Technical Feasibility of Producing and Utilizing Livestock Manure-Derived Biochar for Soil Carbon Sequestration in South Korea: A Review
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Biochar Production Technologies
3.2. Thermochemical Decomposition Characteristics of Biomass
3.3. Standards for Biochar Quality
3.4. Physicochemical Charateristics of Biochar
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Aigner, E.; Görg, C.; Krisch, A.; Madner, V.; Muhar, A.; Novy, A.; Posch, A.; Steininger, K.W.; Bohunovsky, L.; Essletzbichler, J.; et al. Technical Summary. In APCC Special Report: Strukturen für ein Klimafreundliches Leben; Görg, C., Madner, V., Muhar, A., Novy, A., Posch, A., Steininger, K.W., Aigner, E., Eds.; Springer: Berlin/Heidelberg, Germany, 2023; pp. 105–170. [Google Scholar]
- Joseph, S.; Cowie, A.L.; Van Zwieten, L.; Bolan, N.; Budai, A.; Buss, W.; Cayuela, M.L.; Graber, E.R.; Ippolito, J.A.; Kuzyakov, Y. How biochar works, and when it doesn’t: A review of mechanisms controlling soil and plant responses to biochar. Gcb Bioenergy 2021, 13, 1731–1764. [Google Scholar] [CrossRef]
- Lehmann, J.; Joseph, S. Biochar for Environmental Management: Science, Technology and Implementation, 2nd ed.; Routledge: London, UK, 2015; p. 976. [Google Scholar]
- Schmidt, H.P.; Kammann, C.; Hagemann, N.; Leifeld, J.; Bucheli, T.D.; Sánchez Monedero, M.A.; Cayuela, M.L. Biochar in agriculture–A systematic review of 26 global meta-analyses. GCB Bioenergy 2021, 13, 1708–1730. [Google Scholar] [CrossRef]
- IPCC Core Writing Team. IPCC Core Writing Team. Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Intergovernmental Panel on Climate Change (IPCC): Geneva, Switzerland, 2023; p. 184. [Google Scholar]
- Liang, B.; Lehmann, J.; Solomon, D.; Kinyangi, J.; Grossman, J.; O’Neill, B.; Skjemstad, J.O.; Thies, J.; Luizão, F.J.; Petersen, J. Black carbon increases cation exchange capacity in soils. Soil Sci. Soc. Am. J. 2006, 70, 1719–1730. [Google Scholar] [CrossRef]
- EBC. European Biochar Certificate—Guidelines for a Sustainable Production of Biochar; Version 10.4E; Carbon Standards International (CSI): Frick, Switzerland, 2024. [Google Scholar]
- Zhang, Z.; Yang, J.; Qian, J.; Zhao, Y.; Wang, T.; Zhai, Y. Biowaste hydrothermal carbonization for hydrochar valorization: Skeleton structure, conversion pathways and clean biofuel applications. Bioresour. Technol. 2021, 324, 124686. [Google Scholar] [CrossRef]
- Mizrachi, E.; Mansfield, S.D.; Myburg, A.A. Cellulose factories: Advancing bioenergy production from forest trees. New Phytol. 2012, 194, 54–62. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Salas, W.; Zhang, R.; Krauter, C.; Rotz, A.; Mitloehner, F. Manure-DNDC: A biogeochemical process model for quantifying greenhouse gas and ammonia emissions from livestock manure systems. Nutr. Cycl. Agroecosyst. 2012, 93, 163–200. [Google Scholar] [CrossRef]
- Han, L.; Nie, X.; Wei, J.; Gu, M.; Wu, W.; Chen, M. Effects of feedstock biopolymer compositions on the physiochemical characteristics of dissolved black carbon from lignocellulose-based biochar. Sci. Total Environ. 2021, 751, 141491. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Gui, X.; Ji, W.; Zhou, C. Effect of calcium dihydrogen phosphate addition on carbon retention and stability of biochars derived from cellulose, hemicellulose, and lignin. Chemosphere 2020, 251, 126335. [Google Scholar] [CrossRef]
- Li, X.; Cen, K.; Wang, L.; Jia, D.; Zhu, X.; Chen, D. Co-pyrolysis of cellulose and lignin: Effects of pyrolysis temperature, residence time, and lignin percentage on the properties of biochar using response surface methodology. Ind. Crops Prod. 2024, 219, 119071. [Google Scholar] [CrossRef]
- Dieguez-Alonso, A.; Funke, A.; Anca-Couce, A.; Rombolà, A.G.; Ojeda, G.; Bachmann, J.; Behrendt, F. Towards biochar and hydrochar engineering—Influence of process conditions on surface physical and chemical properties, thermal stability, nutrient availability, toxicity and wettability. Energies 2018, 11, 496. [Google Scholar] [CrossRef]
- Quintana-Najera, J.; Blacker, A.J.; Fletcher, L.A.; Ross, A.B. The effect of augmentation of biochar and hydrochar in anaerobic digestion of a model substrate. Bioresour. Technol. 2021, 321, 124494. [Google Scholar] [CrossRef] [PubMed]
- Kambo, H.S.; Dutta, A. A comparative review of biochar and hydrochar in terms of production, physico-chemical properties and applications. Renew. Sustain. Energy Rev. 2015, 45, 359–378. [Google Scholar] [CrossRef]
- Masoumi, S.; Borugadda, V.B.; Nanda, S.; Dalai, A.K. Hydrochar: A Review on Its Production Technologies and Applications. Catalysts 2021, 11, 939. [Google Scholar] [CrossRef]
- Tripathi, M.; Sahu, J.N.; Ganesan, P. Effect of process parameters on production of biochar from biomass waste through pyrolysis: A review. Renew. Sustain. Energy Rev. 2016, 55, 467–481. [Google Scholar] [CrossRef]
- Keiluweit, M.; Wanzek, T.; Kleber, M.; Nico, P.; Fendorf, S. Anaerobic microsites have an unaccounted role in soil carbon stabilization. Nat. Commun. 2017, 8, 1771. [Google Scholar] [CrossRef]
- Tomczyk, A.; Sokołowska, Z.; Boguta, P. Biochar physicochemical properties: Pyrolysis temperature and feedstock kind effects. Rev. Environ. Sci. Bio/Technol. 2020, 19, 191–215. [Google Scholar] [CrossRef]
- Zhang, A.; Cui, L.; Pan, G.; Li, L.; Hussain, Q.; Zhang, X.; Zheng, J.; Crowley, D. Effect of biochar amendment on yield and methane and nitrous oxide emissions from a rice paddy from Tai Lake plain, China. Agric. Ecosyst. Environ. 2010, 139, 469–475. [Google Scholar] [CrossRef]
- Libra, J.A.; Ro, K.S.; Kammann, C.; Funke, A.; Berge, N.D.; Neubauer, Y.; Titirici, M.-M.; Fühner, C.; Bens, O.; Kern, J.; et al. Hydrothermal carbonization of biomass residuals- a comparative review of the chemistry, processes and applications of wet and dry pyrolysis. Biofuels 2011, 2, 71–106. [Google Scholar] [CrossRef]
- Rural Development Administration, Notice No. 2024-2, Establishment of Fertilizer Process Standards. RDA: Republic of Korea. 2024. Available online: https://www.rda.go.kr/viewer/doc.html?fn=farmprmninfo1000007947900&rs=/upload/board/farmprmninfo/result/202506/ (accessed on 4 September 2025).
