Fuel Evaporation in an Atmospheric Premixed Burner: Sensitivity Analysis and Spray Vaporization
Abstract
:1. Introduction
2. Materials and Methods
2.1. Droplet Motion and Evaporation Modeling
- The flow field is governed by the atomizing free jet.
- The combustion air flow rate is zero.
- The droplets travel on the axis.
2.1.1. Calculation of Droplet Motion
2.1.2. Calculation of Droplet Evaporation
2.2. Thermophysical Data Estimation
2.3. Size Distribution of the Spray
3. Results and Discussion
3.1. Sensitivity Analysis of Thermophysical Properties
3.1.1. Evaluation of Evaporation at Constant Conditions
3.1.2. Evaporation in the Burner
3.2. Evaporation of a Spray Cloud
4. Conclusions
- (1)
- Evaporation is highly sensitive to the following parameters: latent heat of vaporization, boiling temperature, liquid density, and vapor thermal conductivity. The vapor dynamic viscosity, vapor density, and specific heat of the liquid fuel have a marginal influence on evaporation time under the analyzed conditions. Both critical temperature and vapor specific heat have a slight effect on the phenomenon.
- (2)
- The mixing tube of the presently discussed burner was sufficient, resulting in Ev < 0.3 for 99% of the droplets by diameter at the highest atomizing temperature, considering the spray cloud.
- (3)
- The residence time of the droplets depends upon their size. As small droplets accelerate faster in the early stage of the atomizing free jet, they also decelerate fast with the decay of the jet. It is the opposite in the case of larger droplets. This phenomenon is called overshooting [20]. Nevertheless, there is local minimum in the residence time following the phenomenon above. Therefore, droplets of increasing sizes have continuously more time to evaporate.
Acknowledgments
Author Contributions
Conflicts of Interest
Nomenclature
Latin letters | ||
a | (m/s) | speed of sound |
cd | (–) | drag coefficient |
cp | (J/(kg∙K)) | specific heat at constant pressure |
D | (µm] | droplet diameter |
de | (m) | equivalent hydraulic diameter |
g, h | (–) | empirical constants |
k | (W/(m∙K)) | thermal conductivity |
L | (J/kg) | latent heat of vaporization |
(kg/s) | mass flow rate | |
p | (bar) | pressure |
Pr | (–) | Prandtl number |
Q | (W/m2) | heat flux |
Re | (–) | Reynolds number |
T | (K) | temperature |
t | (s) | time |
V | (cm3/mol) | molar volume |
w | (m/s) | velocity |
x | (m) | axial coordinate |
Y | (kg/kg) | mass fraction |
Greek letters | ||
δ(Pi) | (–) | relative difference in evaporation time by the ith material property |
ε | (–) | emissivity |
ϕ | (–) | view factor |
λ | ( m2/s) | evaporation constant |
µ | (Pa∙s) | dynamic viscosity |
ρ | (kg/m3) | density |
σ | (W/(m2∙K4)) | Stefan-Boltzmann constant (5.67∙10−8 W/(m2∙K4)) |
Acronyms | ||
CDF | Cumulative Distribution Function | |
SMD | Sauter Mean Diameter | |
Subscripts | ||
0 | initial value | |
∞ | far field | |
a | air | |
b | boiling | |
c | critical | |
conv | convection | |
D | droplet | |
eff | effective | |
est | estimation | |
evap | evaporation | |
f | (liquid) fuel | |
g | gas | |
ga | gauge | |
i | ith component | |
max | maximum value | |
r | relative | |
rad | radiation | |
ref | reference | |
res | residence | |
s | at the surface of the droplet | |
