Characterization of Cadmium Removal Processes from Seawater by the Living Biomass of Three Microalgae with Different Tolerance to This Metal
Abstract
1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Seawater
2.3. Cadmium Stock Solution
2.4. Microalgal Biomass
2.5. Biosorption Experiments
2.6. Determination of Dry Weight
2.7. Measurement of Growth
2.8. Measurement of Cadmium Concentration
Determination of the Different Fractions of Removed Cadmium Associated with the Microalgae
- total cadmium removed
- cadmium removed intracellularly
- cadmium bioadsorbed to the cell surface
2.9. Kinetics
2.10. Isotherms
2.11. Statistical Analysis
3. Results
3.1. Growth Under Cadmium Exposure
3.2. Study of Cadmium Removal by the Three Microalgal Species
3.2.1. Total Cadmium Removed
3.2.2. Intracellular Cadmium
3.2.3. Adsorbed Cadmium
3.2.4. Comparison Between the Fractions of Cadmium Removed
3.3. Results of Isotherm Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Afsa, S.; Hamden, K.; Lara Martin, P.A.; Mansour, H.B. Occurrence of 40 pharmaceutically active compounds in hospital and urban wastewaters and their contribution to Mahdia coastal seawater contamination. Environ. Sci. Pollut. Res. Int. 2020, 27, 1941–1955. [Google Scholar] [CrossRef]
- Chidya, R.; Derbalah, A.; Abdel-Dayem, S.; Kaonga, C.; Tsuji, H.; Takeda, K.; Sakugawa, H. Contamination, dynamics, and health risk assessment of pesticides in seawater and marine samples from the Seto Inland Sea, Japan. Environ. Sci. Pollut. Res. Int. 2022, 29, 67894–67907. [Google Scholar] [CrossRef]
- Tan, R.H.; Ng, C.C.; Gu, T.; Tek, P.P.Y. Evaluation of potentially toxic elements (PTEs) contamination in seawater, sediment, and sea snails (Nerita articulata and Cerithidea obtusa) from Kukup Fishing Village, Johor, Malaysia. Environ. Monit. Assess. 2025, 197, 565. [Google Scholar] [CrossRef] [PubMed]
- Simou, A.; Mrabet, A.; Abdelfattah, B.; Bougrine, O.; Khaddor, M.; Allali, N. Distribution, ecological, and health risk assessment of trace elements in the surface seawater along the littoral of Tangier Bay (Southwestern Mediterranean Sea). Mar. Pollut. Bull. 2024, 202, 116362. [Google Scholar] [CrossRef] [PubMed]
- Maeyouf, H.; Khattab, R.A.; Temraz, T.; Sami, M.; Ali, I.; Imanova, G. Heavy metal contamination in seawater, sediments, algae, and fish from Susah and Tobruk, Mediterranean Sea. Water Environ. Res. 2025, 97, e70091. [Google Scholar] [CrossRef] [PubMed]
- Azlan, N.B.; Mohamad Zaid, S.S.; Md Zin, S.R. Toxicity effects of cadmium exposure on early development: A review of current evidence. Crit. Rev. Toxicol. 2025, 55, 417–436. [Google Scholar] [CrossRef] [PubMed]
- Shao, Y.; Zheng, L.; Jiang, Y. Cadmium toxicity and autophagy: A review. Biometals 2024, 37, 609–629. [Google Scholar] [CrossRef]
- Järup, L.; Åkesson, A. Current status of cadmium as an environmental health problem. Toxicol. Appl. Pharmacol. 2009, 238, 201–208. [Google Scholar] [CrossRef]
