Effect of Fermentation With and Without the Addition of Carrots on the Total Antioxidant Capacity of White and Red Cabbage
Abstract
1. Introduction
2. Materials and Methods
2.1. Reagents and Chemicals
2.2. Plant Material
2.3. Preparation of Extracts
2.4. Cabbage Fermentation
2.5. Estimation of the Polyphenol Content
2.6. Estimation of the Anthocyanin Content
- The anthocyanin concentration, c, was calculated as:c [mg/L] = A × MW × dilution × 103)/(ε × l), whereA = (Amaximum − A700 nm)pH 1 − (Amaximum − A700 nm)pH 4.5,
2.7. Estimation of the Carotenoid Content
2.8. Estimation of Total Antioxidant Capacity
2.8.1. ABTS• Scavenging Assay
2.8.2. DPPH• Scavenging Assay
2.8.3. Ferric Reducing Antioxidant Power (FRAP) Assay
2.8.4. Oxygen Radical Absorbing Capacity (ORAC) Assay
2.9. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AAPH | 2,2′-azobis(2-amidinopropane) dihydrochloride |
ABTS | 2,2′-Azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) |
DPPH• | 2,2-Diphenyl-1-picrylhydrazyl |
FRAP | Ferric Reducing Antioxidant Power |
GAE | gallic acid equivalent(s) |
ORAC | Oxygen Radical Absorbing Capacity |
TAC | Total Antioxidant Capacity |
TE | Trolox equivalent(s) |
FWC | fresh white cabbage |
WS | white sauerkraut |
WS+OC | white sauerkraut with orange carrots |
WS+BC | white sauerkraut with black carrots |
WSJ | white sauerkraut juice |
WSJ+OC | juice of white sauerkraut with orange carrots |
WSJ+BC | juice of white sauerkraut with black carrots |
FRC | fresh red cabbage |
RS | red sauerkraut |
RS+OC | red sauerkraut with orange carrots |
RS+BC | red sauerkraut with black carrots |
RSJ | red sauerkraut juice |
RSJ+OC | juice of red sauerkraut with orange carrots |
RSJ+BC | juice of red sauerkraut with black carrots |
References
- Garcia, C.; Blesso, C.N. Antioxidant properties of anthocyanins and their mechanism of action in atherosclerosis. Free Radic. Biol. Med. 2021, 172, 152–166. [Google Scholar] [CrossRef] [PubMed]
- Sadowska-Bartosz, I.; Bartosz, G. Antioxidant activity of anthocyanins and anthocyanidins: A critical review. Int. J. Mol. Sci. 2024, 25, 12001. [Google Scholar] [CrossRef]
- Mazza, G. Anthocyanins and heart health. Ann. Ist. Super. Sanità 2007, 43, 369–374. [Google Scholar] [PubMed]
- Mattioli, R.; Francioso, A.; Mosca, L.; Silva, P. Anthocyanins: A comprehensive review of their chemical properties and health effects on cardiovascular and neurodegenerative diseases. Molecules 2020, 25, 3809. [Google Scholar] [CrossRef]
- Mozos, I.; Flangea, C.; Vlad, D.C.; Gug, C.; Mozos, C.; Stoian, D.; Luca, C.T.; Horbańczuk, J.O.; Horbańczuk, O.K.; Atanasov, A.G. Effects of anthocyanins on vascular health. Biomolecules 2021, 11, 811. [Google Scholar] [CrossRef]
- Gonçalves, A.C.; Nunes, A.R.; Falcão, A.; Alves, G.; Silva, L.R. Dietary effects of anthocyanins in human health: A comprehensive review. Pharmaceuticals 2021, 14, 690. [Google Scholar] [CrossRef] [PubMed]
- Sandoval-Ramírez, B.A.; Catalán, Ú.; Llauradó, E.; Valls, R.M.; Salamanca, P.; Rubió, L.; Yuste, S.; Solà, R. The health benefits of anthocyanins: An umbrella review of systematic reviews and meta-analyses of observational studies and controlled clinical trials. Nutr. Rev. 2022, 80, 1515–1530. [Google Scholar] [CrossRef]
- Santacroce, L.; Bottalico, L.; Charitos, I.A.; Haxhirexha, K.; Topi, S.; Jirillo, E. Healthy diets and lifestyles in the world: Mediterranean and blue zone people live longer. Special focus on gut microbiota and some food components. Endocr. Metab. Immune Disord. Drug Targets 2024, 24, 1774–1784. [Google Scholar] [CrossRef]