- Han, K.-H.; Yun, S.-I.; Kwak, J.-H.; Lee, S.-I. A Review on International Carbon Credit Certification Methodologies for Biochar as a Soil Amendment. Korean J. Soil Sci. Fertil. 2023, 56, 572–594. [Google Scholar] [CrossRef]
- Wang, J.; Wang, S. Preparation, modification and environmental application of biochar: A review. J. Clean. Prod. 2019, 227, 1002–1022. [Google Scholar] [CrossRef]
- International Biochar Initiative. Standardized Product Definition and Product Testing Guidelines for Biochar That Is Used in Soil; Version 2.1; International Biochar Initiative: Norfolk, VA, USA, 2024; Available online: https://biochar-international.org/wp-content/uploads/2020/06/IBI_Biochar_Standards_V2.1_Final2.pdf (accessed on 4 September 2025).
- Li, D.; Cui, H.; Cheng, Y.; Xue, L.; Wang, B.; He, H.; Hua, Y.; Chu, Q.; Feng, Y.; Yang, L. Chemical aging of hydrochar improves the Cd2+ adsorption capacity from aqueous solution. Environ. Pollut. 2021, 287, 117562. [Google Scholar] [CrossRef] [PubMed]
- Lang, J.; Matějová, L.; Cuentas-Gallegos, A.K.; Lobato-Peralta, D.R.; Ainassaari, K.; Gómez, M.M.; Solís, J.L.; Mondal, D.; Keiski, R.L.; Cruz, G.J.F. Evaluation and selection of biochars and hydrochars derived from agricultural wastes for the use as adsorbent and energy storage materials. J. Environ. Chem. Eng. 2021, 9, 105979. [Google Scholar] [CrossRef]
- Park, J.H.; Kim, H.C.; Kim, Y.J.; Seo, D.C. Adsorption characteristics of anionic dye by Fe-decorated biochar derived from fallen leaves. Korean J. Environ. Agric. 2020, 39, 289–296. [Google Scholar] [CrossRef]
- Shao, Y.; Tan, H.; Shen, D.; Zhou, Y.; Jin, Z.; Zhou, D.; Lu, W.; Long, Y. Synthesis of improved hydrochar by microwave hydrothermal carbonization of green waste. Fuel 2020, 266, 117146. [Google Scholar] [CrossRef]
- Taskin, E.; de Castro Bueno, C.; Allegretta, I.; Terzano, R.; Rosa, A.H.; Loffredo, E. Multianalytical characterization of biochar and hydrochar produced from waste biomasses for environmental and agricultural applications. Chemosphere 2019, 233, 422–430. [Google Scholar] [CrossRef]
- Delgado-Moreno, L.; Bazhari, S.; Gasco, G.; Méndez, A.; El Azzouzi, M.; Romero, E. New insights into the efficient removal of emerging contaminants by biochars and hydrochars derived from olive oil wastes. Sci. Total Environ. 2021, 752, 141838. [Google Scholar] [CrossRef]
- Han, L.; Ro, K.S.; Wang, Y.; Sun, K.; Sun, H.; Libra, J.A.; Xing, B. Oxidation resistance of biochars as a function of feedstock and pyrolysis condition. Sci. Total Environ. 2018, 616–617, 335–344. [Google Scholar] [CrossRef]
- Kang, Y.-G.; Lee, J.-Y.; Chun, J.-H.; Lee, J.-H.; Yun, Y.-U.; Oh, T.-K. Adsorption characteristics of NH 4-N by biochar derived from pine needles. Korean J. Agric. Sci. 2021, 48, 589–596. [Google Scholar] [CrossRef]
- Kloss, S.; Zehetner, F.; Dellantonio, A.; Hamid, R.; Ottner, F.; Liedtke, V.; Schwanninger, M.; Gerzabek, M.H.; Soja, G. Characterization of Slow Pyrolysis Biochars: Effects of Feedstocks and Pyrolysis Temperature on Biochar Properties. J. Environ. Qual. 2012, 41, 990–1000. [Google Scholar] [CrossRef]
- Koh, I.-H.; Kim, J.; Kim, G.S.; Park, M.S.; Kang, D.M.; Ji, W.H. Stabilization of Agricultural Soil Contaminated by Arsenic and Heavy Metals using Biochar derived from Buffalo Weed. J. Soil Groundw. Environ. 2016, 21, 87–100. [Google Scholar] [CrossRef]
- Eibisch, N.; Helfrich, M.; Don, A.; Mikutta, R.; Kruse, A.; Ellerbrock, R.; Flessa, H. Properties and Degradability of Hydrothermal Carbonization Products. J. Environ. Qual. 2013, 42, 1565–1573. [Google Scholar] [CrossRef] [PubMed]
- Gronwald, M.; Don, A.; Tiemeyer, B.; Helfrich, M. Effects of fresh and aged chars from pyrolysis and hydrothermal carbonization on nutrient sorption in agricultural soils. Soil 2015, 1, 475–489. [Google Scholar] [CrossRef]
- Nzediegwu, C.; Naeth, M.A.; Chang, S.X. Carbonization temperature and feedstock type interactively affect chemical, fuel, and surface properties of hydrochars. Bioresour. Technol. 2021, 330, 124976. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.; Feng, Y.; Xue, L.; Sun, H.; Han, L.; Yang, L.; Sun, Q.; Chu, Q. Biowaste to treasure: Application of microbial-aged hydrochar in rice paddy could improve nitrogen use efficiency and rice grain free amino acids. J. Clean. Prod. 2019, 240, 118180. [Google Scholar] [CrossRef]