- Zhao, L.; Liao, M.; Li, L.; Chen, L.; Zhang, T.; Li, R. Cadmium activates the innate immune system through the AIM2 inflammasome. Chem. Biol. Interact. 2024, 399, 111122. [Google Scholar] [CrossRef]
- Aminzai, M.T.; Yabalak, E.; Kalderis, D.; Gizir, A.M. Environmental remediation of emerging contaminants using subcritical water: A review. J. Environ. Manag. 2024, 366, 121800. [Google Scholar] [CrossRef]
- Poornima, S.; Manikandan, S.; Karthik, V.; Balachandar, R.; Subbaiya, R.; Saravanan, M.; Lan Chi, N.T.; Pugazhendhi, A. Emerging nanotechnology based advanced techniques for wastewater treatment. Chemosphere 2022, 303, 135050. [Google Scholar] [CrossRef]
- Bajpai, M.; Katoch, S.S.; Kadier, A.; Singh, A. A review on electrocoagulation process for the removal of emerging contaminants: Theory, fundamentals, and applications. Environ. Sci. Pollut. Res. Int. 2022, 29, 15252–15281. [Google Scholar] [CrossRef]
- Alulema-Pullupaxi, P.; Espinoza-Montero, P.J.; Sigcha-Pallo, C.; Vargas, R.; Fernandez, L.; Peralta-Hernandez, J.M.; Paz, J.L. Fundamentals and applications of photoelectrocatalysis as an efficient process to remove pollutants from water: A review. Chemosphere 2021, 281, 130821. [Google Scholar] [CrossRef]
- Torres, E. Biosorption: A Review of the Latest Advances. Processes 2020, 8, 1584. [Google Scholar] [CrossRef]
- Li, N.; Zhu, F.; Wang, Z.; Wu, J.; Gao, Y.; Li, K.; Zhao, C.; Wang, X. Harnessing corn straw biochar: A breakthrough in eco-friendly Cu(II) wastewater treatment. Waste Manag. 2025, 197, 25–34. [Google Scholar] [CrossRef]
- Zhao, M.; Zou, G.; Li, Y.; Pan, B.; Wang, X.; Zhang, J.; Xu, L.; Li, C.; Chen, Y. Biodegradable microplastics coupled with biochar enhance Cd chelation and reduce Cd accumulation in Chinese cabbage. Biochar 2025, 7, 31. [Google Scholar] [CrossRef]
- Abdulwahid, K.D. Phytoremediation of Cadmium Pollutants in Wastewater by Using Ceratophyllum demersum L. as an Aquatic Macrophytes. Water Conserv. Manag. 2023, 7, 83–88. [Google Scholar] [CrossRef]
- Fouda-Mbanga, B.G.; Velempini, T.; Pillay, K.; Tywabi-Ngeva, Z. Heavy metals removals from wastewater and reuse of the metal loaded adsorbents in various applications: A review. Hybrid. Adv. 2024, 6, 100193. [Google Scholar] [CrossRef]
- Sahu, U.K.; Ji, W.; Liang, Y.; Ma, H.; Pu, S. Mechanism enhanced active biochar support magnetic nano zero-valent iron for efficient removal of Cr(VI) from simulated polluted water. J. Environ. Chem. Eng. 2022, 10, 107077. [Google Scholar] [CrossRef]
- González, V.; Abalde, J.; Torres, E. Discoloration and biosorption of Brilliant green dye in seawater using living biomass of the microalga Phaeodactylum tricornutum. J. Appl. Phycol. 2024, 36, 1823–1835. [Google Scholar] [CrossRef]
- Fernández, D.; Abalde, J.; Torres, E. The Biosorption Capacity of the Marine Microalga Phaeodactylum tricornutum for the Removal of Toluidine Blue from Seawater. Toxics 2024, 12, 277–293. [Google Scholar] [CrossRef] [PubMed]