tot | total | |
v | vapor |
Appendix A
References
- Abramzon, B.; Sirignano, W.A. Droplet vaporization model for spray combustion calculations. Int. J. Heat Mass Transf. 1989, 32, 1605–1618. [Google Scholar] [CrossRef]
- Sazhin, S.S.; Kristyadi, T.; Abdelghaffar, W.; Heikal, M.R. Models for fuel droplet heating and evaporation: Comparative analysis. Fuel 2006, 85, 1613–1630. [Google Scholar] [CrossRef]
- Lefebvre, A.H.; McDonell, V.G. Atomization and Sprays, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Poling, B.E.; Prausnitz, J.M.; O’Connell, J.P. The Properties of Gases and Liquids, 5th ed.; McGraw-Hill: New York, NY, USA, 2001. [Google Scholar]
- Krishnasamy, A.; Reitz, R.D.; Willems, W.; Kurtz, E. Surrogate Diesel Fuel Models for Low Temperature Combustion; SAE: Zurich, Switzerland, 2013. [Google Scholar]
- Birouk, M.; Gökalp, I. Current status of droplet evaporation in turbulent flows. Prog. Energy Combust. Sci. 2006, 32, 408–423. [Google Scholar] [CrossRef]
- Sazhin, S.S. Advanced models of fuel droplet heating and evaporation. Prog. Energy Combust. Sci. 2006, 32, 162–214. [Google Scholar] [CrossRef]
- Kitano, T.; Nishio, J.; Kurose, R.; Komori, S. Evaporation and combustion of multicomponent fuel droplets. Fuel 2014, 136, 219–225. [Google Scholar] [CrossRef] [Green Version]
- Zubkov, V.S.; Cossali, G.E.; Tonini, S.; Rybdylova, O.; Crua, C.; Heikal, M.; Sazhin, S.S. Mathematical modelling of heating and evaporation of a spheroidal droplet. Int. J. Heat Mass Transf. 2017, 108, 2181–2190. [Google Scholar] [CrossRef]
- Noh, D.; Gallot-Lavallée, S.; Jones, W.P.; Navarro-Martinez, S. Validation of Droplet Evaporation Models for a Polydisperse Spray in a Non-swirling Jet Flame. In Proceedings of the 8th European Combustion Meeting, Dubrovnik, Croatia, 18–21 April 2017. [Google Scholar]
- Spalding, D.B. The combustion of liquid fuels. Symp. Combust. 1953, 4, 847–864. [Google Scholar] [CrossRef]
- Godsave, G.A.E. Studies of the combustion of drops in a fuel spray-the burning of single drops of fuel. Symp. Combust. 1953, 4, 818–830. [Google Scholar] [CrossRef]
- Driscoll, J.F. Premixed Turbulent Combustion—Regimes of Thickened and Distributed Reactions. In Proceedings of the 9th Mediterranean Combustion Symposium, Rhodes, Greece, 7–11 June 2015. [Google Scholar]
- Lefebvre, A.H.; Ballal, D.R. Gas Turbine Combustion, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2010. [Google Scholar]
- Huang, Y.; Yang, V. Dynamics and stability of lean-premixed swirl-stabilized combustion. Prog. Energy Combust. Sci. 2009, 35, 293–364. [Google Scholar] [CrossRef]
- Adams, T.A.I.; Hoseinzade, L.; Madabhushi, P.B.; Okeke, I.J. Comparison of CO2 Capture Approaches for Fossil-Based Power Generation: Review and Meta-Study. Processes 2017, 5, 44. [Google Scholar] [CrossRef]
- Correa, S.M. A Review of NOx Formation Under Gas-Turbine Combustion Conditions. Combust. Sci. Technol. 1993, 87, 329–362. [Google Scholar] [CrossRef]
- Babinsky, E.; Sojka, P.E. Modeling drop size distributions. Prog. Energy Combust. Sci. 2002, 28, 303–329. [Google Scholar] [CrossRef]
- Urbán, A.; Zaremba, M.; Malý, M.; Józsa, V.; Jedelský, J. Droplet dynamics and characterization of high-velocity airblast atomization. Int. J. Multiph. Flow. 2017, 95, 1–11. [Google Scholar] [CrossRef]