- Li, B.; Zhang, Y.; Xu, J.; Mei, Y.; Fan, S.; Xu, H. Effect of carbonization methods on the properties of tea waste biochars and their application in tetracycline removal from aqueous solutions. Chemosphere 2021, 267, 129283. [Google Scholar] [CrossRef]
- Zhang, S.; Zhu, X.; Zhou, S.; Shang, H.; Luo, J.; Tsang, D.C.W. Hydrothermal Carbonization for Hydrochar Production and Its Application. In Biochar from Biomass and Waste; Elsevier: Amsterdam, The Netherlands, 2019; pp. 275–294. [Google Scholar]
- Yao, Z.; Ma, X. Hydrothermal carbonization of Chinese fan palm. Bioresour. Technol. 2019, 282, 28–36. [Google Scholar] [CrossRef]
- Wang, M.; Zhang, M.; Chen, X.; Chen, A.; Xiao, R.; Chen, X. Hydrothermal conversion of Chinese cabbage residue for sustainable agriculture: Influence of process parameters on hydrochar and hydrolysate. Sci. Total Environ. 2022, 812, 152478. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhang, Y.; Ngo, H.H.; Guo, W.; Wen, H.; Zhang, D.; Li, C.; Qi, L. Characterization and sulfonamide antibiotics adsorption capacity of spent coffee grounds based biochar and hydrochar. Sci. Total Environ. 2020, 716, 137015. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Ma, S.; Chen, J. A novel pyro-hydrochar via sequential carbonization of biomass waste: Preparation, characterization and adsorption capacity. J. Clean. Prod. 2018, 176, 187–195. [Google Scholar] [CrossRef]
- Liu, Y.; Sohi, S.P.; Jing, F.; Chen, J. Oxidative ageing induces change in the functionality of biochar and hydrochar: Mechanistic insights from sorption of atrazine. Environ. Pollut. 2019, 249, 1002–1010. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, L.; Wang, X.; Jing, F.; Chang, R.; Chen, J. Oxidative ageing of biochar and hydrochar alleviating competitive sorption of Cd(II) and Cu(II). Sci. Total Environ. 2020, 725, 138419. [Google Scholar] [CrossRef]
- Chen, X.-j.; Lin, Q.-m.; Rizwan, M.; Zhao, X.-r.; Li, G.-t. Steam explosion of crop straws improves the characteristics of biochar as a soil amendment. J. Integr. Agric. 2019, 18, 1486–1495. [Google Scholar] [CrossRef]
- Zhang, B.; Heidari, M.; Regmi, B.; Salaudeen, S.; Arku, P.; Thimmannagari, M.; Dutta, A. Hydrothermal Carbonization of Fruit Wastes: A Promising Technique for Generating Hydrochar. Energies 2018, 11, 2022. [Google Scholar] [CrossRef]
- Eibisch, N.; Schroll, R.; Fuss, R. Effect of pyrochar and hydrochar amendments on the mineralization of the herbicide isoproturon in an agricultural soil. Chemosphere 2015, 134, 528–535. [Google Scholar] [CrossRef] [PubMed]
- Rex, D.; Schimmelpfennig, S.; Jansen-Willems, A.; Moser, G.; Kammann, C.; Müller, C. Microbial community shifts 2.6 years after top dressing of Miscanthus biochar, hydrochar and feedstock on a temperate grassland site. Plant Soil 2015, 397, 261–271. [Google Scholar] [CrossRef]
- Schimmelpfennig, S.; Kammann, C.; Mumme, J.; Marhan, S.; Bamminger, C.; Moser, G.; Müller, C. Degradation of Miscanthus×giganteus biochar, hydrochar and feedstock under the influence of disturbance events. Appl. Soil Ecol. 2017, 113, 135–150. [Google Scholar] [CrossRef][Green Version]
- Schimmelpfennig, S.; Müller, C.; Grünhage, L.; Koch, C.; Kammann, C. Biochar, hydrochar and uncarbonized feedstock application to permanent grassland—Effects on greenhouse gas emissions and plant growth. Agric. Ecosyst. Environ. 2014, 191, 39–52. [Google Scholar] [CrossRef]
- Kalderis, D.; Papameletiou, G.; Kayan, B. Assessment of Orange Peel Hydrochar as a Soil Amendment: Impact on Clay Soil Physical Properties and Potential Phytotoxicity. Waste Biomass Valorization 2019, 10, 3471–3484. [Google Scholar] [CrossRef]
- Ahmad, M.; Lee, S.S.; Dou, X.; Mohan, D.; Sung, J.-K.; Yang, J.E.; Ok, Y.S. Effects of pyrolysis temperature on soybean stover- and peanut shell-derived biochar properties and TCE adsorption in water. Bioresour. Technol. 2012, 118, 536–544. [Google Scholar] [CrossRef] [PubMed]
