Current Processing Technologies and Challenges in Hybrid Meat Production
Abstract
1. Introduction
2. Definitions and Classification of Hybrid Meat
2.1. Classification by Ingredient Source
- Plant-meat hybrids: these combine conventional meat with plant proteins such as soy, pea, wheat gluten or pulses. Their purpose is to reduce the meat content while maintaining familiarity and improving the health or sustainability profile [38]. Texturised vegetable proteins (TVPs), particularly soy-based, are often used in this format due to their structural compatibility and cost-efficiency [26,29].
- Insect–meat hybrids: Products that combine edible insect proteins (e.g., from mealworms or crickets) with meat are gaining traction due to their high protein density and low environmental impact, although regulatory and consumer barriers exist [18];
2.2. Classification by Structure and Format
- Blended hybrids: Homogeneous mixtures where plant and meat ingredients (fine or coarse) are ground and integrated into a single-phase matrix (e.g., hybrid sausages or burgers). These formats are commonly used due to the ease of formulation and processing [35].
- Layered or stratified hybrids: Multiphase systems that combine layers of meat and plant-based gels or emulsions. Although this allows the ingredients to be separated, the structural complexity increases [18].
2.3. Classification by Ingredient Role
- Hybrid products with structural agents: Vegetable proteins (e.g., soy isolate, wheat gluten) are used to mimic muscle fibres and bind moisture [38].
3. Processing Technologies in Hybrid Meat Production
3.1. Blending Meat with Texturized Vegetable Proteins (TVPs)
Protein Source | Representative Sources | Processing/Structuring Technologies | Key Processing Parameters | Functional Role | Example Applications | References | Challenges/Limitations |
---|---|---|---|---|---|---|---|
Plant-based proteins | Soy protein isolate/concentrate, textured pea protein, faba bean concentrate, wheat gluten, rice bran, hemp seed meal | Low-moisture extrusion (LME), high-moisture extrusion (HME), shear cell structuring, blending and comminution, hydrocolloid-assisted structuring | LME: 20–35% moisture, 120–160 °C barrel temp; HME: 45–70% moisture, 90–140 °C; Shear cell: 60–70 °C for 15–30 min at 10–20 rpm; Inclusion 5–50% | Enhances texture and WHC, partial replacement of meat protein, improves amino acid profile, supports fibrous structure | Burgers, sausages, nuggets, deli slices | [48,49,50,51] | Off-flavours (beany, grassy), colour changes at high inclusion; possible antinutrients; reduced binding strength above 50% replacement |
Fungal and algal proteins | Mycoprotein (Fusarium venenatum), filamentous fungi, Spirulina, Chlorella | Submerged fermentation, gelation, freeze–thaw texturing, incorporation into emulsions | Fermentation: 26–30 °C, pH 6–6.5, 48–72 h; Freeze–thaw: −18 °C to +4 °C for 3–5 cycles; Inclusion 5–30% | Adds dietary fibre, improves umami, stabilises emulsions, increases protein diversity | Hybrid patties, meatballs, frankfurters | [52,53,54] | Regulatory uncertainty for novel strains; sensory acceptance issues; colour inconsistency |
Insect proteins | Tenebrio molitor larvae powder/protein, cricket flour | Defatting, milling, enzymatic hydrolysis, incorporation into meat matrices | Defatting: hexane or mechanical pressing at 50–60 °C; Hydrolysis: 50 °C, pH 7–8 for 1–3 h; Inclusion 2–15% | Boosts protein quality, adds micronutrients (iron, zinc), modifies texture at low levels | Hybrid frankfurters, sausages, meatballs | [54,55] | Consumer aversion in some markets; allergenicity; potential microbial load if underprocessed |
Cultivated animal cells | Cultured bovine myocytes, adipocytes | Scaffold-based tissue engineering, co-culture with plant scaffolds, layered assembly | Cell culture: 37 °C, 5% CO2, serum-free medium; Differentiation: 5–10 days; Post-harvest layering with plant matrix | Mimics whole muscle structure, authentic meat flavour and juiciness | Cultivated–plant hybrid steaks, deli slices | [42,43] | High production costs; scalability issues; regulatory approval hurdles; consumer perception as “unnatural” |
Microbial biomass | Brewer’s spent yeast, single-cell protein (SCP) | Mechanical cell disruption, ultrasound-assisted processing, thermal treatment | Ultrasound: 20–40 kHz, 5–15 min, 40–60 °C; Pasteurisation: 72–80 °C for 15–30 s; Inclusion 3–10% | Improves binding, water retention, adds B-vitamins, alters flavour profile | Beef patties, chicken nuggets | [56,57] | Bitter/yeasty notes; cell wall digestibility; sourcing consistency |
Oilseed proteins | Pumpkin seed protein, sunflower protein, canola protein | Wet extrusion, cold pressing, partial deoiling | Extrusion: 40–60% moisture, 100–140 °C; Cold pressing: ≤50 °C; Inclusion 5–20% | Improves lipid profile, adds PUFA, modifies texture | Hybrid sausages, burger patties | [40,53] | Risk of erucic acid (e.g., in pumpkin seed protein); oil separation; flavour masking needed |
3.2. High-Moisture Extrusion and Coextrusion in Hybrid Meat Systems
3.3. Integrating Cellular Agriculture and Fermented Biomass into Hybrid Meat Systems
- Regulatory complexity associated with novel microbial strains and cultured cells in food [71];
- Consistent nutritional and sensory quality, as few studies define thresholds for consumer acceptance of off-flavours, colour shifts or texture inconsistencies in such blends [32].