- Liang, A.; Leonard, W.; Beasley, J.T.; Fang, Z.; Zhang, P.; Ranadheera, C.S. Anthocyanins-gut microbiota-health axis: A review. Crit. Rev. Food Sci. Nutr. 2024, 4, 7563–7588. [Google Scholar] [CrossRef]
- Willcox, D.C.; Willcox, B.J.; Todoriki, H.; Suzuki, M. The Okinawan diet: Health implications of a low-calorie, nutrient-dense, antioxidant-rich dietary pattern low in glycemic load. J. Am. Coll. Nutr. 2009, 28, 500S–516S. [Google Scholar] [CrossRef]
- Mattoo, A.K.; Dwivedi, S.L.; Dutt, S.; Singh, B.; Garg, M.; Ortiz, R. Anthocyanin-rich vegetables for human consumption—Focus on potato, sweetpotato and tomato. Int. J. Mol. Sci. 2022, 23, 2634. [Google Scholar] [CrossRef]
- Gandikota, M.; De Kochko, A.; Chen, L.; Ithal, N.; Fauquet, C.; Reddy, A.R. Development of transgenic rice plants expressing maize anthocyanin genes and increased blast resistance. Mol. Breed. 2001, 7, 73–83. [Google Scholar] [CrossRef]
- Zhang, P.; Zhu, H. Anthocyanins in plant food: Current status, genetic modification, and future perspectives. Molecules 2023, 28, 866. [Google Scholar] [CrossRef] [PubMed]
- Bazzani, C.; Canavari, M. Is local a matter of food miles or food traditions? Ital. J. Food Sci. 2017, 29, 505–517. [Google Scholar] [CrossRef]
- Panlaqui, C.C.; Abad, C. Zero kilometer food project: An analysis of food demand and supply structure of high-value crops. Int. J. Innov. Sci. Res. Rev. 2024, 6, 7372–7379. [Google Scholar]
- Owens, S.R. Feeding prejudice: Reluctance within the European Union to accept genetically modified crops may hinder the benefits of this technology reaching the developing world. EMBO Rep. 2003, 4, 229–232. [Google Scholar] [CrossRef]
- Herring, R.J. Opposition to transgenic technologies: Ideology, interests and collective action frames. Nat. Rev. Genet. 2008, 9, 458–463. [Google Scholar] [CrossRef]
- Folta, K.M. Acceptance of crop biotechnology requires a change in communication strategy. Plant Physiol. 2025, 198, kiaf167. [Google Scholar] [CrossRef] [PubMed]
- Heinzelmann, U. Food Culture in Germany; Bloomsbury Publishing: Westport, CT, USA, 2008. [Google Scholar]
- Halawa, M.; Parasecoli, F. Designing the future of Polish food: How cosmopolitan tastemakers prototype a national gastronomy. Gastronomica 2022, 22, 8–18. [Google Scholar] [CrossRef]
- Draghici, G.A.; Lupu, M.A.; Borozan, A.B.; Nica, D.; Alda, S.; Alda, L.; Gogoasa, I.; Gergen, I.; Bordean, D.M. Red cabbage, millennium’s functional food. J. Hortic. For. Biotechnol. 2013, 17, 52–55. [Google Scholar]
- Ghareaghajlou, N.; Hallaj-Nezhadi, S.; Ghasempour, Z. Red cabbage anthocyanins: Stability, extraction, biological activities and applications in food systems. Food Chem. 2021, 365, 130482. [Google Scholar] [CrossRef]
- Żarski, W. Culinary identity as the determinant of cultural distinctiveness in Silesia and the Vilnius region. In Estonia and Poland: Creativity and Tradition in Cultural Communication; Laineste, L., Brzozowska, D., Chłopicki, W., Eds.; ELM Scholarly Press: Tartu, Estonia, 2013; Volume 2, pp. 147–160. [Google Scholar]
- Świtała-Trybek, D. New trends in culinary tourism–regional (Silesian) fusion cuisine. Geog. Tour. 2020, 1, 47–54. Available online: https://czasopisma.ukw.edu.pl/index.php/gat/article/view/132 (accessed on 31 July 2025).
