Enhancing PV Module Efficiency Through Fins-and-Tubes Cooling: An Outdoor Malaysian Case Study
Abstract
1. Introduction
2. Literature Review
2.1. Passive Air Cooling: Fin (Heat Sink)
2.2. Active Water Cooling
2.3. Combined PV Cooling
3. Materials and Methods
3.1. Description of PV with a Cooling System
3.2. Materials, Equipment and Experimental Setup
3.3. Temperature and Electrical Performance
3.4. Uncertainty Analysis and Accuracy
4. Results and Discussions
4.1. PV Surface Temperature Results
4.2. PV Power Results
4.3. The Economic Aspect Using Simlpe Payback Period (SPP)
4.4. Limitations and Future Work
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
PV | Photovoltaic |
PV/T | Photovoltaic Thermal |
RM | Ringgit Malaysia |
USD | United States Dollar |
SPP | Simple Payback Period |
CFD | Computer Fluid Dynamic |
MLFHS | Trapezoidal channel truncated multi-level fin heat sink |
A | Area |
ṁ | Mass flow rate (kg/s) |
G | Solar irradiance (W/m2) |
T | Temperature (°C) |
I | Current (A) |
V | Voltage (V) |
W | Uncertainty |
∆T | Temperature Reduction (°C) |
P | Power (Watt) |
η | Efficiency (%) |
C | Capital |
Z | Production expense for the cooler |
ref | Reference |
el | Electrical |
th | Thermal |
References
- Dixit, S. Solar technologies and their implementations: A review. Mater. Today Proc. 2020, 28, 2137–2148. [Google Scholar] [CrossRef]
- Mahdavi, A.; Farhadi, M.; Gorji-Bandpy, M.; Mahmoudi, A. A review of passive cooling of photovoltaic devices. Clean. Eng. Technol. 2022, 11, 100579. [Google Scholar] [CrossRef]
- Kandeal, A.; Thakur, A.K.; Elkadeem, M.; Elmorshedy, M.F.; Ullah, Z.; Sathyamurthy, R.; Sharshir, S.W. Photovoltaics performance improvement using different cooling methodologies: A state-of-art review. Int. J. Clean. Prod. 2020, 273, 122772. [Google Scholar] [CrossRef]
- Ahmad, E.; Fazlizan, A.; Jarimi, H.; Sopian, K.; Ibrahim, A. Enhanced heat dissipation of truncated multi-level fi heat sink (MLFHS) in case of natural convection for photovoltaic cooling. Case Stud. Therm. Eng. 2021, 28, 101578. [Google Scholar] [CrossRef]
- Shmroukh, A.N. Thermal regulation of photovoltaic panel installed in Upper Egyptian conditions in Qena. Therm. Sci. Eng. Prog. 2019, 14, 100438. [Google Scholar] [CrossRef]
- Kianifard, S.; Zamen, M.; Nejad, A.A. Modeling, designing and fabrication of a novel PV/T cooling system using half pipe. J. Clean. Prod. 2020, 253, 119972. [Google Scholar] [CrossRef]
- Elbreki, A.; Muftah, A.; Sopian, K.; Jarimi, H.; Fazlizan, A.; Ibrahim, A. Experimental and economic analysis of passive cooling PV module using fins and planar reflector. Case Stud. Therm. Eng. 2021, 23, 100801. [Google Scholar] [CrossRef]
- Bayrak, F.; Oztop, H.F.; Selimefendigil, F. Effects of different fin parameters on temperature and efficiency for cooling of photovoltaic panels under natural convection. Sol. Energy 2019, 188, 484–494. [Google Scholar] [CrossRef]
- Hernandez-Perez, J.G.; Carrillo, J.G.; Bassam, A.; Flota-Banuelos, M.; Patino-Lopez, L.D. A new passive PV heatsink design to reduce efficiency losses: A computational and experimental evaluation. Renew. Energy 2020, 147, 1209–1220. [Google Scholar] [CrossRef]
- EAgyekum, B.; Seepana, P.K.; Naseer, T.A.; Vladimir, I.V.; Sergey, E.S. Effect of dual surface cooling of solar photovoltaic panel on the efficiency of the module: Experimental investigation. Heliyon 2021, 7, e07920. [Google Scholar] [CrossRef] [PubMed]
- Gomaa, M.R.; Hammad, W.; Al-Dhaifallah, M.; Rezk, H. Performance enhancement of grid-tied PV system through proposed design cooling techniques: An experimental study and comparative analysis. Sol. Energy 2020, 211, 1110–1127. [Google Scholar] [CrossRef]