3.4. High-Pressure-Based Treatments in Hybrid Meat Processing
3.5. Emerging Non-Conventional Technologies in Hybrid Meat Processing
4. Nutritional, Functional, and Sensory Challenges in Hybrid Meat Production and Consumer Acceptance
4.1. Nutritional Synergies and Trade-Offs
4.2. Functional Properties: Water-Holding and Texture
4.3. Sensory Quality of Hybrid Meat Products
4.4. Consumer Acceptance of Hybrid Meat Products
5. Conclusions and Future Direction
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Domínguez-Rodrigo, M.; Pickering, T.R. The Meat of the Matter: An Evolutionary Perspective on Human Carnivory. Azania Archaeol. Res. Afr. 2017, 52, 4–32. [Google Scholar] [CrossRef]
- World Population Prospects 2022: Summary of Results Population Division. Available online: https://www.un.org/development/desa/pd/content/World-Population-Prospects-2022 (accessed on 11 August 2025).
- FAO. The State of Food and Agriculture 2024; FAO: Rome, Italy, 2024; ISBN 978-92-5-139140-2. [Google Scholar]
- Wang, D.D.; Li, Y.; Nguyen, X.-M.; Ho, Y.-L.; Hu, F.B.; Willett, W.C.; Wilson, P.W.; Cho, K.; Gaziano, J.M.; Djoussé, L. Red Meat Intake and the Risk of Cardiovascular Diseases: A Prospective Cohort Study in the Million Veteran Program. J. Nutr. 2024, 154, 886–895. [Google Scholar] [CrossRef]
- Ruxton, C.H.S.; Gordon, S. Animal Board Invited Review: The Contribution of Red Meat to Adult Nutrition and Health beyond Protein. Animal 2024, 18, 101103. [Google Scholar] [CrossRef]
- Poore, J.; Nemecek, T. Reducing Food’s Environmental Impacts through Producers and Consumers. Science 2018, 360, 987–992. [Google Scholar] [CrossRef]
- Xu, X.; Sharma, P.; Shu, S.; Lin, T.-S.; Ciais, P.; Tubiello, F.N.; Smith, P.; Campbell, N.; Jain, A.K. Global Greenhouse Gas Emissions from Animal-Based Foods Are Twice Those of Plant-Based Foods. Nat. Food 2021, 2, 724–732. [Google Scholar] [CrossRef] [PubMed]
- Gerbens-Leenes, P.W.; Mekonnen, M.M.; Hoekstra, A.Y. The Water Footprint of Poultry, Pork and Beef: A Comparative Study in Different Countries and Production Systems. Water Resour. Ind. 2013, 1–2, 25–36. [Google Scholar] [CrossRef]
- Kołodziejczak, K.; Onopiuk, A.; Szpicer, A.; Poltorak, A. Meat Analogues in the Perspective of Recent Scientific Research: A Review. Foods 2022, 11, 105. [Google Scholar] [CrossRef]
- Worldwide Growth of Veganism. Available online: https://www.vegansociety.com/news/media/statistics/worldwide (accessed on 11 August 2025).
- Vegan Food Market Size to Reach $37.5 Billion by 2030. Available online: https://www.grandviewresearch.com/press-release/global-vegan-food-market (accessed on 11 August 2025).
- Kumar, M.; Tomar, M.; Punia, S.; Dhakane-Lad, J.; Dhumal, S.; Changan, S.; Senapathy, M.; Berwal, M.K.; Sampathrajan, V.; Sayed, A.A.S.; et al. Plant-Based Proteins and Their Multifaceted Industrial Applications. LWT 2022, 154, 112620. [Google Scholar] [CrossRef]
- Malila, Y.; Owolabi, I.O.; Chotanaphuti, T.; Sakdibhornssup, N.; Elliott, C.T.; Visessanguan, W.; Karoonuthaisiri, N.; Petchkongkaew, A. Current Challenges of Alternative Proteins as Future Foods. NPJ Sci. Food 2024, 8, 53. [Google Scholar] [CrossRef] [PubMed]
- Kirchner, J.; Gertner, D.; Leet-Otley, T.; Ignaszewski, E. Analyzing Plant-Based Meat & Seafood Sales—The Good Food Institute. 2024. Available online: https://gfi.org/resource/analyzing-plant-based-meat-and-seafood-sales/ (accessed on 4 September 2025).