- Kusznierewicz, B.; Śmiechowska, A.; Bartoszek, A.; Namieśnik, J. The effect of heating and fermenting on antioxidant properties of white cabbage. Food Chem. 2008, 108, 853–861. [Google Scholar] [CrossRef]
- Sun, Y.P.; Chou, C.C.; Yu, R.C. Antioxidant activity of lactic-fermented Chinese cabbage. Food Chem. 2009, 115, 912–917. [Google Scholar] [CrossRef]
- Martínez-Villaluenga, C.; Peñas, E.; Sidro, B.; Ullate, M.; Frías, J.; Vidal-Valverde, C. White cabbage fermentation improves ascorbigen content, antioxidant and nitric oxide production inhibitory activity in LPS-induced macrophages. LWT 2012, 46, 77–83. [Google Scholar] [CrossRef]
- Hunaefi, D.; Akumo, D.N.; Smetanska, I. Effect of fermentation on antioxidant properties of red cabbages. Food Biotechnol. 2013, 27, 66–85. [Google Scholar] [CrossRef]
- Parada, R.B.; Emilio, M.; Campos, C.A.; Marisol, V. Improving the nutritional properties of Brassica L. vegetables by spontaneous fermentation. Foods Raw Mater. 2022, 10, 97–105. [Google Scholar] [CrossRef]
- Wiczkowski, W.; Szawara-Nowak, D.; Topolska, J. Changes in the content and composition of anthocyanins in red cabbage and its antioxidant capacity during fermentation, storage and stewing. Food Chem. 2015, 167, 115–123. [Google Scholar] [CrossRef] [PubMed]
- Świder, O.; Roszko, M.Ł.; Wójcicki, M. The inhibitory effects of plant additives on biogenic amine formation in fermented foods. Crit. Rev. Food Sci. Nutr. 2024, 64, 12935–12960. [Google Scholar] [CrossRef]
- Mam, S.; Rudra, S.G.; Singh, S. Comparison of starter spices for retention of sensory attributes, appearance, and antioxidants in red cabbage sauerkraut. J. Sci. Ind. Res. 2024, 83, 1214–1222. [Google Scholar] [CrossRef]
- Fu, L.; Xu, B.T.; Gan, R.Y.; Zhang, Y.; Xu, X.R.; Xia, E.Q.; Li, H.B. Total phenolic contents and antioxidant capacities of herbal and tea infusions. Int. J. Mol. Sci. 2011, 12, 2112–2124. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Durst, R.W.; Wrolstad, R.E.; Eisele, T.; Giusti, M.M.; Hach, J.; Hofsommer, H.; Koswig, S.; Krueger, D.A.; Kupina, S.; et al. Determination of total monomeric anthocyanin pigment content of fruit juices, beverages, natural colorants, and wines by the pH differential method: Collaborative study. J. AOAC Int. 2005, 88, 1269–1278. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Amaya, D.B. A Guide to Carotenoid Analysis in Foods; ILSI Press: Washington, DC, USA, 2001. [Google Scholar]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Kut, K.; Cieniek, B.; Stefaniuk, I.; Bartosz, G.; Sadowska-Bartosz, I. A modification of the ABTS• decolorization method and an insight into its mechanism. Processes 2022, 10, 1288. [Google Scholar] [CrossRef]
- Furdak, P.; Bartosz, G.; Sadowska-Bartosz, I. Effect of thermal treatment on the antiproliferative and antioxidant activities of garlic. Food Sci. Nutr. 2025, 13, e70375. [Google Scholar] [CrossRef]
- Benzie, I.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef]