- Akrouch, M.A.; Chahine, K.; Faraj, J.; Hachem, F.; Castelain, C.; Khaled, M. Advancements in cooling techniques for enhanced efficiency of solar photovoltaic panels: A detailed comprehensive review and innovative classification. Energy Built Environ. 2023, 6, 248–276. [Google Scholar] [CrossRef]
- Demir, M.; Omeroglu, G.; Özakın, A.N. Experimental determination of the effect of fins of different cylindrical geometries on electrical and thermal efficiency in an air-cooled PVT system. Heat Transf. Res. 2023, 54, 1–16. [Google Scholar] [CrossRef]
- Al-Waeli, A.H.; Kazem, H.A.; Chaichan, M.T.; Sopian, K. Photovoltaic/thermal (PV/T) Systems: Principles, Design, and Applications; Springer Nature: Berlin, Germany, 2019. [Google Scholar]
- Selimefendigil, F.; Öztop, H.F. Comparative study on different cooling techniques for photovoltaic thermal management: Hollow fins, wavy channel and insertion of porous object with hybrid nanofluids. Appl. Therm. Eng. 2023, 228, 120458. [Google Scholar] [CrossRef]
- Elbreki, A.; Sopian, K.; Fazlizan, A.; Ibrahim, A. An innovative technique of passive cooling PV module using lapping fin and planner reflector. Case Stud. Therm. Eng. 2020, 19, 100607. [Google Scholar] [CrossRef]
- Johnston, E.; Szabo, P.S.; Bennett, N.S. Cooling silicon photovoltaic cells using finned heat sinks and the effect of inclination angle. Therm. Sci. Eng. Prog. 2021, 23, 100902. [Google Scholar] [CrossRef]
- Wongwuttanasatian, T.; Sarikarin, T.; Suksri, A. Performance enhancement of a photovoltaic module by passive cooling using phase change material in a finned container heat sink. Sol. Energy 2020, 195, 47–53. [Google Scholar] [CrossRef]
- Shoeibi, S.; Kargarsharifabad, H.; Mirjalily, S.A.A.; Zargarazad, M. Performance analysis of a finned photovoltaic/thermal solar air dryer using a compound parabolic concentrator. Appl. Energy 2021, 304, 117778. [Google Scholar] [CrossRef]
- Song, Z.; Ji, J.; Cai, J.; Zhao, B.; Li, Z. Investigation of a direct-expansion solar-assisted heat pump with a novel hybrid compound parabolic concentrator/ photovoltaic/fin evaporator. Appl. Energy 2021, 299, 117279. [Google Scholar] [CrossRef]
- Refaey, H.; Alharthi, M.A.; Bendoukha, S.; Khan, S.G.; Emam, M.; Abdelrahman, M. An experimental investigation on passive cooling of a triple-junction solar cell at high concentrations using various straight-finned heat sink configurations. Case Stud. Therm. Eng. 2023, 51, 103626. [Google Scholar] [CrossRef]
- YIrwan, M.; Leow, W.Z.; Irwanto, M.; Fareq, M.; Amelia, A.R.; Gomesh, N.; Safwati, I. Indoor test performance of PV panel through water cooling method. Energy Procedia 2015, 79, 604–611. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, Y.; Wang, D.; Liu, J.; Luo, X.; Wang, Y.; Liu, H.; Liu, J. Experimental and numerical analyses of parameter optimization of photovoltaic cooling system. Energy 2015, 215, 119159. [Google Scholar] [CrossRef]
- Bevilacqua, P.; Bruno, R.; Arcuri, N. Comparing the performances of different cooling strategies to increase photovoltaic modules electric output in different meteorological conditions. Energy 2020, 195, 116950. [Google Scholar] [CrossRef]
- Abdullah, A.L.; Misha, S.; Tamaldin, N.; Rosli, M.; Sachit, F. Theoretical study and indoor experimental validation of performance of the new photovoltaic thermal solar collector (PVT) based water system. Case Stud. Therm. Eng. 2020, 18, 100595. [Google Scholar] [CrossRef]