- Treich, N. Cultured Meat: Promises and Challenges. Env. Resour. Econ 2021, 79, 33–61. [Google Scholar] [CrossRef]
- Soleymani, S.; Naghib, S.M.; Mozafari, M.R. An Overview of Cultured Meat and Stem Cell Bioprinting: How to Make It, Challenges and Prospects, Environmental Effects, Society’s Culture and the Influence of Religions. J. Agric. Food Res. 2024, 18, 101307. [Google Scholar] [CrossRef]
- Garrison, G.L.; Biermacher, J.T.; Brorsen, B.W. How Much Will Large-Scale Production of Cell-Cultured Meat Cost? J. Agric. Food Res. 2022, 10, 100358. [Google Scholar] [CrossRef]
- Anusha Siddiqui, S.; Bahmid, N.A.; Mahmud, C.M.M.; Boukid, F.; Lamri, M.; Gagaoua, M. Consumer Acceptability of Plant-, Seaweed-, and Insect-Based Foods as Alternatives to Meat: A Critical Compilation of a Decade of Research. Crit. Rev. Food Sci. Nutr. 2023, 63, 6630–6651. [Google Scholar] [CrossRef]
- Ahuja, V.; Chauhan, S.; Purewal, S.S.; Mehariya, S.; Patel, A.K.; Kumar, G.; Megharaj, M.; Yang, Y.-H.; Bhatia, S.K. Microbial Alchemy: Upcycling of Brewery Spent Grains into High-Value Products through Fermentation. Crit. Rev. Biotechnol. 2024, 44, 1367–1385. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Farouk, M.M.; Realini, C.E.; Thum, C. Hybridization in Meat-Based Dual Protein Foods: Mechanisms, Challenges, and Consumer Insights. Comp. Rev. Food Sci. Food Safe 2025, 24, e70216. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.; Li, C.; Yuen, J.S.K.; Stout, A.J.; Kaplan, D.L. Chapter 17—Manufacture of Hybrid Alternative Protein Food Products Using a Combination of Plant-Based Ingredients, Fermentation-Derived Ingredients, and Animal Cells. In Cellular Agriculture; Fraser, E.D.G., Kaplan, D.L., Newman, L., Yada, R.Y., Eds.; Academic Press: Cambridge, MA, USA, 2024; pp. 251–266. ISBN 978-0-443-18767-4. [Google Scholar]
- Young, J.F.; Young, N.W.G. Viewpoint: Could Cultivated Meat’s Real Route to Mainstream Markets Be as Hybrid Food—Why This Makes Sense? Int. J. Food Sci. Tech. 2024, 59, 4446–4450. [Google Scholar] [CrossRef]
- Grasso, S.; Jaworska, S. Part Meat and Part Plant: Are Hybrid Meat Products Fad or Future? Foods 2020, 9, 1888. [Google Scholar] [CrossRef]
- Zhu, J.; Xiao, X.; Du, W.; Cai, Y.; Yang, Z.; Yin, Y.; Wakisaka, M.; Wang, J.; Zhou, Z.; Liu, D.; et al. Leveraging Microalgae as a Sustainable Ingredient for Meat Analogues. Food Chem. 2024, 450, 139360. [Google Scholar] [CrossRef]
- Yang, S.; Wang, Y.; Wang, J.; Cheng, K.; Liu, J.; He, Y.; Zhang, Y.; Mou, H.; Sun, H. Microalgal Protein for Sustainable and Nutritious Foods: A Joint Analysis of Environmental Impacts, Health Benefits and Consumer’s Acceptance. Trends Food Sci. Technol. 2024, 143, 104278. [Google Scholar] [CrossRef]
- Berry, B.W.; Leddy, K.F.; Bodwell, C.E. Sensory Characteristics, Shear Values and Cooking Properties of Ground Beef Patties Extended with Iron- and Zinc-Fortified Soy Isolate, Concentrate or Flour. J. Food Sci. 1985, 50, 1556–1559. [Google Scholar] [CrossRef]
- Samard, S.; Ryu, G. A Comparison of Physicochemical Characteristics, Texture, and Structure of Meat Analogue and Meats. J. Sci. Food Agric. 2019, 99, 2708–2715. [Google Scholar] [CrossRef]
- Morantes, G.; Ek, P.; Ganjyal, G.M. Food Safety in Extrusion Processing. In Extrusion Cooking; Elsevier: Amsterdam, The Netherlands, 2020; pp. 507–521. ISBN 978-0-12-815360-4. [Google Scholar]
- Xiong, Y.L. Meat and Meat Alternatives: Where Is the Gap in Scientific Knowledge and Technology? Ital. J. Anim. Sci. 2023, 22, 482–496. [Google Scholar] [CrossRef]
- Jareonsin, S.; Pumas, C.; Jaitiang, D.; Uttarotai, T. Green Fusion Proteins: An Approach to Sustainable Nutrition Blending Plant and Algae-Based Proteins for a Circular Food System. Future Foods 2024, 10, 100415. [Google Scholar] [CrossRef]
- Profeta, A.; Baune, M.-C.; Smetana, S.; Bornkessel, S.; Broucke, K.; Van Royen, G.; Enneking, U.; Weiss, J.; Heinz, V.; Hieke, S.; et al. Preferences of German Consumers for Meat Products Blended with Plant-Based Proteins. Sustainability 2021, 13, 650. [Google Scholar] [CrossRef]