- Jian, X.; Zhuang, X.; Li, B.; Xu, X.; Wei, Z.; Song, Y.; Jiang, E. Comparison of characterization and adsorption of biochars produced from hydrothermal carbonization and pyrolysis. Environ. Technol. Innov. 2018, 10, 27–35. [Google Scholar] [CrossRef]
- Kalderis, D.; Kotti, M.S.; Méndez, A.; Gascó, G. Characterization of hydrochars produced by hydrothermal carbonization of rice husk. Solid Earth 2014, 5, 477–483. [Google Scholar] [CrossRef]
- Maghsoodi, M.R.; Najafi, N.; Reyhanitabar, A.; Oustan, S. Hydroxyapatite nanorods, hydrochar, biochar, and zeolite for controlled-release urea fertilizers. Geoderma 2020, 379, 114644. [Google Scholar] [CrossRef]
- Choi, I.W.; Seo, D.C.; Kang, S.W.; Lee, S.G.; Seo, Y.J.; Lim, B.J.; Heo, J.S.; Cho, J.S. Adsorption characteristics of heavy metals using sesame waste biochar. Korean J. Soil Sci. Fertil. 2013, 46, 8–15. [Google Scholar] [CrossRef]
- Toptas Tag, A.; Duman, G.; Yanik, J. Influences of feedstock type and process variables on hydrochar properties. Bioresour. Technol. 2018, 250, 337–344. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Lin, Q.; He, R.; Zhao, X.; Li, G. Hydrochar production from watermelon peel by hydrothermal carbonization. Bioresour. Technol. 2017, 241, 236–243. [Google Scholar] [CrossRef]
- Zhou, S.; Liang, H.; Han, L.; Huang, G.; Yang, Z. The influence of manure feedstock, slow pyrolysis, and hydrothermal temperature on manure thermochemical and combustion properties. Waste Manag. 2019, 88, 85–95. [Google Scholar] [CrossRef]
- Gasco, G.; Paz-Ferreiro, J.; Alvarez, M.L.; Saa, A.; Mendez, A. Biochars and hydrochars prepared by pyrolysis and hydrothermal carbonisation of pig manure. Waste Manag. 2018, 79, 395–403. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Yan, B.; Sun, Y.; Zhong, L.; Lu, W.; Chen, G. Potential of yak dung-derived hydrochar as fertilizer: Mechanism and model of controlled release of nitrogen. Sci. Total Environ. 2021, 781, 146665. [Google Scholar] [CrossRef] [PubMed]
- Keiluweit, M.; Nico, P.S.; Johnson, M.G.; Kleber, M. Dynamic molecular structure of plant biomass-derived black carbon (biochar). Environ. Sci. Technol. 2010, 44, 1247–1253. [Google Scholar] [CrossRef]
- Ronsse, F.; van Hecke, S.; Dickinson, D.; Prins, W. Production and characterization of slow pyrolysis biochar: Influence of feedstock type and pyrolysis conditions. GCB Bioenergy 2012, 5, 104–115. [Google Scholar] [CrossRef]
- Bridgeman, T.G.; Jones, J.M.; Shield, I.; Williams, P.T. Torrefaction of reed canary grass, wheat straw and willow to enhance solid fuel qualities and combustion properties. Fuel 2008, 87, 844–856. [Google Scholar] [CrossRef]
- Hoekman, S.K.; Broch, A.; Robbins, C. Hydrothermal carbonization (HTC) of lignocellulosic biomass. Energy Fuels 2011, 25, 1802–1810. [Google Scholar] [CrossRef]
- Reza, M.T.; Andert, J.; Wirth, B.; Busch, D.; Pielert, J.; Lynam, J.G.; Mumme, J. Hydrothermal carbonization of biomass for energy and crop production. Appl. Bioenergy 2014, 1, 11–29. [Google Scholar] [CrossRef]
- Begum, Y.A.; Kumari, S.; Jain, S.K.; Garg, M.C. A review on waste biomass-to-energy: Integrated thermochemical and biochemical conversion for resource recovery. Environ. Sci. Adv. 2024, 3, 1197–1216. [Google Scholar] [CrossRef]
- Ferraro, G.; Pecori, G.; Rosi, L.; Bettucci, L.; Fratini, E.; Casini, D.; Rizzo, A.M.; Chiaramonti, D. Biochar from lab-scale pyrolysis: Influence of feedstock and operational temperature. Biomass Convers. Biorefin. 2024, 14, 5901–5911. [Google Scholar] [CrossRef]
- MacCarthy, P. The principles of humic substances: An introduction to the first principle. In Humic Substances; The Royal Society of Chemistry: London, UK, 2001; pp. 19–30. [Google Scholar]
- Tsai, W.-T.; Huang, C.-N.; Chen, H.-R.; Cheng, H.-Y. Pyrolytic Conversion of Horse Manure into Biochar and Its Thermochemical and Physical Properties. Waste Biomass Valorization 2015, 6, 975–981. [Google Scholar] [CrossRef]
- Kiehbadroudinezhad, M.; Hosseinzadeh-Bandbafha, H.; Mabee, W.; Nanda, S.; Afshari, H.; Saeedi, M.; Rathgeber, B.; Zoroufchi Benis, K. Thermochemical pathways coupled with carbon capture for valorizing animal manure: A review. Biofuel Res. J. 2025, 12, 2373–2397. [Google Scholar] [CrossRef]