- Shallal, B.A.; Gedik, E.; Wahhab, H.A.A.; Mahdi, L.A.A.-A.; Chaichan, M.T. Enhancement of PV/T solar collector efficiency using alumina nanoparticles additives. Int. J. Comput. Methods Eng. Sci. Mech. 2023, 11, 181–186. Available online: http://iieta.org/journals/ijcmem (accessed on 22 April 2025). [CrossRef]
- Maseer, M.M.; Ismail, F.B.; Kazem, H.A.; Hachim, D.M.; Al-Gburi, K.A.H.; Chaichan, M.T. Performance enhancement of photovoltaic/thermal collector semicircle absorber tubes using nanofluid and NPCM, Renew. Renew. Energy 2024, 233, 121152. [Google Scholar] [CrossRef]
- Chaichan, M.T.; Kazem, H.A.; Mahdi, M.T.; Al-Waeli, A.H.; Khadom, A.A.; Sopian, K. Optimal nanofluid selection for photovoltaic/thermal (PV/T) systems in adverse climatic conditions. Case Stud. Therm. Eng. 2025, 65, 105610. [Google Scholar] [CrossRef]
- Hasan, H.A.; Sopian, K.; Togun, H.; Mahdi, J.M.; Mohammed, H.I.; Yaseen, Z.M. Experimental evaluation of thermal efficiency, electrical efficiency, and power production of low-concentrating photovoltaic-thermal system with micro-jet channel. Appl. Therm. Eng. 2024, 236, 121526. [Google Scholar] [CrossRef]
- Dwivedi, P.; Ganesh, S.A.; Sudhakar, K.; Soni, A.; Priya, S.S.; Wang, Q. Thermal and electrical performance of uncooled, nature-cooled, and photovoltaic thermal module. Int. J. Photoenergy 2023, 2023, 4720545. [Google Scholar] [CrossRef]
- Hattam, S.Y.; Kadhum Aboaltabooq, M.H. Improving the efficiency of photovoltaic cells by using the distilled water immersion method. In IOP Conference Series: Earth and Environmental Science; IOP Publishing Ltd.: Bristol, UK, 2022. [Google Scholar] [CrossRef]
- Eid, A.F.; Lee, S.-I.; Hong, S.-G.; Choi, W. Hybrid cooling techniques to improve the performance of solar photovoltaic modules. Sol. Energy 2022, 245, 254–264. [Google Scholar] [CrossRef]
- D’angola, A.; Enescu, D.; Mecca, M.; Ciocia, A.; Di Leo, P.; Fracastoro, G.V.; Spertino, F. Theoretical and numerical study of a photovoltaic system with active fluid cooling by a fully-coupled 3D thermal and electric model. Energies 2020, 13, 852. [Google Scholar] [CrossRef]
- Keyhanara, M.; Arabhosseini, A.; Gholami, Z.; Rahmati, M.H. Progressive cooling technologies of photovoltaic and concentrated photovoltaic modules: A review of fundamentals, thermal aspects, nanotechnology utilization and enhancing performance. Sol. Energy 2020, 211, 117–146. [Google Scholar] [CrossRef]
- Hassan, A.; Wahab, A.; Qasim, M.A.; Janjua, M.M.; Ali, M.A.; Ali, H.M. Thermal management and uniform temperature regulation of PV modules using hybrid phase change materials-nanofluids system. Renew. Energy 2020, 145, 282–293. [Google Scholar] [CrossRef]
- Elminshawy, N.A.; El Ghandour, M.; Gad, H.; El-Damhogi, D.; El-Nahhas, K.; Addas, M.F. The performance of a buried heat exchanger system for PV panel cooling under elevated air temperatures. Geothermics 2019, 82, 7–15. [Google Scholar] [CrossRef]
- Kumar, A.; Prasad, L.; Kumar, V. Thermodynamic evaluation of water-cooled photovoltaic thermal system with PCM-based thermal energy storage. Sādhanā 2024, 49, 19. [Google Scholar] [CrossRef]
- Kazem, H.A.; Al-Waeli, A.H.; Chaichan, M.T.; Sopian, K. Numerical and experimental evaluation of nanofluid based photovoltaic/thermal systems in Oman: Using silicone-carbide nanoparticles with water-ethylene glycol mixture. Case Stud. Therm. Eng. 2021, 26, 101009. [Google Scholar] [CrossRef]
- Mahmood, D.M.; Aljubury, I.M.A. Experimental investigation of a hybrid photovoltaic evaporative cooling (PV/EC) system performance under arid conditions. Results Eng. 2022, 15, 100618. [Google Scholar] [CrossRef]