- Melios, S.; Grasso, S. Meat Fans’ and Meat Reducers’ Attitudes towards Meat Consumption and Hybrid Meat Products in the UK: A Cluster Analysis. Int. J. Food Sci. Technol. 2024, 59, 9394–9401. [Google Scholar] [CrossRef]
- Santos, M.D.; Rocha, D.A.V.F.D.; Bernardinelli, O.D.; Oliveira Júnior, F.D.; De Sousa, D.G.; Sabadini, E.; Da Cunha, R.L.; Trindade, M.A.; Pollonio, M.A.R. Understanding the Performance of Plant Protein Concentrates as Partial Meat Substitutes in Hybrid Meat Emulsions. Foods 2022, 11, 3311. [Google Scholar] [CrossRef] [PubMed]
- Chin, S.W.; Baier, S.K.; Stokes, J.R.; Smyth, H.E. Evaluating the Sensory Properties of Hybrid (Meat and Plant-based) Burger Patties. J. Texture Stud. 2024, 55, e12819. [Google Scholar] [CrossRef]
- Grasso, S. Opportunities and Challenges of Hybrid Meat Products: A Viewpoint Article. Int. J. Food Sci. Technol. 2024, 59, 8693–8696. [Google Scholar] [CrossRef]
- Boukid, F.; Baune, M.-C.; Terjung, N.; Francis, A.; Smetana, S. The ‘Meathybrid’ Concept: Bridging the Gap between Texture, Taste, Sustainability and Nutrition. Int. J. Food Sci. Technol. 2024, 59, 8645–8655. [Google Scholar] [CrossRef]
- Neville, M.; Tarrega, A.; Hewson, L.; Foster, T. Consumer-orientated Development of Hybrid Beef Burger and Sausage Analogues. Food Sci. Nutr. 2017, 5, 852–864. [Google Scholar] [CrossRef]
- Bakhsh, A.; Lee, E.-Y.; Ncho, C.M.; Kim, C.-J.; Son, Y.-M.; Hwang, Y.-H.; Joo, S.-T. Quality Characteristics of Meat Analogs through the Incorporation of Textured Vegetable Protein: A Systematic Review. Foods 2022, 11, 1242. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, M.I.; Farooq, S.; Alhamoud, Y.; Li, C.; Zhang, H. Soy Leghemoglobin: A Review of Its Structure, Production, Safety Aspects, and Food Applications. Trends Food Sci. Technol. 2023, 141, 104199. [Google Scholar] [CrossRef]
- Baune, M.-C.; Broucke, K.; Ebert, S.; Gibis, M.; Weiss, J.; Enneking, U.; Profeta, A.; Terjung, N.; Heinz, V. Meat Hybrids—An Assessment of Sensorial Aspects, Consumer Acceptance, and Nutritional Properties. Front. Nutr. 2023, 10, 1101479. [Google Scholar] [CrossRef] [PubMed]
- Simsa, R.; Yuen, J.; Stout, A.; Rubio, N.; Fogelstrand, P.; Kaplan, D.L. Extracellular Heme Proteins Influence Bovine Myosatellite Cell Proliferation and the Color of Cell-Based Meat. Foods 2019, 8, 521. [Google Scholar] [CrossRef]
- Kirsch, M.; Morales-Dalmau, J.; Lavrentieva, A. Cultivated Meat Manufacturing: Technology, Trends, and Challenges. Eng. Life Sci. 2023, 23, e2300227. [Google Scholar] [CrossRef]
- Seo, J.W.; Jung, W.K.; Park, Y.H.; Bae, H. Development of Cultivable Alginate Fibers for an Ideal Cell-Cultivated Meat Scaffold and Production of Hybrid Cultured Meat. Carbohydr. Polym. 2023, 321, 121287. [Google Scholar] [CrossRef] [PubMed]
- Joshi, V.; Kumar, S. Meat Analogues: Plant Based Alternatives to Meat Products—A Review. Inte. Jour. Food Ferm. Tech. 2015, 5, 107. [Google Scholar] [CrossRef]
- Grasso, S.; Asioli, D.; Smith, R. Consumer Co-Creation of Hybrid Meat Products: A Cross-Country European Survey. Food Qual. Prefer. 2022, 100, 104586. [Google Scholar] [CrossRef]
- Dekkers, B.L.; Nikiforidis, C.V.; Van Der Goot, A.J. Shear-Induced Fibrous Structure Formation from a Pectin/SPI Blend. Innov. Food Sci. Emerg. Technol. 2016, 36, 193–200. [Google Scholar] [CrossRef]
- Molfetta, M.; Morais, E.G.; Barreira, L.; Bruno, G.L.; Porcelli, F.; Dugat-Bony, E.; Bonnarme, P.; Minervini, F. Protein Sources Alternative to Meat: State of the Art and Involvement of Fermentation. Foods 2022, 11, 2065. [Google Scholar] [CrossRef]
- Broucke, K.; Van Poucke, C.; Duquenne, B.; De Witte, B.; Baune, M.-C.; Lammers, V.; Terjung, N.; Ebert, S.; Gibis, M.; Weiss, J.; et al. Ability of (Extruded) Pea Protein Products to Partially Replace Pork Meat in Emulsified Cooked Sausages. Innov. Food Sci. Emerg. Technol. 2022, 78, 102992. [Google Scholar] [CrossRef]