- Ubando, A.T.; Africa, A.D.M.; Maniquiz-Redillas, M.C.; Culaba, A.B.; Chen, W.H.; Chang, J.S. Microalgal biosorption of heavy metals: A comprehensive bibliometric review. J. Hazard. Mater. 2021, 402, 123431. [Google Scholar] [CrossRef]
- Santaeufemia, S.; Abalde, J.; Torres, E. Efficient removal of dyes from seawater using as biosorbent the dead and living biomass of the microalga Phaeodactylum tricornutum: Equilibrium and kinetics studies. J. Appl. Phycol. 2021, 33, 3071–3090. [Google Scholar] [CrossRef]
- Chandrashekharaiah, P.S.; Sanyal, D.; Dasgupta, S.; Banik, A. Cadmium biosorption and biomass production by two freshwater microalgae Scenedesmus acutus and Chlorella pyrenoidosa: An integrated approach. Chemosphere 2021, 269, 128755. [Google Scholar] [CrossRef]
- Chen, C.Y.; Chang, H.W.; Kao, P.C.; Pan, J.L.; Chang, J.S. Biosorption of cadmium by CO2-fixing microalga Scenedesmus obliquus CNW-N. Bioresour. Technol. 2012, 105, 74–80. [Google Scholar] [CrossRef] [PubMed]
- de Morais, E.G.; da Silveira, J.T.; Schüler, L.M.; de Freitas, B.C.B.; Costa, J.A.V.; de Morais, M.G.; Ferrer, I.; Barreira, L. Biomass valorization via pyrolysis in microalgae-based wastewater treatment: Challenges and opportunities for a circular bioeconomy. J. Appl. Phycol. 2023, 35, 2689–2708. [Google Scholar] [CrossRef]
- Okeke, E.S.; Ejeromedoghene, O.; Okoye, C.O.; Ezeorba, T.P.C.; Nyaruaba, R.; Ikechukwu, C.K.; Oladipo, A.; Orege, J.I. Microalgae biorefinery: An integrated route for the sustainable production of high-value-added products. Energy Convers. Manag. X 2022, 16, 100323. [Google Scholar] [CrossRef]
- Tripathi, S.; Kairamkonda, M.; Gupta, P.; Poluri, K.M. Dissecting the molecular mechanisms of producing biofuel and value-added products by cadmium tolerant microalgae as sustainable biorefinery approach. Chem. Eng. J. 2023, 454, 140068. [Google Scholar] [CrossRef]
- Lagergren, S. About the theory of so-Called adsorption of soluble substance. Handlingar 1898, 24, 1–39. [Google Scholar]
- Langmuir, I. The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 1918, 40, 1361–1403. [Google Scholar] [CrossRef]
- Blanchard, G.; Maunaye, M.; Martin, G. Removal of heavy metals from waters by means of natural zeolites. Water Res. 1984, 18, 1501–1507. [Google Scholar] [CrossRef]
- Freundlich, H.M.F. Over the adsorption in solution. J. Phys. Chem. 1906, 57, 385–470. [Google Scholar]
- Temkin, M.J.; Pyzhev, V. Recent modifications to Langmuir isotherms. Acta Physiochimica URSS 1940, 12, 217–225. [Google Scholar]
- Chu, K.H. Revisiting the Temkin Isotherm: Dimensional Inconsistency and Approximate Forms. Ind. Eng. Chem. Res. 2021, 60, 13140–13147. [Google Scholar] [CrossRef]
- Dubinin, M.M.; Radushkevich, L.V. Equation of the Characteristic Curve of Activated Charcoal. Proc. Acad. Sci. USSR Phys. Chem. Sect. 1947, 55, 331–333. [Google Scholar]