- Bayrak, F.; Oztop, H.F.; Selimefendigil, F. Experimental study for the application of different cooling techniques in photovoltaic (PV) panels, Energy Convers. Energy Convers. Manag. 2020, 212, 112789. [Google Scholar] [CrossRef]
- Sharma, S.; Micheli, L.; Chang, W.; Tahir, A.; Reddy, K.; Mallick, T. Nanoenhanced phase change material for thermal management of BICPV. Appl. Energy 2020, 208, 719–733. [Google Scholar] [CrossRef]
- Alshibil, A.M.; Farkas, I.; Víg, P. Experimental performance comparison of a novel design of bi-fluid photovoltaic-thermal module using Louver fins. Energy Rep. 2023, 9, 4518–4531. [Google Scholar] [CrossRef]
- Harmailil, I.O. A Cooling Method for Photovoltaic (PV) Module Using U-Shape Aluminum Fins and Copper Tubes. Master’s Thesis, Solar Energy Research Institute (SERI), National University of Malaysia, Bangi, Malaysia, 2025. [Google Scholar]
Reference | Cooling Method | Temperature Reduction | Electrical Performance Improvement |
---|---|---|---|
[15] | Flat fin and hollow fin | 8.50 °C | NA |
[7] | Truncated fin | 20.16 °C | 9.20% |
[9] | L-shaped aluminum fin | 10.00 °C | 4.00% |
[16] | Lapping fin with reflectors | 24.50 °C | 13.70% (37.10 W) |
[4] | Trapezoidal channel truncated multi-level fin heat sink (MLFHS) | 6.13% | NA (Not Applicable) |
[17] | Variation in fin heights and inclination angles | 17.00 °C and 21.00 °C | 11.34% |
[18] | Fin cooling with container | 6.10 °C. | 5.30% |
[19] | V-shaped fins | 5.00 °C | 11.60% |
[20] | Evaporator with finned tube | 10.00 °C | 15.90% |
[21] | Straight-finned heat sink | 24.40 °C | 1.08% |
Reference | Cooling Method | Temperature Reduction | Electrical Performance Improvement |
---|---|---|---|
[24] | Spray water cooling and forced ventilation cooling | 26.40 °C and 21.80 °C | 14.30% |
[25] | Water cooling | 57.32 °C and 58.73 °C | 11.50% |
[26] | Nanofluid cooling | 24% | 12% |
[27] | Nanofluid cooling | 32.23% | 12.75% |
[28] | Water cooling | 10% | 9.70% |
[29] | Jet cooling | 34 °C | NA |
[30] | Water cooling | 9.40 °C | 5.6% and 5.88% |
[31] | Water cooling | N/A | 0.35% |
[32] | Water cooling | 21 °C | 11% |
[33] | Water cooling | 16 °C | 1% |
Reference | Combined Cooling | Temperature Reduction | Electrical Performance |
---|---|---|---|
[37] | Water-cooled PV unit that is based on PCMs | NA | 14.32% |
[38] | Water and nanofluid cooling | 15.26% | 12.60% |
[39] | Hybrid evaporative cooling | 15 and 20 °C | 11.20% |
[40] | Fin and PCM cooling | 4.70 °C | 7.60% |
[11] | Water and fins cooling | 3 °C | 7% |
[41] | Micro fin and PCM cooling | 10.7 °C and 12.5 °C | 5.35% and 4.80% |
[10] | Aluminum fins and ultrasonic humidifier cooling | 14.61 °C | 6.80% |
[42] | Bi-fluid (air and water) module using Louver fins | 19.20 °C | 7.56% |
Description | Specification |
---|---|
Model | Rigid glass solar panel M120W |
Cell type | SunPower cell, monocrystalline |
Peak Power [Pmax] | 120 Wp |
Power Tolerance Range [%] | −3% to +3% |
Max Power Voltage Vmp [V] | 20.88 V |
Max Power Current Imp [A] | 5.75 A |
Open Circuit Voltage Voc [V] | 24.64 V |
Short Circuit Current Isc [A] | 6.21 A |
Maximum System Voltage [VDC] | 1000 VDC |
Dimension [mm] | 540 × 1190 × 35 mm |
Operation Temperature [°C] | −40 to +85 °C |
NOCT [°C] | 45 ± 2 °C |
Standard Test Condition (STC) | 1000 W/m2, AM 1.5, and temperature of 25 °C |
Materials and Equipment | Description | Specification |
---|---|---|
Monocrystalline PV panel | Convert sunlight radiation into electrical power. | The maximum power gain is 120 W |
