Physics-Informed Neural Networks for Parameter Identification of Equivalent Thermal Parameters in Residential Buildings During Winter Electric Heating
Abstract
1. Introduction
2. Methods
2.1. Equivalent Thermal Parameters (ETPs) Model
2.2. Physics-Informed Neural Network (PINN) Method
2.3. PINN-Based Parameter Identification for ETP Models
Algorithm 1: PINN Training for Parameter Identification |
|
3. Case Study
3.1. Dataset Description
3.2. Objectives and Validation Methods
3.3. Simulation Environment
3.4. Experimental Setup and Results
3.4.1. Experimental Setup
3.4.2. Results and Efficiency Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Shi, Q.; Li, F.; Hu, Q.; Wang, Z. Dynamic demand control for system frequency regulation: Concept review, algorithm comparison, and future vision. Electr. Power Syst. Res. 2018, 154, 75–87. [Google Scholar] [CrossRef]
- Bastida, H.; Ugalde-Loo, C.E.; Abeysekera, M.; Qadrdan, M.; Wu, J. Thermal Dynamic Modelling and Temperature Controller Design for a House. Energy Procedia 2019, 158, 2800–2805. [Google Scholar] [CrossRef]
- Lu, N. An Evaluation of the HVAC Load Potential for Providing Load Balancing Service. IEEE Trans. Smart Grid 2012, 3, 1263–1270. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, X.; Zhang, J. Regulation capability evaluation of individual electric heating load based on radial basis function neural network. Therm. Sci. 2019, 23, 2821–2829. [Google Scholar] [CrossRef]
- Amadeh, A.; Lee, Z.E.; Max Zhang, K. Building cluster demand flexibility: An innovative characterization framework and applications at the planning and operational levels. Energy Convers. Manag. 2023, 283, 116884. [Google Scholar] [CrossRef]
- Cheng, L.M.; Bao, Y.Q. A Day-Ahead Scheduling of Large-Scale Thermostatically Controlled Loads Model Considering Second-Order Equivalent Thermal Parameters Model. IEEE Access 2020, 8, 102321–102334. [Google Scholar] [CrossRef]
- Reynolds, A. Liberating Lévy walk research from the shackles of optimal foraging. Phys. Life Rev. 2015, 14, 59–83. [Google Scholar] [CrossRef]
- Li, Y.; O’Neill, Z.; Zhang, L.; Chen, J.; Im, P.; DeGraw, J. Grey-box modeling and application for building energy simulations—A critical review. Renew. Sustain. Energy Rev. 2021, 146, 111174. [Google Scholar] [CrossRef]
- Pokorska-Silva, I.; Nowoświat, A.; Fedorowicz, L. Identification of thermal parameters of a building envelope based on the cooling process of a building object. J. Build. Phys. 2020, 43, 503–527. [Google Scholar] [CrossRef]
- Wang, J.; Jiang, Y.; Tang, C.Y.; Song, L. Development and validation of a second-order thermal network model for residential buildings. Appl. Energy 2022, 306, 118124. [Google Scholar] [CrossRef]
- Rivera, A.K.; Sánchez, J.; Chen Austin, M. Parameter identification approach to represent building thermal dynamics reducing tuning time of control system gains: A case study in a tropical climate. Front. Built Environ. 2022, 8, 949426. [Google Scholar] [CrossRef]
- De Coninck, R.; Magnusson, F.; Åkesson, J.; Helsen, L. Toolbox for development and validation of grey-box building models for forecasting and control. J. Build. Perform. Simul. 2016, 9, 288–303. [Google Scholar] [CrossRef]