- Seoane, R.; Santaeufemia, S.; Abalde, J.; Torres, E. Efficient Removal of Methylene Blue Using Living Biomass of the Microalga Chlamydomonas moewusii: Kinetics and Equilibrium Studies. Int. J. Environ. Res. Public Health 2022, 19, 16. [Google Scholar] [CrossRef]
- Zada, S.; Lu, H.; Khan, S.; Iqbal, A.; Ahmad, A.; Ahmad, A.; Ali, H.; Fu, P.; Dong, H.; Zhang, X. Biosorption of iron ions through microalgae from wastewater and soil: Optimization and comparative study. Chemosphere 2021, 265, 129172. [Google Scholar] [CrossRef]
- Xiong, J.Q.; Kurade, M.B.; Jeon, B.H. Can Microalgae Remove Pharmaceutical Contaminants from Water? Trends Biotechnol. 2018, 36, 30–44. [Google Scholar] [CrossRef]
- Dimopoulou, M.; Kolonas, A.; Stagos, D.; Gortzi, O. A Review of the Sustainability, Chemical Composition, Bioactive Compounds, Antioxidant and Antidiabetic Activity, Neuroprotective Properties, and Health Benefits of Microalgae. Biomass 2025, 5, 11. [Google Scholar] [CrossRef]
- Pereira, H.; Custódio, L.; Rodrigues, M.J.; De Sousa, C.B.; Oliveira, M.; Barreira, L.; Neng, N.D.R.; Nogueira, J.M.F.; Alrokayan, S.A.; Mouffouk, F.; et al. Biological Activities and Chemical Composition of Methanolic Extracts of Selected Autochthonous Microalgae Strains from the Red Sea. Mar. Drugs 2015, 13, 3531–3549. [Google Scholar] [CrossRef]
- Gao, J.F.; Zhang, Q.; Wang, J.H.; Wu, X.L.; Wang, S.Y.; Peng, Y.Z. Contributions of functional groups and extracellular polymeric substances on the biosorption of dyes by aerobic granules. Bioresour. Technol. 2011, 102, 805–813. [Google Scholar] [CrossRef]
- Cai, J.; Cui, L.; Wang, Y.; Liu, C. Effect of functional groups on sludge for biosorption of reactive dyes. J Environ. Sci 2009, 21, 534–538. [Google Scholar] [CrossRef]
- Azma, M.; Mohamad, R.; Rahim, R.A.; Ariff, A.B. Improved Protocol for the Preparation of Axenic Culture and Adaptation to Heterotrophic Cultivation. Open Biotechnol. J. 2010, 4, 36–46. [Google Scholar] [CrossRef]
- Kermanshahi-pour, A.; Sommer, T.J.; Anastas, P.T.; Zimmerman, J.B. Enzymatic and acid hydrolysis of Tetraselmis suecica for polysaccharide characterization. Bioresour. Technol. 2014, 173, 415–421. [Google Scholar] [CrossRef]
- Le Costaouëc, T.; Unamunzaga, C.; Mantecon, L.; Helbert, W. New structural insights into the cell-wall polysaccharide of the diatom Phaeodactylum tricornutum. Algal Res. 2017, 26, 172–179. [Google Scholar] [CrossRef]
- Reimann, B.E.F.; Volcani, B.E. Studies on the biochemistry and fine structure of silica shell formation in diatoms: III. The structure of the cell wall of Phaeodactylum tricornutum Bohlin. J. Ultrastruct. Res. 1967, 21, 182–193. [Google Scholar] [CrossRef] [PubMed]
- Dodge, J.D. The Fine Structure of Algal Cells; Academic Press: Cambridge, MA, USA, 2012. [Google Scholar]