- Ou, B.; Hampsch-Woodill, M.; Prior, R.L. Development and validation of an improved oxygen radical absorbance capacity assay using fluorescein as the fluorescent probe. J. Agric. Food Chem. 2001, 49, 4619–4626. [Google Scholar] [CrossRef]
- Chun, O.K.; Smith, N.; Sakagawa, A.; Lee, C.Y. Antioxidant properties of raw and processed cabbages. Int. J. Food Sci. Nutr. 2004, 55, 191–199. [Google Scholar] [CrossRef] [PubMed]
- Leja, M.; Kamińska, I.; Kołton, A. Phenolic compounds as the major antioxidants in red cabbage. Folia Hort. 2010, 22, 19–24. [Google Scholar] [CrossRef]
- Ashfaq, F.; Butt, M.S.; Bilal, A.; Tehseen, S.; Suleria, H.A. Comparative assessment of free radical scavenging ability of green and red cabbage based on their antioxidant vitamins and phytochemical constituents. Curr. Bioact. Compd. 2020, 16, 1231–1241. [Google Scholar] [CrossRef]
- Ha, J.; Park, S.E.; Hwang, I.G.; Bang, K.W.; Kim, S.-H.; Lee, J.G.; Choi, C.-S.; Kang, H.J. Evaluation of the antioxidant activities in cabbage (Brassica oleracea var. capitata) accessions. J. Korean Soc. Food Sci. Nutr. 2023, 52, 679–690. [Google Scholar] [CrossRef]
- Al Jabr, F.A.; Saif, M.A.; Al Zaid, A.S.; Al Homood, M.I.; Al Thani, H.A.; Al Qadheeb, A.M. Red and white cabbage extracts: Antioxidant effects on bovines albumins. Int. J. Pharm. Res. Allied Sci. 2020, 9, 97–104. [Google Scholar] [CrossRef]
- Huang, D.; Ou, B.; Prior, R.L. The chemistry behind antioxidant capacity assays. J. Agric. Food Chem. 2005, 53, 1841–1856. [Google Scholar] [CrossRef]
- Schaich, K.M.; Tian, X.; Xie, J. Hurdles and pitfalls in measuring antioxidant efficacy: A critical evaluation of ABTS, DPPH, and ORAC assays. J. Funct. Foods 2015, 18, 782–796. [Google Scholar] [CrossRef]
- Apak, R.; Özyürek, M.; Güçlü, K.; Çapanoğlu, E. Antioxidant activity/capacity measurement. 2. Hydrogen atom transfer (HAT)-based, mixed-mode (electron transfer (ET)/HAT), and lipid peroxidation assays. J. Agric. Food Chem. 2016, 64, 1028–1045. [Google Scholar] [CrossRef]
- Benzie, I.F.; Devaki, M. The ferric reducing/antioxidant power (FRAP) assay for non-enzymatic antioxidant capacity: Concepts, procedures, limitations and applications. In Measurement of Antioxidant Activity & Capacity: Recent Trends and Applications; Resat Apak, R., Esra Capanoglu, E., Fereidoon, S., Eds.; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2018; pp. 77–106. [Google Scholar] [CrossRef]
- Furdak, P.; Kut, K.; Bartosz, G.; Sadowska-Bartosz, I. Comparison of various assays of antioxidant activity/capacity: Limited significance of redox potentials of oxidants/indicators. Int. J. Mol. Sci. 2025, 26, 7069. [Google Scholar] [CrossRef] [PubMed]
- Wiczkowski, W.; Szawara-Nowak, D.; Topolska, J. Red cabbage anthocyanins: Profile, isolation, identification, and antioxidant activity. Food Res. Int. 2013, 51, 303–309. [Google Scholar] [CrossRef]
- Wiczkowski, W.; Szawara-Nowak, D.; Romaszko, J. The impact of red cabbage fermentation on bioavailability of anthocyanins and antioxidant capacity of human plasma. Food Chem. 2016, 190, 730–740. [Google Scholar] [CrossRef] [PubMed]