- Lupoi, J.; Smith, E. Characterization of Woody and Herbaceous Biomasses Lignin Composition with 1064 nm Dispersive Multichannel Raman Spectroscopy. Appl. Spectrosc. 2012, 66, 903–910. [Google Scholar] [CrossRef]
- Williams, C.L.; Emerson, R.M.; Tumuluru, J.S. Biomass compositional analysis for conversion to renewable fuels and chemicals. In Biomass Volume Estimation and Valorization for Energy; IntechOpen: London, UK, 2017; pp. 251–270. [Google Scholar]
- Li, X.-n.; Fan, X.-f.; Wu, J.-y.; Zhang, G.-f.; Liu, S.-y.; Wu, M.-j.; Cheng, Y.-b.; Zhang, N. Prediction of Cellulose, Hemicellulose, Lignin and Ash Content of Four Miscanthus Bio-Energy Crops Using Near-Infrared Spectroscopy. Guang Pu Xue Yu Guang Pu Fen Xi 2016, 36, 64–69. [Google Scholar] [PubMed]
- Vallejo, F.; Yánez-Sevilla, D.; Díaz-Robles, L.A.; Cubillos, F.; Espinoza-Pérez, A.; Espinoza-Pérez, L.; Pino-Cortés, E.; Cereceda-Balic, F. Insights into hydrothermal treatment of biomass blends: Assessing energy yield and ash content for biofuel enhancement. PLoS ONE 2024, 19, e0304054. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Gao, B.; Yao, Y.; Fang, J.; Zhang, M.; Zhou, Y.; Chen, H.; Yang, L. Effects of feedstock type, production method, and pyrolysis temperature on biochar and hydrochar properties. Chem. Eng. J. 2014, 240, 574–578. [Google Scholar] [CrossRef]
- Yang, H.; Yan, R.; Chen, H.; Lee, D.H.; Zheng, C. Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 2007, 86, 1781–1788. [Google Scholar] [CrossRef]
- Adhikari, S.; Moon, E.; Paz-Ferreiro, J.; Timms, W. Comparative analysis of biochar carbon stability methods and implications for carbon credits. Sci. Total Environ. 2024, 914, 169607. [Google Scholar] [CrossRef]
- Jafri, N.; Wong, W.; Doshi, V.; Yoon, L.; Cheah, K.H. A review on production and characterization of biochars for application in direct carbon fuel cells. Process Saf. Environ. Prot. 2018, 118, 152–166. [Google Scholar] [CrossRef]
- McKendry, P. Energy production from biomass (part 1): Overview of biomass. Bioresour. Technol. 2002, 83, 37–46. [Google Scholar] [CrossRef]
- Moghtaderi, B.; Meesri, C.; Wall, T.F. Pyrolytic characteristics of blended coal and woody biomass. Fuel 2004, 83, 745–750. [Google Scholar] [CrossRef]
- Cuiping, L.; Chuangzhi, W.; Haitao, H. Chemical elemental characteristics of biomass fuels in China. Biomass Bioenergy 2004, 27, 119–130. [Google Scholar] [CrossRef]
- Enders, A.; Hanley, K.; Whitman, T.; Joseph, S.; Lehmann, J. Characterization of biochars to evaluate recalcitrance and agronomic performance. Bioresour. Technol. 2012, 114, 644–653. [Google Scholar] [CrossRef] [PubMed]
- Bruun, E.W.; Hauggaard-Nielsen, H.; Ibrahim, N.; Egsgaard, H.; Ambus, P.; Jensen, P.A.; Dam-Johansen, K. Influence of fast pyrolysis temperature on biochar labile fraction and short-term carbon loss in a loamy soil. Biomass Bioenergy 2011, 35, 1182–1189. [Google Scholar] [CrossRef]
- Spokas, K.A.; Novak, J.M.; Venterea, R.T. Biochar’s role as an alternative N-fertilizer: Ammonia capture. Plant Soil 2011, 350, 35–42. [Google Scholar] [CrossRef]
- Yuan, J.-H.; Xu, R.-K.; Qian, W.; Wang, R.-H. Comparison of the ameliorating effects on an acidic ultisol between four crop straws and their biochars. J. Soils Sediments 2011, 11, 741–750. [Google Scholar] [CrossRef]
- Mukome, F.N.; Zhang, X.; Silva, L.C.; Six, J.; Parikh, S.J. Use of chemical and physical characteristics to investigate trends in biochar feedstocks. J. Agric. Food Chem. 2013, 61, 2196–2204. [Google Scholar] [CrossRef] [PubMed]
- Budai, A.; Zimmerman, A.; Cowie, A.; Webber, J.; Singh, B.P.; Glaser, B.; Masiello, C.; Andersson, D.; Lehmann, J.; Camps Arbestain, M.; et al. Biochar Carbon Stability Test Method: An assessment of methods to determine biochar carbon stability. Int. Biochar Initiat. 2013, 1, 1–20. [Google Scholar]
- Leung, D.Y.C.; Wu, X.; Leung, M.K.H. A review on biodiesel production using catalyzed transesterification. Appl. Energy 2010, 87, 1083–1095. [Google Scholar] [CrossRef]
- U.S. Environmental Protection Agency (USEPA). A Guide to the Biosolids Risk Assessments for the EPA Part 503 Rule; U.S. Environmental Protection Agency: Washington, DC, USA, 1995.
