 | 2.325 | 0.006 | 0.008 | 4.418 |
Roof collapse | 2.150 | 0.964 | 0.399 | 2.303 | 0.084 | 0.159 | 11.249 |
Sensor calibration is not standardized | 4.000 | 0.410 | 0.734 | 7.597 | 0.340 | 0.733 | 13.079 |
Sensor-type impact failures | 14.240 | 9.836 | 5.930 | 2.098 | 0.420 | 2.281 | 31.747 |
Normal Sample | Drilling Gas Outburst | Reverse Wind Drill | Local Wind Stoppage | Roof Collapse | Sensor Calibration Is Not Standardized | Sensor-Type Impact Failure | |
---|---|---|---|---|---|---|---|
sample size | 116 | 106 | 139 | 88 | 91 | 73 | 87 |
20Dim-Wilcoxon Sign Test Results | 20Dim-Wilcoxon Rank Sum Test Results | |||||
---|---|---|---|---|---|---|
SDBO | GDBO | SGDBO | SDBO | GDBO | SGDBO | |
F1 | 8.0311 × 10−10 | 5.4126 × 10−2 | 1.4993 × 10−8 | 6.7195 × 10−17 | 9.3221 × 10−2 | 4.7599 × 10−16 |
F2 | 2.1184 × 10−7 | 7.5569 × 10−10 | 7.5569 × 10−10 | 1.4066 × 10−12 | 7.0661 × 10−18 | 7.0661 × 10−18 |
F3 | 2.0893 × 10−6 | 1.0717 × 10−7 | 7.5569 × 10−10 | 1.7435 × 10−8 | 9.4600 × 10−10 | 8.4620 × 10−18 |
F4 | 7.5569 × 10−10 | 8.0311 × 10−10 | 7.5569 × 10−10 | 2.4739 × 10−17 | 7.5510 × 10−17 | 7.0661 × 10−18 |
F5 | 3.3668 × 10−9 | 2.5085 × 10−9 | 7.5569 × 10−10 | 3.7684 × 10−15 | 3.3752 × 10−15 | 4.2058 × 10−17 |
F6 | 7.1595 × 10−9 | 7.5569 × 10−10 | 7.5569 × 10−10 | 5.9715 × 10−16 | 7.0661 × 10−18 | 7.0661 × 10−18 |
F7 | 1.4705 × 10−7 | 9.5766 × 10−1 | 1.2659 × 10−8 | 5.4558 × 10−8 | 3.9455 × 10−1 | 2.1605 × 10−13 |
F8 | 3.6788 × 10−5 | 4.3380 × 10−4 | 1.3238 × 10−7 | 8.1172 × 10−7 | 1.8891 × 10−5 | 1.1737 × 10−9 |
F9 | 2.6198 × 10−8 | 7.5569 × 10−10 | 7.5569 × 10−10 | 3.8499 × 10−14 | 7.0661 × 10−18 | 7.0661 × 10−18 |
F10 | 1.9919 × 10−6 | 1.7039 × 10−5 | 8.8243 × 10−4 | 1.6865 × 10−6 | 1.2192 × 10−5 | 2.6798 × 10−3 |
F11 | 4.0126 × 10−9 | 7.5569 × 10−10 | 7.5569 × 10−10 | 1.2227 × 10−13 | 7.0661 × 10−18 | 7.0661 × 10−18 |
F12 | 6.0236 × 10−9 | 1.7742 × 10−8 | 1.3553 × 10−6 | 7.8032 × 10−12 | 1.3203 × 10−14 | 4.9294 × 10−7 |
Optimal Value | Standard Deviation | |||||||
DBO | SDBO | GDBO | SGDBO | DBO | SDBO | GDBO | SGDBO | |
F1 | 24,674.671 | 3925.881 | 16,655.296 | 5790.734 | 11,160.400 | 6475.174 | 15,965.870 | 36,967.735 |
F2 | 757.579 | 488.974 | 451.848 | 421.759 | 243.172 | 312.337 | 26.543 | 41.733 |
F3 | 651.737 | 635.763 | 620.752 | 607.738 | 7.604 | 10.124 | 13.953 | 9.645 |
F4 | 936.073 | 855.499 | 858.776 | 834.088 | 14.211 | 21.499 | 15.639 | 15.556 |
F5 | 2480.762 | 1626.982 | 1791.505 | 1062.147 | 384.475 | 355.811 | 246.355 | 424.095 |
F6 | 107,947.065 | 3387.453 | 1863.746 | 1928.317 | 950,206.054 | 4,887,986.866 | 3577.495 | 7225.608 |
F7 | 2120.264 | 2070.648 | 2055.488 | 2046.148 | 34.009 | 44.206 | 108.116 | 50.411 |
F8 | 2243.152 | 2228.167 | 2223.516 | 2225.162 | 124.971 | 76.270 | 69.913 | 57.871 |
F9 | 2589.256 | 2494.595 | 2480.840 | 2480.809 | 141.577 | 80.328 | 2.123 | 2.259 |
F10 | 2543.674 | 2503.869 | 2501.279 | 2500.566 | 1061.003 | 1138.090 | 815.026 | 1131.126 |
F11 | 6267.105 | 3599.669 | 2933.661 | 2832.427 | 561.510 | 1086.416 | 89.606 | 256.312 |
F12 | 3029.282 | 2951.569 | 2948.774 | 2959.030 | 145.235 | 75.218 | 97.803 | 99.314 |
Mean | Median | |||||||
DBO | SDBO | GDBO | SGDBO | DBO | SDBO | GDBO | SGDBO | |
F1 | 40,452.169 | 13,301.656 | 45,056.143 | 21,868.149 | 40,052.867 | 11,589.225 | 45,523.311 | 15,966.182 |
F2 | 1196.172 | 750.380 | 488.055 | 492.173 | 1177.303 | 647.486 | 478.408 | 475.500 |
F3 | 667.031 | 655.271 | 650.264 | 619.974 | 667.123 | 654.117 | 651.243 | 617.385 |