- Polle, J.E.W.; Roth, R.; Ben-Amotz, A.; Goodenough, U. Ultrastructure of the green alga Dunaliella salina strain CCAP19/18 (Chlorophyta) as investigated by quick-freeze deep-etch electron microscopy. Algal Res. 2020, 49, 101953. [Google Scholar] [CrossRef]
- Balzano, S.; Sardo, A.; Blasio, M.; Chahine, T.B.; Dell’Anno, F.; Sansone, C.; Brunet, C. Microalgal Metallothioneins and Phytochelatins and Their Potential Use in Bioremediation. Front. Microbiol. 2020, 11, 517. [Google Scholar] [CrossRef]
- Pérez-Rama, M.; Torres, E.; Abalde, J. Composition and production of thiol constituents induced by cadmium in the marine microalga Tetraselmis suecica. Environ. Toxicol. Chem. 2006, 25, 128–136. [Google Scholar] [CrossRef]
- Pérez-Rama, M.; Abalde, J.; Herrero, C.; Torres, E. Cadmium removal by living cells of the marine microalga Tetraselmis suecica. Bioresour. Technol. 2002, 84, 265–270. [Google Scholar] [CrossRef]
- Torres, E.; Cid, A.; Fidalgo, P.; Herrero, C.; Abalde, J. Long-chain class III metallothioneins as a mechanism of cadmium tolerance in the marine diatom Phaeodactylum tricornutum Bohlin. Aquat. Toxicol. 1997, 39, 231–246. [Google Scholar] [CrossRef]
- Torres, E.; Mera, R.; Herrero, C.; Abalde, J. Isotherm studies for the determination of Cd (II) ions removal capacity in living biomass of a microalga with high tolerance to cadmium toxicity. Environ. Sci. Pollut. Res. Int. 2014, 21, 12616–12628. [Google Scholar] [CrossRef] [PubMed]
- Folgar, S.; Torres, E.; Perez-Rama, M.; Cid, A.; Herrero, C.; Abalde, J. Dunaliella salina as marine microalga highly tolerant to but a poor remover of cadmium. J. Hazard. Mater. 2009, 165, 486–493. [Google Scholar] [CrossRef]
- Li, W.C.; Law, F.Y.; Chan, Y.H. Biosorption studies on copper (II) and cadmium (II) using pretreated rice straw and rice husk. Environ. Sci. Pollut. Res. Int. 2017, 24, 8903–8915. [Google Scholar] [CrossRef]
- Annath, H.; Jaiyeola, O.; Mangwandi, C. Highly Efficient Removal of Cadmium from Wastewater Using Eco-Friendly and Cost-Effective Amorphous Silicoaluminophosphates as Adsorbent Particles. Separations 2025, 12, 128. [Google Scholar] [CrossRef]
- Kaleem, M.; Minhas, L.A.; Hashmi, M.Z.; Ali, M.A.; Mahmoud, R.M.; Saqib, S.; Nazish, M.; Zaman, W.; Samad Mumtaz, A. Biosorption of Cadmium and Lead by Dry Biomass of Nostoc sp. MK-11: Kinetic and Isotherm Study. Molecules 2023, 28, 2292. [Google Scholar] [CrossRef]
- Long, J.; Yu, M.; Xu, H.; Huang, S.; Wang, Z.; Zhang, X.X. Characterization of cadmium biosorption by inactive biomass of two cadmium-tolerant endophytic bacteria Microbacterium sp. D2-2 and Bacillus sp. C9-3. Ecotoxicology 2021, 30, 1419–1428. [Google Scholar] [CrossRef] [PubMed]
- Yuan, W.; Cheng, J.; Huang, H.; Xiong, S.; Gao, J.; Zhang, J.; Feng, S. Optimization of cadmium biosorption by Shewanella putrefaciens using a Box-Behnken design. Ecotoxicol. Environ. Saf. 2019, 175, 138–147. [Google Scholar] [CrossRef]