Classification | Biomass |
---|---|
Woody (12 types) | Bamboo [27], Cocoa [28], Fallen leaves [17,29,30], Grape [31], Oak [15], Olive [32], Pine [14,33,34], Poplar [27,35], Pear tree [36], Spruce [31,35], Sawdust [37,38,39,40], Tea tree [41] |
Herbaceous (23 types) | Apple [17,42], Banana [28], Bamboo shoot shell [17], Canola [39], Chinese fan palm [43], Chinese cabbage [44], Coffee [29,45], Corn [17,46,47,48], Cotton [17,49], Grape [17,50], Grass [37], Miscanthus [38,51,52,53,54], Oil-rape [49], Orange [55], Peanut [56], Rice [17,28,33,49,57,58,59], Straw [37], Sesame [60], Soybean [56], Sunflower [61], Water hyacinth [15], Watermelon [62], Wheat [35,39,49] |
Livestock manure (10 types) | Beef cattle [63], Broiler [63], Dairy cattle [63], Layer chicken [63], Manure pellet [39], Pig [64], Poultry [33,61], Poultry litter [63], Swine [33,63], Yak dung [65] |
Process | Description | Advantages | Disadvantages |
---|---|---|---|
Pyrolysis | The thermal decomposition of biomass at 400~700 °C, in the absence of oxygen, producing solid biochar, liquid bio-oil, and gaseous syngas. |
|
|
Hydrothermal carbonization | A thermochemical process that converts wet biomass into biochar (called hydrochar) in hot compressed water (180~250 °C) with the autogenic saturation vapor pressure of water. |
|
|
Torrefaction | A mild pyrolysis process within the temperature range of 200~300 °C in the absence of oxygen, which serves as the pretreatment of biomass to increase the heating value and hydrophobicity. |
|
|
Parameter | Pyrolysis | HTC 1 | Torrefaction |
---|---|---|---|
Biomass type | Dry | Wet | Dry |
Byproduct | Biochar, Bio-oil, Syngas | Hydrochar, Bio-Oil, Syngas | Mildly carbonized biomass, a little gas |
Temperature (°C) | 400–800 | 160–300 | 200–300 |
Residence time | Minutes to hours | Minutes to hours | Minutes to hours |
Solid yield (wt, %) | 25–50 | 50–80 | 70 |
Carbon content | High, aromatic 76–85 | 60–75 | 55–70 |
Surface area (BET, m2/g) | High (~200–400) | Low (1–20) | 5–50 |
Functional groups (FTIR) | C=C, COOH, | COOH, OH, C=O, C-O, limited aromatics | Limited(aromatic C-H), C=C |
pH | Alkaline | Acidic to neutral | Neutral to slightly acidic |
Ash content (compared to the raw biomass feedstock) | High | Low (the presence of compressed liquid) | High (depending on feedstock) |
Heavy metal retention | Possible accumulation | Potentially high | Feedstock dependent |
Leaching risk (toxicity) | Low if well-produced | Higher due to PAHs | Low |
Water holding capacity | High | Moderate | Low |
GHG mitigation potential | High (C sequestration, N2O reduction) | High | Low |
applications | Soil amendment, carbon sink adsorbent, soil additive, filler | Soil amendment, solid biofuel, functional material precursor, pollution control & water treatment | Renewable solid fuel, Co-firing with coal, bioenergy supply chain & logistics, feedstock for biochar |
Biomass | Statistics Parameter | Elemental Composition | Proximate Analysis | ||||||
---|---|---|---|---|---|---|---|---|---|
C | H | O | N | S | VM 1 | Ash | FC 2 | ||
(%, w/w) | (%, w/w) | ||||||||
Woody | n 3 | 8 | 5 | 3 | 7 | 0 | 3 | 7 | 4 |
Mean | 48.8 | 6.2 | 42.2 | 0.9 | - | 84.9 | 3.2 | 18.9 | |
S.d. 4 | 2.9 | 0.8 | 6.2 | 0.6 | - | 11.1 | 3.5 | 23.3 | |
Min. 5 | 44.1 | 5.4 | 37.4 | 0.1 | - | 72.5 | 0.7 | 0.1 | |
Max. 6 | 53.7 | 7.4 | 49.2 | 1.8 | - | 94.1 | 10.6 | 49.5 | |
Median | 48.7 | 6.1 | 40 | 0.8 | - | 88.0 | 1.8 | 13.1 | |
Herbaceous | n | 24 | 18 | 16 | 21 | 10 | 11 | 21 | 11 |
Mean | 43.8 | 5.8 | 42.5 | 3.2 | 1.1 | 79.5 | 6.6 | 11.8 | |
S.d. | 4.4 | 1.1 | 4.1 | 8.2 | 3.1 | 7.1 | 4.2 | 7.2 | |
Min. | 34.2 | 3.4 | 36.1 | 0.1 | 0 | 62.0 | 1.6 | 0.0 | |
Max. | 49.7 | 8.1 | 51.1 | 38.7 | 9.9 | 86.7 | 16.1 | 17.7 | |
Median | 44.2 | 6.1 | 41.7 | 1.2 | 0.1 | 81.7 | 6.4 | 14.9 | |
Livestock manure | n | 9 | 9 | 9 | 9 | 2 | 8 | 9 | 8 |