- Shamsi, M.H.; Ali, U.; Mangina, E.; O’Donnell, J. Feature assessment frameworks to evaluate reduced-order grey-box building energy models. Appl. Energy 2021, 298, 117174. [Google Scholar] [CrossRef]
- Bao, Y.; Cheng, L. Parameter Identification Method of Second-order Equivalent Thermal Parameter Model for Air Conditioning Loads. Dianli Xitong Zidonghua/Autom. Electr. Power Syst. 2021, 45, 37–43. [Google Scholar] [CrossRef]
- Wu, C.; Shen, H.; Wang, Z.; Huang, T.; Fan, S.; He, G. Data-driven Online Identification Method for Parameters of Inverter Air-conditioning Load Model. Dianli Xitong Zidonghua/Autom. Electr. Power Syst. 2022, 46, 120–129. [Google Scholar] [CrossRef]
- Sahu, V.S.D.M.; Samal, P.; Panigrahi, C.K. Tyrannosaurus optimization algorithm: A new nature-inspired meta-heuristic algorithm for solving optimal control problems. E-Prime-Adv. Electr. Eng. Electron. Energy 2023, 5, 100243. [Google Scholar] [CrossRef]
- Zhang, S.; Shi, H.; Wang, B.; Ma, C.; Li, Q. A Dynamic Hierarchical Improved Tyrannosaurus Optimization Algorithm with Hybrid Topology Structure. Mathematics 2024, 12, 1459. [Google Scholar] [CrossRef]
- Wu, K.; Yu, Y. Parameter Identification Method for Air Conditioning Load Models Based on Improved Harris Hawk Optimization Algorithm. In Proceedings of the 7th IEEE International Conference on Information Systems and Computer Aided Education (ICISCAE 2024), Dalian, China, 27–29 September 2024; pp. 783–790. [Google Scholar] [CrossRef]
- Leprince, J.; Madsen, H.; Miller, C.; Real, J.P.; van der Vlist, R.; Basu, K.; Zeiler, W. Fifty shades of grey: Automated stochastic model identification of building heat dynamics. Energy Build. 2022, 266, 112095. [Google Scholar] [CrossRef]
- Rivera, A.K.; Sánchez, J.; Mora, D.; Austin, M.C. Inspection of the Identification of Thermal Modeling Process in Buildings: A Proposed Methodology for a Case Study in Tropical Climate. In Proceedings of the Advances in Automation and Robotics Research, Monterrey, Mexico, 17–19 November 2021; Moreno, H.A., Carrera, I.G., Ramírez-Mendoza, R.A., Baca, J., Banfield, I.A., Eds.; Springer: Cham, Switzerland, 2022; pp. 172–180. [Google Scholar] [CrossRef]
- Song, Z.; Shi, J.; Li, S.; Chen, Z.; Jiao, F.; Yang, W.; Zhang, Z. Data-driven and physical model-based evaluation method for the achievable demand response potential of residential consumers’ air conditioning loads. Appl. Energy 2022, 307, 118017. [Google Scholar] [CrossRef]
- Guo, Z.; Coffman, A.R.; Munk, J.; Im, P.; Kuruganti, T.; Barooah, P. Aggregation and data driven identification of building thermal dynamic model and unmeasured disturbance. Energy Build. 2021, 231, 110500. [Google Scholar] [CrossRef]
- Gao, C.; Guo, Y.; Xu, Y.; Huang, J.; Zhang, F.; Hu, W.; Liu, Q. A deep-learning approach for modeling the demand function of air conditioning resources with respect to the electricity prices. Appl. Energy 2025, 392, 125977. [Google Scholar] [CrossRef]
- Sabir, S.; Rueda, L.; Fournier, M.; Nagarsheth, S.; Agbossou, K.; Henao, N.; Kelouwani, S. Modeling and Parameter Estimation of Electric Thermal Storage utilizing Residual Components for Residential Consumer. In Proceedings of the 2024 IEEE Conference on Technologies for Sustainability, Portland, OR, USA, 14–17 April 2024; pp. 144–150, ISSN 2640-6810. [Google Scholar] [CrossRef]