- Revilla, I.; Santos, S.; Hernández-Jiménez, M.; Vivar-Quintana, A.M. The Effects of the Progressive Replacement of Meat with Texturized Pea Protein in Low-Fat Frankfurters Made with Olive Oil. Foods 2022, 11, 923. [Google Scholar] [CrossRef] [PubMed]
- Lin, W.; Barbut, S. Hybrid Meat Batter System: Effects of Plant Proteins (Pea, Brown Rice, Faba Bean) and Concentrations (3–12%) on Texture, Microstructure, Rheology, Water Binding, and Color. Poult. Sci. 2024, 103, 103822. [Google Scholar] [CrossRef]
- Grasso, S.; Goksen, G. The Best of Both Worlds? Challenges and Opportunities in the Development of Hybrid Meat Products from the Last 3 Years. LWT 2023, 173, 114235. [Google Scholar] [CrossRef]
- Derbyshire, E.J. Flexitarian Diets and Health: A Review of the Evidence-Based Literature. Front. Nutr. 2017, 3, 55. [Google Scholar] [CrossRef] [PubMed]
- Ebert, S.; Jungblut, F.; Herrmann, K.; Maier, B.; Terjung, N.; Gibis, M.; Weiss, J. Influence of Wet Extrudates from Pumpkin Seed Proteins on Drying, Texture, and Appearance of Dry-Cured Hybrid Sausages. Eur. Food Res. Technol. 2022, 248, 1469–1484. [Google Scholar] [CrossRef]
- Zhang, F.; Li, X.; Liang, X.; Kong, B.; Sun, F.; Cao, C.; Gong, H.; Zhang, H.; Liu, Q. Feasibility of Tenebrio Molitor Larvae Protein to Partially Replace Lean Meat in the Processing of Hybrid Frankfurters: Perspectives on Quality Profiles and in Vitro Digestibility. Food Res. Int. 2024, 176, 113846. [Google Scholar] [CrossRef]
- Talens, C.; Llorente, R.; Simó-Boyle, L.; Odriozola-Serrano, I.; Tueros, I.; Ibargüen, M. Hybrid Sausages: Modelling the Effect of Partial Meat Replacement with Broccoli, Upcycled Brewer’s Spent Grain and Insect Flours. Foods 2022, 11, 3396. [Google Scholar] [CrossRef]
- Bertolo, A.P.; Kempka, A.P.; Rigo, E.; Sehn, G.A.R.; Cavalheiro, D. Incorporation of Natural and Mechanically Ruptured Brewing Yeast Cells in Beef Burger to Replace Textured Soy Protein. J. Food Sci. Technol. 2022, 59, 935–943. [Google Scholar] [CrossRef]
- Ampofo, J.; Ngadi, M. Ultrasound-Assisted Processing: Science, Technology and Challenges for the Plant-Based Protein Industry. Ultrason. Sonochem. 2022, 84, 105955. [Google Scholar] [CrossRef]
- Sha, L.; Xiong, Y.L. Plant Protein-Based Alternatives of Reconstructed Meat: Science, Technology, and Challenges. Trends Food Sci. Technol. 2020, 102, 51–61. [Google Scholar] [CrossRef]
- Van Der Sman, R.G.M.; Van Der Goot, A.J. Hypotheses Concerning Structuring of Extruded Meat Analogs. Curr. Res. Food Sci. 2023, 6, 100510. [Google Scholar] [CrossRef]
- Huang, Z.; Liu, Y.; An, H.; Kovacs, Z.; Abddollahi, M.; Sun, Z.; Zhang, G.; Li, C. Utilizing Haematococcus Pluvialis to Simulate Animal Meat Color in High-Moisture Meat Analogues: Texture Quality and Color Stability. Food Res. Int. 2024, 175, 113685. [Google Scholar] [CrossRef]
- Villacís-Chiriboga, J.; Sharifi, E.; Elíasdóttir, H.G.; Huang, Z.; Jafarzadeh, S.; Abdollahi, M. Hybrid Plant-Based Meat Alternatives Structured via Co-Extrusion: A Review. Trends Food Sci. Technol. 2025, 160, 105013. [Google Scholar] [CrossRef]
- Cornet, S.H.V.; Snel, S.J.E.; Schreuders, F.K.G.; Van Der Sman, R.G.M.; Beyrer, M.; Van Der Goot, A.J. Thermo-Mechanical Processing of Plant Proteins Using Shear Cell and High-Moisture Extrusion Cooking. Crit. Rev. Food Sci. Nutr. 2022, 62, 3264–3280. [Google Scholar] [CrossRef] [PubMed]
- Sägesser, C.; Mair, T.; Braun, A.; Dumpler, J.; Fischer, P.; Mathys, A. Application of a Shear Cell for the Simulation of Extrusion to Test the Structurability of Raw Materials. Food Hydrocoll. 2025, 160, 110736. [Google Scholar] [CrossRef]
- Pöri, P.; Aisala, H.; Liu, J.; Lille, M.; Sozer, N. Structure, Texture, and Sensory Properties of Plant-Meat Hybrids Produced by High-Moisture Extrusion. LWT 2023, 173, 114345. [Google Scholar] [CrossRef]
- Grahl, S.; Palanisamy, M.; Strack, M.; Meier-Dinkel, L.; Toepfl, S.; Mörlein, D. Towards More Sustainable Meat Alternatives: How Technical Parameters Affect the Sensory Properties of Extrusion Products Derived from Soy and Algae. J. Clean. Prod. 2018, 198, 962–971. [Google Scholar] [CrossRef]