Mean | 35.4 | 4.7 | 26.9 | 3.4 | 10.7 | 57.7 | 27.3 | 14.0 | |
S.d. | 5.8 | 1.1 | 10.9 | 2.5 | 14.8 | 12.0 | 11.3 | 5.0 | |
Min. | 21 | 1.8 | 0.5 | 1.5 | 0.2 | 37.8 | 8.2 | 8.7 | |
Max. | 40.9 | 5.7 | 41 | 9.6 | 21.2 | 68.3 | 47.1 | 23.5 | |
Median | 36.8 | 4.9 | 28.6 | 2.7 | 10.7 | 62.8 | 26.7 | 12.4 |
Parameter | Conversion Characteristics of Biomass | Reference |
---|---|---|
Carbon | Woody biomass yields → high C 1, Poultry litter biochar → may reduce C at high T 2 | [66,87,88] |
Ash | High ash content (e.g., in manure) → increases risk of PAHs 3 and trace metal retention | |
pH | High-lignin biomass → alkaline pH (up to 10.5) | [3,89,90] |
CEC 4 | High ash and oxygenated groups → enhance CEC | |
Surface functional groups | Functional groups (O-containing) degrade at high T → lower adsorption capacity | |
VM 5 | VM decreases with increasing T → greater stability and sorption capacity | [62,88,91] |
Specific surface area | Surface area increases with T up to 600 °C → then may decrease due to structural collapse | |
Pore volume | High T releases volatiles → leading to pore formation |
Category | K-BFQS 1 | IBI 2 | EBC 3 |
---|---|---|---|
Definition | Biochar from agricultural and livestock residues, pyrolyzed at ≥350 °C | Biochar for soil use with no legal fertilizer status | Certified biochar for conventional or organic agriculture |
Carbon content (dry basis) | Agri-forestry residues: ≥40% Livestock manure: ≥30% | Class1: ≥60% Class2: ≥30% and <60% Class3: ≥10% and <30% | Declaration |
H/C molar ratio | <0.7 | ||
O/C molar ratio | <0.4 | - | <0.4 Declaration Recommended |
Moisture content | ≤30% | Declaration | 30% Recommended |
HCl-insoluble residue | ≤25% | - | - |
Labeling Requirements | Must display pH, and recommended usage on the package | Test results encouraged | Mandatory QR code, batch ID, and certification info |
pH | Declaration | ||
Volatile matter | - | Optional, declaration, % of total mass, dry basis | Required in basic analysis, thermogravimetric analysis (TGA) |
Nutrients | - | Optional (N, P, K, Ca, Mg, S) | Declaration (N, P, K, Mg, Ca, Fe) |
Electrical conductivity | - | Declaration (EC, dS/m) | Declaration Solid biochar EC differs from leachate EC, which reflects salt content |
Ash content | - | Declaration, % of total mass, dry basis | Declaration |
Bulk density | - | - | Declaration |
Particle size distribution | - | Declaration | Recommended |
Liming (if pH is above 7) | - | Declaration, %, CaCO3 | - |
Water holding capacity (WHC) | - | Optional | Declaration |
Cation exchange capacity (CEC) | - | Optional | - |
Batch traceability/QR Code | - | - | Mandatory for certified products |
Total surface area m2/g | - | Optional, Declaration, | - |
Feedstock traceability | - | Voluntary | Mandatory with full documentation |
Fire/explosion Safety | - | - | 30%, recommended |
Contaminants | K-BFQS 1 | IBI 2 | EBC 3 | USEPA- Biosolids 4 | K-Compost 5 | |
---|---|---|---|---|---|---|
Salt Content (NaCl or EC 6) | ≤2.0% NaCl | EC Declaration | Salt content: EC (μS/cm) × 52.8: indicate contamination of the feedstock. | - | - | |
Heavy Metals (mg/kg−1, dry matter, MCL 7) | Cd | 5 | 1.4–39 | 1.5 | 39 | 5 |
Pb | 130 | 121–300 | 120 | 300 | 130 | |
Hg | 2 | 1–17 | 1 | 17 | 2 | |
Cr | 200 | 93–1200 | 90 | 3000 | 200 | |
Cu | 360 | 143–6000 | 100 | 1500 | 360 | |
Zn | 900 | 416–7400 | 400 | 2800 | 900 | |
Ni | 45 | 47–420 | 50 | 420 | 45 | |
As | 45 | 13–100 | 13 | 41 | 45 | |
Organic Pollutants (dry basis, MCL) | PAHs 8 (mg/kg) | 6 | 6–300 | 6 ± 2.4 | - | - |
PCDD/Fs 9 (ng/kg, WHO-TEQ 10) | 20 | 17 | 20 | - | - | |
PCBs 11 (mg/kg) | 0.2 | 0.2–1 | 0.2 | 4.6 | - |
Biomass | Statistic Parameters | Elemental Composition | pH | EC 1 | CEC 2 | SSA 3 | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
C | H | O | N | S | Ash | ||||||
(%) | (-) | (dS/m) | (cmol/kg) | (m2 /g) | |||||||