- Raissi, M.; Perdikaris, P.; Karniadakis, G. Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 2019, 378, 686–707. [Google Scholar] [CrossRef]
- Luo, X.; Wang, Y.; Zhu, Q.; Liu, H.; Wang, S.; Wu, M. Physics-Informed Neural Network for Parameter identification of Air Conditioning Load Models. In Proceedings of the 2024 7th International Conference on Energy, Electrical and Power Engineering (CEEPE), Yangzhou, China, 26–28 April 2024; pp. 948–953. [Google Scholar] [CrossRef]
- Sonderegger, R.C. Dynamic Models of House Heating Based on Equivalent Thermal Parameters; Princeton University: Princeton, NJ, USA, 1978. [Google Scholar]
Method | Hyperparameters |
---|---|
PINN | Layers: 3–5, tanh activation, learning rate 0.001, physical weight: 1, |
LR | Least-squares fitting, second-order ETP model |
GA | Population: 50, Iter: 1000, Init search space: , |
PSO | Population: 50, Iter: 1000, Init search space: , |
TROA | Population: 50, Iter: 1000, Init search space: , |
RF | Trees: 100, Max depth: 10 |
XGBoost | Learning rate: 0.1, Trees: 100 |
LSTM | Layers: 2, Hidden units: 50, Learning rate: 0.001 |
Method | MAE (°C) | RMSE (°C) | MAPE (%) |
---|---|---|---|
PINN | 0.223 ± 0.191 [0.05, 0.40] | 0.73 ± 0.20 [0.54, 0.92] | 3.66 ± 1.57 [2.21, 5.11] |
LR | 6.957 ± 4.863 [2.46, 11.46] | 7.53 ± 5.13 [2.79, 12.27] | 34.39 ± 26.97 [9.46, 59.32] |
GA | 0.905 ± 0.656 [0.35, 1.47] | 1.22 ± 0.70 [0.62, 1.82] | 8.31 ± 10.07 [0.74, 15.88] |
PSO | 0.385 ± 0.242 [0.19, 0.58] | 0.89 ± 0.28 [0.66, 1.12] | 4.88 ± 3.10 [2.27, 7.49] |
TROA | 0.934 ± 0.468 [0.57, 1.30] | 1.35 ± 0.54 [0.91, 1.79] | 8.45 ± 8.48 [2.36, 14.54] |
RF | 3.077 ± 1.345 [1.98, 4.18] | 3.94 ± 2.13 [2.28, 5.60] | 20.45 ± 22.71 [3.39, 37.51] |
XGBoost | 3.187 ± 1.309 [2.11, 4.26] | 4.05 ± 2.07 [2.44, 5.66] | 20.99 ± 22.52 [3.99, 37.99] |
LSTM | 3.421 ± 1.462 [2.24, 4.60] | 4.56 ± 2.48 [2.68, 6.45] | 23.20 ± 26.40 [1.41, 44.99] |
Method | PINN | LR | GA | PSO | TROA | RF | XGBoost | LSTM |
---|---|---|---|---|---|---|---|---|
Time (s) | 14.6 ± 0.9 | 0.24 ± 0.03 | 1165.5 ± 79 | 451.4 ± 21.6 | 226.3 ± 24.3 | 0.24 ± 0.01 | 0.041 ± 0.003 | 71.2 ± 3.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, S.; An, Q.; Yuan, Z.; Lei, P. Physics-Informed Neural Networks for Parameter Identification of Equivalent Thermal Parameters in Residential Buildings During Winter Electric Heating. Processes 2025, 13, 2860. https://doi.org/10.3390/pr13092860
Liu S, An Q, Yuan Z, Lei P. Physics-Informed Neural Networks for Parameter Identification of Equivalent Thermal Parameters in Residential Buildings During Winter Electric Heating. Processes. 2025; 13(9):2860. https://doi.org/10.3390/pr13092860
Chicago/Turabian StyleLiu, Sijia, Qi An, Ziyi Yuan, and Pengchao Lei. 2025. "Physics-Informed Neural Networks for Parameter Identification of Equivalent Thermal Parameters in Residential Buildings During Winter Electric Heating" Processes 13, no. 9: 2860. https://doi.org/10.3390/pr13092860
APA StyleLiu, S., An, Q., Yuan, Z., & Lei, P. (2025). Physics-Informed Neural Networks for Parameter Identification of Equivalent Thermal Parameters in Residential Buildings During Winter Electric Heating. Processes, 13(9), 2860. https://doi.org/10.3390/pr13092860