F4 | 958.414 | 887.944 | 889.074 | 866.949 | 960.150 | 886.585 | 886.574 | 866.805 |
F5 | 3176.424 | 2302.412 | 2481.683 | 1782.836 | 3113.103 | 2289.769 | 2508.380 | 1790.385 |
F6 | 189,072.204 | 10,341.286 | 4828.619 | 7364.613 | 146,829.706 | 19,081.704 | 3508.690 | 3678.437 |
F7 | 2194.045 | 2144.133 | 2205.093 | 2109.393 | 2198.739 | 2139.450 | 2166.844 | 2099.535 |
F8 | 2397.934 | 2298.778 | 2309.479 | 2274.338 | 2387.885 | 2260.326 | 2306.254 | 2248.602 |
F9 | 2739.251 | 2580.093 | 2483.288 | 2481.640 | 2701.778 | 2570.604 | 2482.549 | 2480.976 |
F10 | 2974.821 | 4642.110 | 4065.245 | 3869.570 | 2589.797 | 4879.866 | 4302.358 | 3905.154 |
F11 | 7374.774 | 5427.446 | 3023.808 | 3254.710 | 7333.953 | 5279.420 | 2989.825 | 3151.129 |
F12 | 3265.027 | 3071.346 | 3033.412 | 3126.855 | 3261.336 | 3065.984 | 3002.210 | 3117.147 |
Worst Value | Average Runtime (s) | |||||||
DBO | SDBO | GDBO | SGDBO | DBO | SDBO | GDBO | SGDBO | |
F1 | 71,970.869 | 36,595.135 | 83,566.225 | 27,503.712 | 0.020 | 0.025 | 0.098 | 0.069 |
F2 | 1718.588 | 2055.138 | 576.095 | 598.068 | 0.077 | 0.036 | 0.025 | 0.022 |
F3 | 680.490 | 682.651 | 681.282 | 653.952 | 0.037 | 0.045 | 0.039 | 0.034 |
F4 | 992.650 | 950.167 | 969.159 | 899.935 | 0.023 | 0.026 | 0.026 | 0.024 |
F5 | 4034.685 | 3399.718 | 3201.698 | 3188.911 | 0.024 | 0.027 | 0.027 | 0.024 |
F6 | 1,613,946.819 | 415,981.307 | 20,608.741 | 25,152.072 | 0.020 | 0.020 | 0.022 | 0.021 |
F7 | 2265.255 | 2261.594 | 2509.716 | 2337.577 | 0.037 | 0.052 | 0.044 | 0.038 |
F8 | 2670.251 | 2480.569 | 2478.835 | 2465.056 | 0.040 | 0.057 | 0.047 | 0.040 |
F9 | 3497.811 | 3041.436 | 2490.214 | 2492.729 | 0.038 | 0.057 | 0.047 | 0.039 |
F10 | 6593.482 | 6909.626 | 5110.160 | 6582.753 | 0.033 | 0.045 | 0.039 | 0.036 |
F11 | 8672.914 | 8216.632 | 3375.262 | 3860.248 | 0.048 | 0.097 | 0.054 | 0.044 |
F12 | 3763.936 | 3234.444 | 3589.413 | 3398.466 | 0.167 | 0.231 | 0.188 | 0.133 |
Indicators | SGDBO-RNN | SGDBO-SVM | SGDBO-LSSVM | SGDBO-Transformer | SGDBO-Transformer-LSSVM | |||||
---|---|---|---|---|---|---|---|---|---|---|
Training Set | Test Set | Training Set | Test Set | Training Set | Test Set | Training Set | Test Set | Training Set | Test Set | |
Accuracy | 0.913 | 0.707 | 0.807 | 0.546 | 0.891 | 0.721 | 0.933 | 0.866 | 0.973 | 0.906 |
Precision | 0.916 | 0.766 | 0.851 | 0.608 | 0.892 | 0.702 | 0.928 | 0.872 | 0.984 | 0.910 |
Recall | 0.911 | 0.763 | 0.801 | 0.574 | 0.803 | 0.698 | 0.923 | 0.883 | 0.998 | 0.923 |
F1-Score | 0.912 | 0.713 | 0.806 | 0.532 | 0.845 | 0.694 | 0.931 | 0.864 | 0.992 | 0.912 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, M.; Zhang, L.; Yan, Z.; Wang, X.; Qiao, W.; Feng, L. Research on Gas Concentration Anomaly Detection in Coal Mining Based on SGDBO-Transformer-LSSVM. Processes 2025, 13, 2699. https://doi.org/10.3390/pr13092699
Liu M, Zhang L, Yan Z, Wang X, Qiao W, Feng L. Research on Gas Concentration Anomaly Detection in Coal Mining Based on SGDBO-Transformer-LSSVM. Processes. 2025; 13(9):2699. https://doi.org/10.3390/pr13092699
Chicago/Turabian StyleLiu, Mingyang, Longcheng Zhang, Zhenguo Yan, Xiaodong Wang, Wei Qiao, and Longfei Feng. 2025. "Research on Gas Concentration Anomaly Detection in Coal Mining Based on SGDBO-Transformer-LSSVM" Processes 13, no. 9: 2699. https://doi.org/10.3390/pr13092699
APA StyleLiu, M., Zhang, L., Yan, Z., Wang, X., Qiao, W., & Feng, L. (2025). Research on Gas Concentration Anomaly Detection in Coal Mining Based on SGDBO-Transformer-LSSVM. Processes, 13(9), 2699. https://doi.org/10.3390/pr13092699