- Saini, A.; Shams, R.; Dash, K.K.; Shaikh, A.M.; Kovács, B. Anthocyanin extraction from black carrot: Health promoting properties and potential applications. J. Agric. Food Res. 2025, 19, 101533. [Google Scholar] [CrossRef]
- Akhtar, S.; Rauf, A.; Imran, M.; Qamar, M.; Riaz, M.; Mubarak, M.S. Black carrot (Daucus carota L.), dietary and health promoting perspectives of its polyphenols: A review. Trends Food Sci. Technol. 2017, 66, 36–47. [Google Scholar] [CrossRef]
- Bartosz, G.; Baran, S.; Grzesik-Pietrasiewicz, M.; Sadowska-Bartosz, I. Antioxidant capacity and hydrogen peroxide formation by black and orange carrots: Black and orange carrots. Agric. Food Sci. 2022, 31, 71–77. [Google Scholar] [CrossRef]
- Singh, J.; Upadhyay, A.K.; Bahadur, A.; Singh, B.; Singh, K.P.; Rai, M. Antioxidant phytochemicals in cabbage (Brassica oleracea L. var. capitata). Sci. Hortic. 2006, 108, 233–237. [Google Scholar] [CrossRef]
- Martinez-Villaluenga, C.; Peñas, E.; Frías, J.; Ciska, E.; Honke, J.; Piskula, M.K.; Kozlowska, C.; Vidal-Valverde, C. Influence of fermentation conditions on glucosinolates, ascorbigen, and ascorbic acid content in white cabbage (Brassica oleracea var. capitata cv. Taler) cultivated in different seasons. J. Food Sci. 2009, 74, C62–C67. [Google Scholar] [CrossRef]
- Pandey, S.; Garg, F.C. Preparation of spiced sauerkraut by using lactic acid bacteria and by natural fermentation. Int. J. Sci. Res. 2013, 4, 2753–2761. [Google Scholar]
- Du, R.; Song, G.; Zhao, D.; Sun, J.; Ping, W.; Ge, J. Lactobacillus casei starter culture improves vitamin content, increases acidity and decreases nitrite concentration during sauerkraut fermentation. Int. J. Food Sci. Technol. 2018, 53, 1925–1931. [Google Scholar] [CrossRef]
- Sarkar, D.; Rakshit, A. Red cabbage as potential functional food in the present perspective. Int. J. Bioresource Sci. 2017, 4, 7–8. [Google Scholar] [CrossRef][Green Version]
- Pavla, B.; Pokluda, R. Influence of alternative organic fertilizers on the antioxidant capacity in head cabbage and cucumber. Not. Bot. Horti Agrobot. Cluj-Na. 2008, 36, 63–67. [Google Scholar] [CrossRef]
- Bimova, P.; Pokluda, R. Impact of organic fertilizers on total antioxidant capacity in head cabbage. Hortic. Sci. 2009, 36, 21–25. [Google Scholar] [CrossRef]
- Biesiada, A.; Nawirska-Olszanska, A.; Kucharska, A.; Sokol-Letowska, A.; Kedra, K. The effect of nitrogen fertilization on nutritive value and antioxidative activity of red cabbage. Acta Sci. Pol. Hortorum Cultus 2010, 9, 13–21. [Google Scholar]
- Phahlane, C.J.; Maboko, M.M.; Soundy, P.; Sivakumar, D. Development, yield, and antioxidant content in red cabbage as affected by plant density and nitrogen rate. Int. J. Veg. Sci. 2018, 24, 160–168. [Google Scholar] [CrossRef]
- Ștefan, I.M.A.; Ona, A.D. Cabbage (Brassica oleracea L.). Overview of the health benefits and therapeutical uses. Hop Med. Plants 2020, 28, 150–169. Available online: https://www.researchgate.net/publication/353411136 (accessed on 8 September 2025).