- Ni, L.; Su, L.; Li, S.; Wang, P.; Li, D.; Ye, X.; Li, Y.; Li, Y.; Li, Y.; Wang, C. The characterization of dissolved organic matter extracted from different sources and their influence on cadmium uptake by Microcystis aeruginosa. Environ. Toxicol. Chem. 2017, 36, 1856–1863. [Google Scholar] [CrossRef]
- Ma, X.; Yan, X.; Yao, J.; Zheng, S.; Wei, Q. Feasibility and comparative analysis of cadmium biosorption by living Scenedesmus obliquus FACHB-12 biofilms. Chemosphere 2021, 275, 130125. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Aty, A.M.; Ammar, N.S.; Abdel Ghafar, H.H.; Ali, R.K. Biosorption of cadmium and lead from aqueous solution by fresh water alga Anabaena sphaerica biomass. J. Adv. Res. 2013, 4, 367–374. [Google Scholar] [CrossRef]
- Jayakumar, V.; Govindaradjane, S.; Rajamohan, N.; Rajasimman, M. Biosorption potential of brown algae, Sargassum polycystum, for the removal of toxic metals, cadmium and zinc. Environ. Sci. Pollut. Res. Int. 2021, 29, 41909–41922. [Google Scholar] [CrossRef] [PubMed]
- Gupta, V.K.; Rastogi, A. Equilibrium and kinetic modelling of cadmium(II) biosorption by nonliving algal biomass Oedogonium sp. from aqueous phase. J. Hazard. Mater. 2008, 153, 759–766. [Google Scholar] [CrossRef]
- Bengourna, N.; Belguidoum, K.; Khalla, D.; Nacef, M.; Kouadri, I.; Benhamida, A.; Amira-Guebailia, H.; Brouk, A.E.; Affoune, A.M.; Satha, H. Exploring the efficacy of Cystoseira sedoide alga for cadmium and copper biosorption: An integrated experimental and computational study. RSC Adv. 2024, 14, 38721–38738. [Google Scholar] [CrossRef] [PubMed]
- Suranek, M.; Melichova, Z.; Thomas, M. Removal of cadmium and cobalt from water by Slovak bentonites: Efficiency, isotherms, and kinetic study. Environ. Sci. Pollut. Res. Int. 2024, 31, 29199–29217. [Google Scholar] [CrossRef]
- Park, J.H.; Chon, H.T. Characterization of cadmium biosorption by Exiguobacterium sp. isolated from farmland soil near Cu-Pb-Zn mine. Environ. Sci. Pollut. Res. Int. 2016, 23, 11814–11822. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Yue, F.; Shao, C.; Li, Q.; Shen, Y.; Xu, K.; Shi, Z.; Liu, N.; Li, R.; Zhang, Z. Bio-sorption capacity of cadmium and zinc by Pseudomonas monteilii with heavy-metal resistance isolated from the compost of pig manure. Bioresour. Technol. 2024, 399, 130589. [Google Scholar] [CrossRef]
Kinetics | Isotherms | ||
|
| ||
(1) | (3) | ||
|
| ||
(2) | (4) | ||
(5) | |||
| |||
(6) (7) | |||
q (mg g−1) is the mass of cadmium biosorbed per unit of biomass over time t (h), qe (mg g−1) is the mass of cadmium biosorbed per unit of biomass at equilibrium, k1 (h−1) is the constant of the pseudo-first order kinetic model and k2 (g mg−1 h−1) is the constant of the pseudo-second order kinetic model. | qe (mg g−1) is the mass of cadmium biosorbed at equilibrium per unit of biomass, qmax (mg g−1) is the maximum sorption capacity, qT (mg g−1) is the mass of cadmium biosorbed per unit of biomass over time, KL (L mg−1) is the affinity constant of the material, Ce (mg L−1) is the concentration of cadmium at equilibrium, KF (L mg−1) is the Freundlich constant, n the intensity of the sorption, AT (L mg−1) is the binding energy constant, R is the gas constant (0.008314 KJ mol−1 K−1), T is temperature at 291 K, BD is the free energy of sorption per mole of sorbate (mol2 J−2), ED (KJ mol−1) is the apparent energy of biosorption and sol is the solubility of cadmium (mg L−1). |