- Palanisamy, M.; Töpfl, S.; Berger, R.G.; Hertel, C. Physico-Chemical and Nutritional Properties of Meat Analogues Based on Spirulina/Lupin Protein Mixtures. Eur. Food Res. Technol. 2019, 245, 1889–1898. [Google Scholar] [CrossRef]
- De Gol, C.; Snel, S.; Rodriguez, Y.; Beyrer, M. Gelling Capacity of Cell-Disrupted Chlorella Vulgaris and Its Texture Effect in Extruded Meat Substitutes. Food Struct. 2023, 37, 100332. [Google Scholar] [CrossRef]
- Schäufele, I.; Barrera Albores, E.; Hamm, U. The Role of Species for the Acceptance of Edible Insects: Evidence from a Consumer Survey. Br. Food J. 2019, 121, 2190–2204. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, X.; Li, K.; Shen, S.; Li, J.; Liu, X. Formation Mechanism of Yeast-Soy Protein Extrudates during High-Moisture Extrusion and Their Digestive Properties. Food Hydrocoll. 2023, 145, 109093. [Google Scholar] [CrossRef]
- Stephens, N.; Sexton, A.E.; Driessen, C. Making Sense of Making Meat: Key Moments in the First 20 Years of Tissue Engineering Muscle to Make Food. Front. Sustain. Food Syst. 2019, 3, 45. [Google Scholar] [CrossRef]
- Bryant, C.; Barnett, J. Consumer Acceptance of Cultured Meat: An Updated Review (2018–2020). Appl. Sci. 2020, 10, 5201. [Google Scholar] [CrossRef]
- Kim, S.-H.; Kumari, S.; Kim, C.-J.; Lee, E.-Y.; Alam, A.N.; Chung, Y.-S.; Hwang, Y.-H.; Joo, S.-T. Effect of Adding Cultured Meat Tissue on Physicochemical and Taste Characteristics of Hybrid Cultured Meat Manufactured Using Wet-Spinning. Food Sci. Anim. Resour. 2024, 44, 1440–1452. [Google Scholar] [CrossRef]
- Mandliya, S.; Pratap-Singh, A.; Vishwakarma, S.; Dalbhagat, C.G.; Mishra, H.N. Incorporation of Mycelium (Pleurotus eryngii) in Pea Protein Based Low Moisture Meat Analogue: Effect on Its Physicochemical, Rehydration and Structural Properties. Foods 2022, 11, 2476. [Google Scholar] [CrossRef]
- Das, P.P.; Xu, C.; Lu, Y.; Khorsandi, A.; Tanaka, T.; Korber, D.; Nickerson, M.; Rajagopalan, N. Snapshot of Proteomic Changes in Aspergillus Oryzae during Various Stages of Fermentative Processing of Pea Protein Isolate. Food Chem. Mol. Sci. 2023, 6, 100169. [Google Scholar] [CrossRef] [PubMed]
- Knychala, M.M.; Boing, L.A.; Ienczak, J.L.; Trichez, D.; Stambuk, B.U. Precision Fermentation as an Alternative to Animal Protein, a Review. Fermentation 2024, 10, 315. [Google Scholar] [CrossRef]
- Techno-Economic Insights on Fermentation Ingredients—The Good Food Institute. Available online: https://gfi.org/resource/techno-economic-insights-on-fermentation-ingredients/?utm_source=chatgpt.com (accessed on 4 September 2025).
- Post, M.J.; Levenberg, S.; Kaplan, D.L.; Genovese, N.; Fu, J.; Bryant, C.J.; Negowetti, N.; Verzijden, K.; Moutsatsou, P. Scientific, Sustainability and Regulatory Challenges of Cultured Meat. Nat. Food 2020, 1, 403–415. [Google Scholar] [CrossRef]
- Li, M.; Parker, N.; Santo, V.E. Extruded Food Composition Comprising Cultured Animal Cells and Method of Making Same 2023. China CN116437823A, 27 August 2021. [Google Scholar]
- Liu, H.; Xu, Y.; Zu, S.; Wu, X.; Shi, A.; Zhang, J.; Wang, Q.; He, N. Effects of High Hydrostatic Pressure on the Conformational Structure and Gel Properties of Myofibrillar Protein and Meat Quality: A Review. Foods 2021, 10, 1872. [Google Scholar] [CrossRef]
- Wang, W.; Yang, P.; Rao, L.; Zhao, L.; Wu, X.; Wang, Y.; Liao, X. Effect of High Hydrostatic Pressure Processing on the Structure, Functionality, and Nutritional Properties of Food Proteins: A Review. Compr. Rev. Food Sci. Food Saf. 2022, 21, 4640–4682. [Google Scholar] [CrossRef]
- Queirós, R.P.; Saraiva, J.A.; Da Silva, J.A.L. Tailoring Structure and Technological Properties of Plant Proteins Using High Hydrostatic Pressure. Crit. Rev. Food Sci. Nutr. 2018, 58, 1538–1556. [Google Scholar] [CrossRef]