Fins | Rectangular shape and aluminum-based material. | 10 units with dimension of each fin = 880 × 2.50 mm |
Tubes | Working fluid flows through pipe to cool down the PV panel. The pipe is made of copper. | 10 units with dimension of each pipe = 880 × 1.60 OD (Outer Diameter) mm |
Silicon glue | To stick pipe and fins to the backside of panel. | 2 tubes of transparent silicon glue |
Thermal paste | To enhance heat transfer between tubes and fins. | 5 tubes × 300 g |
Hose | To connect water pump and copper tubes configuration. | Elastic transparent with 5 m of total length |
Water pump | To give external force for water circulation. | Water flow 35 L/min |
Solar meter | To measure solar irradiance of sun. | -TES 132 datalogging solar power meter -TES 1333R datalogging solar power meter |
Thermocouple | To measure temperature value from the sensor. | 24 channel Applent T4824 |
Water thermocouple | To measure temperature value from the sensor inside the water pipe or hose. | 2 water thermocouples (AT4708 Multi-Channel) |
Multimeter | To measure electrical output (voltage and current). | Digital Multimeter EM492 |
I-V checker | To plot the I-V curve from tested PV panel. | MP-11 Portable I-V checker |
Data logger | To connect and read thermocouple output. | AT4824 Digital Temperature Data Recorder 24 Channels |
Equipment | Parameters | Unit | Accuracy |
---|---|---|---|
Solar Power Meter TES 1333R | Solar intensity | W/m2 | ±5% |
Solar Power Meter TES 132 | Solar intensity | W/m2 | ±5% |
UNI-T UT320D (2 channels) | Data logger for thermocouple | °C | ±(0.5% + 1) |
HT-9815 (4 channels) | Data logger for thermocouple | °C | ±(0.5% + 2) |
Applent T4824 | Multi-channel temperature meter | °C | 0.2% ± 2 |
Anbai AT4708 | Multi-channel temperature meter | °C | 0.2% + 1 °C |
MP-11 | Portable I-V checker | V & A | ±1% |
Digital Multimeter E-SUN EM492 | Current and voltage | V & A | ±0.1 |
Uncertainty Parameter | Unit | Outdoor Experiment |
---|---|---|
PV panel surface temperature (WTs) | °C | ±0.10 |
Water inlet temperature (WTi) | °C | ±0.10 |
Water outlet temperature (WTo) | °C | ±0.10 |
Ambient temperature (WTa) | °C | ±0.10 |
Solar irradiance (WSi) | W/m2 | ±0.11 |
Current (WC) | A | ±0.10 |
Voltage (WV) | V | ±0.10 |
Description | Value | Unit |
---|---|---|
PV panel cost | 58.50 | USD |
Combined cooling system cost | 24.91 | USD |
Power generation | 66.85 | W |
Effective hours in a day | 10 | h |
Annual increased energy | 244 | kWh/year |
Annual electric price | 17.50 | USD |
Total cost for combined PV cooling | 85.10 | USD |
SPP | 4.52 | Year |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Harmailil, I.O.; Sultan, S.M.; Fudholi, A.; Mohammad, M.; Tso, C.P. Enhancing PV Module Efficiency Through Fins-and-Tubes Cooling: An Outdoor Malaysian Case Study. Processes 2025, 13, 2812. https://doi.org/10.3390/pr13092812
Harmailil IO, Sultan SM, Fudholi A, Mohammad M, Tso CP. Enhancing PV Module Efficiency Through Fins-and-Tubes Cooling: An Outdoor Malaysian Case Study. Processes. 2025; 13(9):2812. https://doi.org/10.3390/pr13092812
Chicago/Turabian StyleHarmailil, Ihsan Okta, Sakhr M. Sultan, Ahmad Fudholi, Masita Mohammad, and C. P. Tso. 2025. "Enhancing PV Module Efficiency Through Fins-and-Tubes Cooling: An Outdoor Malaysian Case Study" Processes 13, no. 9: 2812. https://doi.org/10.3390/pr13092812
APA StyleHarmailil, I. O., Sultan, S. M., Fudholi, A., Mohammad, M., & Tso, C. P. (2025). Enhancing PV Module Efficiency Through Fins-and-Tubes Cooling: An Outdoor Malaysian Case Study. Processes, 13(9), 2812. https://doi.org/10.3390/pr13092812