Initial Cadmium Concentration (mg L−1) | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 0.5 | 1 | 2.5 | 5 | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 100 | |
P. tricornutum | 0.00 ± 0.00 | 14.06 ± 1.08 | 12.67 ± 1.24 | 8.45 ± 0.68 | 5.98 ± 0.57 | 4.56 ± 0.30 | 2.92 ± 0.21 | 2.22 ± 0.12 | 1.50 ± 0.10 | 1.08 ± 0.01 | 0.84 ± 0.02 | 0.67 ± 0.02 | 0.54 ± 0.04 | 0.41 ± 0.00 |
T. suecica | 0.00 ± 0.00 | 19.06 ± 1.73 | 17.41 ± 1.03 | 10.53 ± 0.64 | 9.02 ± 0.02 | 6.30 ± 0.54 | 4.17 ± 0.08 | 3.53 ± 0.06 | 2.88 ± 0.15 | 2.40 ± 0.16 | 2.08 ± 0.06 | 1.81 ± 0.01 | 1.58 ± 0.00 | 1.27 ± 0.10 |
D. salina | 0.00 ± 0.00 | 3.42 ± 0.45 | 2.99 ± 0.04 | 2.20 ± 0.04 | 2.04 ± 0.23 | 1.63 ± 0.09 | 1.13 ± 0.23 | 0.88 ± 0.11 | 0.62 ± 0.02 | 0.42 ± 0.09 | 0.29 ± 0.00 | 0.25 ± 0.00 | 0.23 ± 0.00 | 0.17 ± 0.02 |
Initial Cadmium Concentration (mg L−1) | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 0.5 | 1 | 2.5 | 5 | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 100 | |
P. tricornutum | 0.00 ± 0.00 | 7.62 ± 0.67 | 6.60 ± 0.10 | 4.38 ± 0.34 | 2.60 ± 0.19 | 1.58 ± 0.08 | 0.73 ± 0.07 | 0.41 ± 0.03 | 0.27 ± 0.00 | 0.18 ± 0.01 | 0.14 ± 0.00 | 0.11 ± 0.00 | 0.09 ± 0.01 | 0.07 ± 0.00 |
T. suecica | 0.00 ± 0.00 | 9.95 ± 0.38 | 8.88 ± 0.12 | 5.29 ± 0.34 | 4.27 ± 0.27 | 2.14 ± 0.05 | 1.18 ± 0.01 | 0.97 ± 0.00 | 0.79 ± 0.04 | 0.63 ± 0.04 | 0.53 ± 0.03 | 0.46 ± 0.01 | 0.40 ± 0.03 | 0.31 ± 0.03 |
D. salina | 0.00 ± 0.00 | 0.37 ± 0.00 | 0.36 ± 0.02 | 0.31 ± 0.02 | 0.31 ± 0.02 | 0.29 ± 0.02 | 0.16 ± 0.00 | 0.11 ± 0.00 | 0.08 ± 0.00 | 0.06 ± 0.00 | 0.04 ± 0.00 | 0.04 ± 0.00 | 0.03 ± 0.00 | 0.03 ± 0.00 |
Initial Cadmium Concentration (mg L−1) | ||||||||||||||
0 | 0.5 | 1 | 2.5 | 5 | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 100 | |
P. tricornutum | 0.00 ± 0.00 | 6.44 ± 0.21 | 6.07 ± 0.13 | 4.07 ± 0.00 | 3.38 ± 0.34 | 2.98 ± 0.15 | 2.19 ± 0.11 | 1.81 ± 0.04 | 1.23 ± 0.04 | 0.89 ± 0.07 | 0.70 ± 0.05 | 0.56 ± 0.04 | 0.45 ± 0.04 | 0.34 ± 0.01 |
T. suecica | 0.00 ± 0.00 | 9.10 ± 0.17 | 8.53 ± 0.40 | 5.24 ± 0.06 | 4.75 ± 0.47 | 4.16 ± 0.07 | 2.99 ± 0.04 | 2.57 ± 0.11 | 2.09 ± 0.21 | 1.77 ± 0.15 | 1.55 ± 0.11 | 1.35 ± 0.06 | 1.18 ± 0.10 | 0.96 ± 0.05 |
D. salina | 0.00 ± 0.00 | 3.41 ± 0.13 | 2.97 ± 0.02 | 2.18 ± 0.17 | 2.03 ± 0.28 | 1.62 ± 0.25 | 1.13 ± 0.24 | 0.88 ± 0.06 | 0.61 ± 0.06 | 0.41 ± 0.05 | 0.29 ± 0.03 | 0.25 ± 0.04 | 0.23 ± 0.03 | 0.17 ± 0.02 |
Isotherm | Parameters | P. tricornutum | T. suecica | D. salina |
---|---|---|---|---|
Langmuir | qmax (mg g−1) | 27.48 ± 1.05 | 78.11 ± 2.08 | 10.72 ± 0.28 |