- Bernasconi, A.; Szerman, N.; Vaudagna, S.R.; Speroni, F. High Hydrostatic Pressure and Soybean Protein Addition to Beef Patties: Effects on the Formation of Mixed Aggregates and Technological Parameters. Innov. Food Sci. Emerg. Technol. 2020, 66, 102503. [Google Scholar] [CrossRef]
- Janardhanan, R.; Huerta-Leidenz, N.; Ibañez, F.C.; Beriain, M.J. High-Pressure Processing and Sous-Vide Cooking Effects on Physicochemical Properties of Meat-Based, Plant-Based and Hybrid Patties. LWT 2023, 173, 114273. [Google Scholar] [CrossRef]
- Li, J.; Chen, Y.; Dong, X.; Li, K.; Wang, Y.; Wang, Y.; Du, M.; Zhang, J.; Bai, Y. Effect of Chickpea (Cicer arietinum L.) Protein Isolate on the Heat-induced Gelation Properties of Pork Myofibrillar Protein. J. Sci. Food Agric. 2021, 101, 2108–2116. [Google Scholar] [CrossRef]
- Dumay, E.; Chevalier-Lucia, D.; Picart-Palmade, L.; Benzaria, A.; Gràcia-Julià, A.; Blayo, C. Technological Aspects and Potential Applications of (Ultra) High-Pressure Homogenisation. Trends Food Sci. Technol. 2013, 31, 13–26. [Google Scholar] [CrossRef]
- Mesa, J.; Hinestroza-Córdoba, L.I.; Barrera, C.; Seguí, L.; Betoret, E.; Betoret, N. High Homogenization Pressures to Improve Food Quality, Functionality and Sustainability. Molecules 2020, 25, 3305. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, K.; Zhang, X.; Zhang, T.; Zhao, J.; Jiang, L.; Sui, X. Protein Blend Extrusion: Crafting Meat Analogues with Varied Textural Structures and Characteristics. Food Chem. 2024, 460, 140709. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, J.; Li, K.; Yuan, J.; Chen, B.; Wang, Y.; Li, J.; Bai, Y. Effect of Chickpea Protein Modified with Combined Heating and High-Pressure Homogenization on Enhancing the Gelation of Reduced Phosphate Myofibrillar Protein. Food Chem. 2025, 463, 141180. [Google Scholar] [CrossRef] [PubMed]
- Higuera-Barraza, O.A.; Del Toro-Sanchez, C.L.; Ruiz-Cruz, S.; Márquez-Ríos, E. Effects of High-Energy Ultrasound on the Functional Properties of Proteins. Ultrason. Sonochem. 2016, 31, 558–562. [Google Scholar] [CrossRef]
- Su, J.; Cavaco-Paulo, A. Effect of Ultrasound on Protein Functionality. Ultrason. Sonochem. 2021, 76, 105653. [Google Scholar] [CrossRef]
- Akharume, F.U.; Aluko, R.E.; Adedeji, A.A. Modification of Plant Proteins for Improved Functionality: A Review. Comp. Rev. Food Sci. Food Safe 2021, 20, 198–224. [Google Scholar] [CrossRef]
- Chandran, A.S.; Kashyap, P.; Thakur, M. Effect of Extraction Methods on Functional Properties of Plant Proteins: A Review. eFood 2024, 5, e151. [Google Scholar] [CrossRef]
- Dasiewicz, K.; Szymanska, I.; Opat, D.; Hac-Szymanczuk, E. Development and Characterization of Hybrid Burgers Made from Pork and Multi-Ingredient Plant Mixtures and Protected with Lactic Acid Bacteria. Appl. Sci. 2024, 14, 6272. [Google Scholar] [CrossRef]
- Yan, Z.; Liu, C.; Zhang, X.; Wen, C.; Olatunji, O.J.; Lee, C.-C.; Ashaolu, T.J. Plant-Based Meat Analogs: Perspectives on Their Meatiness, Nutritional Profile, Environmental Sustainability, Acceptance and Challenges. Curr. Nutr. Rep. 2024, 13, 921–936. [Google Scholar] [CrossRef]
- Baune, M.-C.; Jeske, A.-L.; Profeta, A.; Smetana, S.; Broucke, K.; Van Royen, G.; Gibis, M.; Weiss, J.; Terjung, N. Effect of Plant Protein Extrudates on Hybrid Meatballs—Changes in Nutritional Composition and Sustainability. Future Foods 2021, 4, 100081. [Google Scholar] [CrossRef]
- Ribes, S.; Aubry, L.; Kristiawan, M.; Jebalia, I.; Dupont, D.; Guillevic, M.; Germain, A.; Chesneau, G.; Sayd, T.; Talens, P.; et al. Fava Bean (Vicia faba L.) Protein Concentrate Added to Beef Burgers Improves the Bioaccessibility of Some Free Essential Amino Acids after in Vitro Oral and Gastrointestinal Digestion. Food Res. Int. 2024, 177, 113916. [Google Scholar] [CrossRef] [PubMed]
- Saber, Y.A.; Mohammed, M.J.; Ayed, H.S. Effect of Partial Substitution of Some Vegetable Sources for Animal Fats in the Manufacture of Low-Calorie Beef Burger and Evaluation of Its Qualitative Characteristics. IOP Conf. Ser. Earth Environ. Sci. 2023, 1262, 062002. [Google Scholar] [CrossRef]