- Mabry, M.E.; Turner-Hissong, S.D.; Gallagher, E.Y.; McAlvay, A.C.; An, H.; Edger, P.P.; Moore, J.D.; Pink, D.A.C.; Teakle, G.R.; Stevens, C.J.; et al. The evolutionary history of wild, domesticated, and feral Brassica oleracea (Brassicaceae). Mol. Biol. Evol. 2021, 38, 4419–4434. [Google Scholar] [CrossRef]
- Ha, H.J.; Lee, C.B. Antioxidant and anti-inflammation activity of red cabbage extract. Culi. Sci. Hos. Res. 2014, 20, 16–26. [Google Scholar]
- Demirdöven, A.; Karabıyıklı, Ş.; Tokatlı, K.; Öncül, N. Inhibitory effects of red cabbage and sour cherry pomace anthocyanin extracts on food borne pathogens and their antioxidant properties. LWT 2015, 63, 8–13. [Google Scholar] [CrossRef]
- Guan, Y.; Ji, Y.; Yang, X.; Pang, L.; Cheng, J.; Lu, X.; Zheng, J.; Yin, L.; Hu, W. Antioxidant activity and microbial safety of fresh-cut red cabbage stored in different packaging films. LWT 2023, 175, 114478. [Google Scholar] [CrossRef]
- Gaafar, A.A.; Aly, H.F.; Salama, Z.A.; Mahmoud, K.M. Characterizing the antioxidant and anticancer properties of secondary metabolites from red and white cabbages Brassica oleracea L. var. capitata. World J. Pharm. Res. 2014, 3, 171–186. [Google Scholar]
- Tajalli, F.; Saeedi, M.; Malekabadi, A.V. Anticancer and antioxidant effects of red cabbage on three cancerous cell lines and comparison with a normal cell line (HFF-3). J. Genes Cells 2020, 6, 12–20. [Google Scholar] [CrossRef]
- Drozdowska, M.; Leszczyńska, T.; Koronowicz, A.; Piasna-Słupecka, E.; Dziadek, K. Comparative study of young shoots and the mature red headed cabbage as antioxidant food resources with antiproliferative effect on prostate cancer cells. RSC Adv. 2020, 10, 43021–43034. [Google Scholar] [CrossRef] [PubMed]
- Dal, S.; Van der Werf, R.; Walter, C.; Bietiger, W.; Seyfritz, E.; Mura, C.; Peronet, C.; Legrandois, J.; Werner, D.; Ennahar, S.; et al. Treatment of NASH with antioxidant therapy: Beneficial effect of red cabbage on type 2 diabetic rats. Oxid. Med. Cell. Longev. 2018, 2018, 7019573. [Google Scholar] [CrossRef]
- Kataya, H.A.; Hamza, A.A. Red cabbage (Brassica oleracea) ameliorates diabetic nephropathy in rats. Evid. Based Complement. Altern. Med. 2008, 5, 281–287. [Google Scholar] [CrossRef] [PubMed]
- Al-Dosari, M.S. Red cabbage (Brassica oleracea L.) mediates redox-sensitive amelioration of dyslipidemia and hepatic injury induced by exogenous cholesterol administration. Am. J. Chin. Med. 2014, 42, 189–206. [Google Scholar] [CrossRef] [PubMed]
- Veber, B.; Camargo, A.; Dalmagro, A.P.; Bonde, H.L.P.; Magro, D.D.D.; Lima, D.D.D.; Zeni, A.L.B. Red cabbage (Brassica oleracea L.) extract reverses lipid oxidative stress in rats. An. Acad. Bras. Ciênc. 2020, 92, e20180596. [Google Scholar] [CrossRef] [PubMed]