KL (L mg−1) | 0.05 ± 0.006 | 0.06 ± 0.006 | 0.06 ± 0.01 | |
radj2 | 0.990 | 0.994 | 0.994 | |
Freundlich | KF (L mg−1) | 3.26 ± 0.65 | 10.58 ± 2.20 | 1.51 ± 0.29 |
1/n | 0.44 ± 0.05 | 0.42 ± 0.05 | 0.41 ± 0.05 | |
radj2 | 0.951 | 0.942 | 0.947 | |
Temkin | qT (mg g−1) | 4.51 ± 0.37 | 13.57 ± 0.92 | 1.88 ± 0.12 |
AT (L mg−1) | 1.28 ± 0.36 | 1.31 ± 0.30 | 1.29 ± 0.29 | |
radj2 | 0.926 | 0.948 | 0.951 | |
Dubinin− Radushkevich | qmax (mg g−1) | 32.67 ± 1.69 | 95.06 ± 4.89 | 12.95 ± 0.90 |
BD (mol2 J−2) | 0.01 ± 8.8 × 10−4 | 0.01 ± 8.5 × 10−4 | 0.01 ± 7.6 × 10−4 | |
ED (KJ mol−1) | 6.98 ± 0.21 | 7.24 ± 0.23 | 7.30 ± 0.21 | |
radj2 | 0.976 | 0.975 | 0.977 |
Sorbent | Solution | qmax (mg Cadmium g−1) | Initial Cadmium Concentrations (mg L−1) | References |
---|---|---|---|---|
Inactive biomass of Microbacterium sp. D2-2 | Deionized water | 222.22 | 0–400 | [58] |
Inactive biomass of Bacillus sp. C9-3 | Deionized water | 163.93 | 0–400 | [58] |
Living Scenedesmus obliquus FACHB-12 biofilms | Deionized water | 133.14 | 0.5–100 | [61] |
Anabaena sphaerica | Deionized water | 111.1 | 0–200 | [62] |
Dead biomass of Sargassum polycystum | Deionized water | 105.26 | 0–150 | [63] |
Oedogonium sp. | Deionized water | 88.20 | 20–200 | [64] |
Living biomass of T. suecica | Seawater | 78.11 | 0–100 | This work |
Dry Biomass of Nostoc sp. MK-11 | Deionized water | 75.76 | 20–120 | [57] |
Living biomass of P. tricornutum | Seawater | 27.48 | 0–100 | This work |
Cystoseira sedoide | Deionized water | 23.78 | 25–150 | [65] |
Slovak bentonites (P135) | Artificial seawater | 23.52 | 5–60 | [66] |
Exiguobacterium sp. | Deionized water | 15.60 | 10–200 | [67] |
Living biomass of D. salina | Seawater | 10.72 | 0–100 | This work |
Living biomass of Pseudomonas monteilii | Deionized water | 9.96 | 0.5–150 | [68] |
Treated rice straw | Deionized water | 9.09 | 0.5–8 | [55] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abalde, J.; Torres, E. Characterization of Cadmium Removal Processes from Seawater by the Living Biomass of Three Microalgae with Different Tolerance to This Metal. Processes 2025, 13, 2804. https://doi.org/10.3390/pr13092804
Abalde J, Torres E. Characterization of Cadmium Removal Processes from Seawater by the Living Biomass of Three Microalgae with Different Tolerance to This Metal. Processes. 2025; 13(9):2804. https://doi.org/10.3390/pr13092804
Chicago/Turabian StyleAbalde, Julio, and Enrique Torres. 2025. "Characterization of Cadmium Removal Processes from Seawater by the Living Biomass of Three Microalgae with Different Tolerance to This Metal" Processes 13, no. 9: 2804. https://doi.org/10.3390/pr13092804
APA StyleAbalde, J., & Torres, E. (2025). Characterization of Cadmium Removal Processes from Seawater by the Living Biomass of Three Microalgae with Different Tolerance to This Metal. Processes, 13(9), 2804. https://doi.org/10.3390/pr13092804