- Stamenić, T.; Todorović, V.; Petričević, M.; Keškić, T.; Cekić, B.; Stojiljković, N.; Stanišić, N. Linseed, Walnut, and Algal Oil Emulsion Gels as Fat Replacers in Chicken Frankfurters: Effects on Composition, Lipid Profile and Sensory Quality. Foods 2025, 14, 2677. [Google Scholar] [CrossRef] [PubMed]
- Stanišić, N.; Kurćubić, V.S.; Stajić, S.B.; Tomasevic, I.D.; Tomasevic, I. Integration of Dietary Fibre for Health Benefits, Improved Structure, and Nutritional Value of Meat Products and Plant-Based Meat Alternatives. Foods 2025, 14, 2090. [Google Scholar] [CrossRef] [PubMed]
- Aviles, M.V.; Naef, E.F.; Abalos, R.A.; Lound, L.H.; Gómez, M.B.; Olivera, D.F. Use of a Rice Industry By-Product as a Meat Replacer in a Hybrid Chicken Patty: Technological and Sensory Impact. Int. J. Gastron. Food Sci. 2023, 31, 100674. [Google Scholar] [CrossRef]
- Chandler, S.L.; McSweeney, M.B. Characterizing the Properties of Hybrid Meat Burgers Made with Pulses and Chicken. Int. J. Gastron. Food Sci. 2022, 27, 100492. [Google Scholar] [CrossRef]
- Li, Y.; Liu, X.; Zhang, J.; Yang, Z.; Zhou, C.; Wu, P.; Li, C.; Xu, X.; Tang, C.; Zhou, G.; et al. Textured Vegetable Protein as a Partial Replacement for Lean Meat in Salami Analogues: Perspectives on Physicochemical Properties, Flavour and Proteome Changes. Food Chem. 2025, 463, 140844. [Google Scholar] [CrossRef]
- Dos Santos, M.; Ribeiro, W.O.; Monteiro, J.D.S.; Dos Santos, B.A.; Campagnol, P.C.B.; Pollonio, M.A.R. Effect of Transglutaminase Treatment on the Structure and Sensory Properties of Rice- or Soy-Based Hybrid Sausages. Foods 2023, 12, 4226. [Google Scholar] [CrossRef]
- Flores, M.; Hernán, A.; Salvador, A.; Belloch, C. Influence of Soaking and Solvent Extraction for Deodorization of Texturized Pea Protein Isolate on the Formulation and Properties of Hybrid Meat Patties. J. Sci. Food Agric. 2023, 103, 2806–2814. [Google Scholar] [CrossRef]
- Taylor, J.; Ahmed, I.A.M.; Al-Juhaimi, F.Y.; Bekhit, A.E.-D.A. Consumers’ Perceptions and Sensory Properties of Beef Patty Analogues. Foods 2020, 9, 63. [Google Scholar] [CrossRef]
- Barker, S.; McSweeney, M.B. Sensory Characterization of Yellow Pea and Ground Chicken Hybrid Meat Burgers Using Static and Dynamic Methodologies. J. Food Sci. 2022, 87, 5390–5401. [Google Scholar] [CrossRef]
- Krawczyk, A.; Fernández-López, J.; Zimoch-Korzycka, A. Insect Protein as a Component of Meat Analogue Burger. Foods 2024, 13, 1806. [Google Scholar] [CrossRef]
- Kim, G.H.; Chin, K.B. Effects of Faba Bean Protein Isolate on Rheological Properties of Pork Myofibrillar Protein Gels and Quality Characteristics of Pork Low-fat Model Sausages. J. Sci. Food Agric. 2024, 104, 6322–6329. [Google Scholar] [CrossRef] [PubMed]
- Ramanathan, R.; Hunt, M.C.; Mancini, R.A.; Nair, M.N.; Denzer, M.L.; Suman, S.P.; Mafi, G.G. Recent Updates in Meat Color Research: Integrating Traditional and High-Throughput Approaches. Meat Muscle Biol. 2020, 4, 1–24. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stanišić, N.; Delić, N.; Cekić, B.; Stojiljković, N.; Gogić, M.; Samolovac, L.; Stajić, S. Current Processing Technologies and Challenges in Hybrid Meat Production. Processes 2025, 13, 2853. https://doi.org/10.3390/pr13092853
Stanišić N, Delić N, Cekić B, Stojiljković N, Gogić M, Samolovac L, Stajić S. Current Processing Technologies and Challenges in Hybrid Meat Production. Processes. 2025; 13(9):2853. https://doi.org/10.3390/pr13092853
Chicago/Turabian StyleStanišić, Nikola, Nikola Delić, Bogdan Cekić, Nenad Stojiljković, Marija Gogić, Ljiljana Samolovac, and Slaviša Stajić. 2025. "Current Processing Technologies and Challenges in Hybrid Meat Production" Processes 13, no. 9: 2853. https://doi.org/10.3390/pr13092853
APA StyleStanišić, N., Delić, N., Cekić, B., Stojiljković, N., Gogić, M., Samolovac, L., & Stajić, S. (2025). Current Processing Technologies and Challenges in Hybrid Meat Production. Processes, 13(9), 2853. https://doi.org/10.3390/pr13092853