- Zhang, N.; Jing, P. Red cabbage anthocyanins attenuate cognitive impairment by attenuating neuroinflammation and regulating gut microbiota in aging mice. J. Agric. Food Chem. 2023, 71, 15064–15072. [Google Scholar] [CrossRef] [PubMed]
- Zhang, N.; Jiao, S.; Jing, P. Red cabbage rather than green cabbage increases stress resistance and extends the lifespan of Caenorhabditis elegans. Antioxidants 2021, 10, 930. [Google Scholar] [CrossRef]
Parameter | White Cabbage | Red Cabbage |
---|---|---|
Polyphenol content [mg GAE/kg] | 821 ± 10 | 6915 ± 91 |
Anthocyanin content [mg/kg] | 6.3 ± 2.5 | 3610 ± 93 |
Carotenoid content [mg/kg] | 1.5 ± 0.1 | 10.5 ± 0.1 |
TAC, ABTS• decolorization [mmol TE/kg] | 5.8 ± 0.2 | 87.9 ± 3.3 |
TAC, DPPH• decolorization [mmol TE/kg] | 2.4 ± 0.1 | 63.9 ± 2.0 |
TAC, FRAP [mmol TE/kg] | 1.2 ± 0.1 | 36.2 ± 0.9 |
TAC, ORAC [mmol TE/kg] | 5.1 ± 0.2 | 110.3 ± 17.2 |
r | Anthocyanin Content | Carotenoid Content | TAC: ABTS• Scavenging | TAC: DPPH• Scavenging | TAC: FRAP | TAC: ORAC |
---|---|---|---|---|---|---|
Polyphenol content | 0.99 * | 0.37 | 0.98 * | 0.98 * | 0.99 * | 0.98 * |
Anthocyanin content | 0.32 | 0.98 * | 0.99 * | 0.99 * | 0.99 * | |
Carotenoid content | 0.42 | 0.35 | 0.35 | 0.36 | ||
TAC: ABTS• scavenging | 0.99 * | 0.98 * | 0.98 * | |||
TAC: DPPH• scavenging | 0.99 * | 0.99 * | ||||
TAC: FRAP | 0.99 * |
Variable 1 | Variable 2 | |
---|---|---|
Eigen value | 3.82 | 1.29 |
Variance contribution | 0.5454 | 0.1839 |
Cum. variance contribution | 0.5454 | 0.7293 |
Iterations | 8 | 32 |
Principal Component 1 | Principal Component 2 | |
---|---|---|
FWC | −1.599 | −0.019 |
WS | −2.261 | 2.079 |
WS+OC | −1.240 | 1.683 |
WS+RC | −1.047 | 0.924 |
WSJ | −1.539 | −0.606 |
WSJ+OC | −1.515 | −0.186 |
WSJ+BC | −0.968 | −1.390 |
FRC | 5.616 | 1.156 |
RS | 1.203 | −0.235 |
RS+OC | 0.812 | 0.119 |
RS+BC | 1.307 | 0.475 |
RSJ | 0.765 | −1.707 |
RSJ+OC | 0.071 | −1.202 |
RSJ+BC | 0.394 | −1.092 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rak, M.; Bartosz, G.; Sadowska-Bartosz, I. Effect of Fermentation With and Without the Addition of Carrots on the Total Antioxidant Capacity of White and Red Cabbage. Processes 2025, 13, 2928. https://doi.org/10.3390/pr13092928
Rak M, Bartosz G, Sadowska-Bartosz I. Effect of Fermentation With and Without the Addition of Carrots on the Total Antioxidant Capacity of White and Red Cabbage. Processes. 2025; 13(9):2928. https://doi.org/10.3390/pr13092928
Chicago/Turabian StyleRak, Małgorzata, Grzegorz Bartosz, and Izabela Sadowska-Bartosz. 2025. "Effect of Fermentation With and Without the Addition of Carrots on the Total Antioxidant Capacity of White and Red Cabbage" Processes 13, no. 9: 2928. https://doi.org/10.3390/pr13092928
APA StyleRak, M., Bartosz, G., & Sadowska-Bartosz, I. (2025). Effect of Fermentation With and Without the Addition of Carrots on the Total Antioxidant Capacity of White and Red Cabbage. Processes, 13(9), 2928. https://doi.org/10.3390/pr13092928