Woody | n 4 | 29 | 13 | 5 | 13 | 1 | 23 | 28 | 18 | 9 | 4 |
Mean | 66.8 | 3.1 | 17.3 | 0.7 | 0.1 | 8.5 | 8.6 | 5.0 | 55.0 | 53.0 | |
S.d. 5 | 14.3 | 1.5 | 8.3 | 0.4 | - | 4.9 | 1.5 | 8.7 | 11.0 | 102.7 | |
Min. 6 | 46.3 | 1.3 | 7.0 | 0.1 | 0.1 | 1.9 | 5.3 | 0.2 | 36.5 | 1.0 | |
Max. 7 | 93.5 | 6.5 | 28.6 | 1.2 | 0.1 | 16.6 | 10.9 | 28.3 | 69.3 | 207.0 | |
Median | 68.9 | 2.8 | 19.3 | 0.8 | 0.1 | 8.2 | 8.9 | 1.3 | 57.4 | 1.9 | |
Herbaceous | n | 34 | 42 | 39 | 42 | 16 | 29 | 13 | 5 | 6 | 26 |
Mean | 65.6 | 4.6 | 21.4 | 1.5 | 0.2 | 15.2 | 9.2 | 22.6 | 16.9 | 146.0 | |
S.d. | 13.5 | 10.2 | 11.2 | 0.9 | 0.2 | 11.7 | 1.2 | 44.7 | 10.3 | 215.5 | |
Min. | 26.1 | 0.1 | 3.3 | 0.4 | 0.0 | 0.3 | 7.3 | 0.2 | 10.5 | 1.0 | |
Max. | 83.8 | 68.3 | 54.7 | 3.6 | 0.8 | 37.5 | 11.3 | 102.5 | 37.7 | 859.0 | |
Median | 69.4 | 2.9 | 18.7 | 1.2 | 0.1 | 12.7 | 9.1 | 4.4 | 13.8 | 18.0 | |
Livestock manure | n | 21 | 21 | 21 | 21 | 17 | 21 | 2 | 2 | 2 | 0 |
Mean | 37.7 | 1.5 | 6.3 | 2.4 | 1.6 | 51.3 | 8.3 | 12.1 | 12.5 | - | |
S.d. | 4.5 | 0.6 | 3.6 | 0.7 | 3.0 | 6.8 | 0.6 | 5.8 | 1.3 | - | |
Min. | 29.0 | 0.6 | 0.3 | 1.4 | 0.4 | 40.9 | 7.8 | 8.0 | 11.6 | - | |
Max. | 44.6 | 3.0 | 11.4 | 4.6 | 12.6 | 68.2 | 8.7 | 16.2 | 13.4 | - | |
Median | 37.5 | 1.4 | 6.5 | 2.3 | 0.6 | 50.0 | 8.3 | 12.1 | 12.5 | - |
Biomass | Statistical Parameters | Elemental Composition | pH | EC 2 | CEC 3 | SSA 4 | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
C | H | O | N | S | Ash | ||||||
(%) | (-) | (dS/m) | (cmol/kg) | (m2 /g) | |||||||
Woody | n 5 | 20 | 11 | 10 | 11 | 1 | 9 | 12 | 3 | 3 | 7 |
Mean | 60.9 | 4.3 | 28.1 | 1.0 | 0.3 | 17.3 | 4.5 | 0.1 | 21.3 | 7.1 | |
S.d. 6 | 7.8 | 0.9 | 4.9 | 0.9 | - | 21.0 | 1.0 | 0.1 | 5.3 | 10.8 | |
Min. 7 | 48.8 | 2.9 | 20.1 | 0.1 | 0.3 | 0.2 | 3.3 | 0.1 | 15.1 | 0.7 | |
Max. 8 | 75.4 | 5.6 | 37.2 | 2.3 | 0.3 | 54.0 | 7.0 | 0.2 | 24.4 | 30.6 | |
Median | 60.4 | 4.4 | 28.1 | 1.1 | 0.3 | 7.6 | 4.3 | 0.1 | 24.4 | 2.7 | |
Herbaceous | n | 63 | 31 | 31 | 30 | 7 | 35 | 30 | 16 | 1 | 20 |
Mean | 57.2 | 5.4 | 26.3 | 1.7 | 0.1 | 18.2 | 5.7 | 0.7 | 9.7 | 5.6 | |
S.d. | 13.1 | 1.4 | 7.7 | 0.9 | 0.1 | 27.5 | 1.0 | 0.8 | - | 3.2 | |
Min. | 0.8 | 0.8 | 4.5 | 0.1 | 0.1 | 0.3 | 4.2 | 0.1 | 9.7 | 1.8 | |
Max. | 73.5 | 9.3 | 39.9 | 3.3 | 0.3 | 145.0 | 7.5 | 2.5 | 9.7 | 17.0 | |
Median | 58.2 | 5.4 | 26.8 | 1.9 | 0.1 | 7.9 | 5.5 | 0.5 | 9.7 | 4.7 | |
Livestock manure | n | 25 | 25 | 25 | 25 | 18 | 25 | 8 | 6 | 3 | 5 |
Mean | 41.0 | 4.1 | 15.4 | 2.5 | 0.5 | 38.3 | 6.9 | 8.1 | 14.0 | 20.9 | |
S.d. | 12.5 | 1.2 | 5.9 | 1.1 | 0.1 | 18.6 | 0.9 | 8.9 | 0.6 | 17.3 | |
Min. | 17.0 | 1.4 | 3.9 | 1.3 | 0.3 | 4.3 | 5.5 | 0.2 | 13.4 | 1.7 | |
Max. | 66.6 | 6.3 | 26.9 | 5.7 | 0.7 | 77.3 | 8.4 | 19.9 | 14.7 | 47.6 | |
Median | 40.1 | 4.3 | 15.0 | 2.1 | 0.6 | 35.2 | 6.8 | 5.8 | 14.0 | 17.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jeong, E.-A.; Lee, J.-H.; Yoon, Y.-M. Technical Feasibility of Producing and Utilizing Livestock Manure-Derived Biochar for Soil Carbon Sequestration in South Korea: A Review. Processes 2025, 13, 2863. https://doi.org/10.3390/pr13092863
Jeong E-A, Lee J-H, Yoon Y-M. Technical Feasibility of Producing and Utilizing Livestock Manure-Derived Biochar for Soil Carbon Sequestration in South Korea: A Review. Processes. 2025; 13(9):2863. https://doi.org/10.3390/pr13092863
Chicago/Turabian StyleJeong, Eun-A, Jun-Hyeong Lee, and Young-Man Yoon. 2025. "Technical Feasibility of Producing and Utilizing Livestock Manure-Derived Biochar for Soil Carbon Sequestration in South Korea: A Review" Processes 13, no. 9: 2863. https://doi.org/10.3390/pr13092863
APA StyleJeong, E.-A., Lee, J.-H., & Yoon, Y.-M. (2025). Technical Feasibility of Producing and Utilizing Livestock Manure-Derived Biochar for Soil Carbon Sequestration in South Korea: A Review. Processes, 13(9), 2863. https://doi.org/10.3390/pr13092863