- Lasheras, J.C.; Villermaux, E.; Hopfinger, E.J. Break-up and atomization of a round water jet by a high-speed annular air jet. J. Fluid Mech. 1998, 357, 351–379. [Google Scholar] [CrossRef]
- Nakamura, S.; McDonell, V.; Samuelsen, S. The Effect of Liquid-Fuel Preparation on Gas Turbine Emissions. J. Eng. Gas Turbines Power 2008, 130, 21506. [Google Scholar] [CrossRef]
- Prussi, M.; Chiaramonti, D.; Riccio, G.; Martelli, F.; Pari, L. Straight vegetable oil use in Micro-Gas Turbines: System adaptation and testing. Appl. Energy 2012, 89, 287–295. [Google Scholar] [CrossRef]
- Józsa, V.; Kun-Balog, A. Stability and emission analysis of crude rapeseed oil combustion. Fuel Process. Technol. 2017, 156, 204–210. [Google Scholar] [CrossRef]
- Józsa, V.; Csemány, D. Evaporation of renewable fuels in a lean premixed prevaporized burner. Period. Polytech. Mech. Eng. 2016, 60, 82–88. [Google Scholar] [CrossRef]
- de Gregorio, F.; Albano, F. Free Compressible Jet Nozzle Investigation. In Proceedings of the 16th International Symposia on Applications of Laser Techniques to Fluid Mechanics, Lisbon, Portugal, 9–12 July 2012. [Google Scholar]
- Zawadzki, L.; Cichoń, J.; Jarzębowski, J.; Kapusta, H. Determination of the Air Velocity in the Free Stream Flowing out of a Cylindrical and Two-Gap Skewed Jet (Dual Slot Die). Fibres Text. East. Eur. 2010, 18, 39–43. [Google Scholar]
- Haider, A.; Levenspiel, O. Drag coefficient and terminal velocity of spherical and nonspherical particles. Powder Technol. 1989, 58, 63–70. [Google Scholar] [CrossRef]
- Rizk, N.K.; Lefebvre, A.H. Spray Characteristics of Plain-Jet Airblast Atomizers. J. Eng. Gas Turbines Power 1984, 106, 634–638. [Google Scholar] [CrossRef]
- Abramzon, B.; Sazhin, S. Droplet vaporization model in the presence of thermal radiation. Int. J. Heat Mass Transf. 2005, 48, 1868–1873. [Google Scholar] [CrossRef]
- Dombrovsky, L.; Sazhin, S. Absorption of thermal radiation in a semi-transparent spherical droplet: A simplified model. Int. J. Heat Fluid Flow 2003, 24, 919–927. [Google Scholar] [CrossRef]
- Joback, K.G. A Unified Approach to Physical Property Estimation Using Multivariate Statistical Techniques; Massachusetts Institute of Technology: Cambridge, MA, USA, 1984. [Google Scholar]
- Joback, K.G.; Reid, R.C. Estimation of pure-component properties from goup-contributions. Chem. Eng. Commun. 1987, 57, 233–243. [Google Scholar] [CrossRef]
- National Institute of Standards and Technology, Material Measurement Laboratory. Available online: www.nist.gov/mml (accessed on 9 October 2017).
- Constantinou, L.; Gani, R. New group contribution method for estimating properties of pure compounds. AIChE J. 1994, 40, 1697–1710. [Google Scholar] [CrossRef]
- Constantinou, L.; Gani, R.; O’Connell, J.P. Estimation of the acentric factor and the liquid molar volume at 298 K using a new group contribution method. Fluid Phase Equilib. 1995, 103, 11–22. [Google Scholar] [CrossRef]
- Chung, T.H.; Lee, L.L.; Starling, K.E. Applications of kinetic gas theories and multiparameter correlation for prediction of dilute gas viscosity and thermal conductivity. Ind. Eng. Chem. Fundam. 1984, 23, 8–13. [Google Scholar] [CrossRef]
- Chung, T.H.; Ajlan, M.; Lee, L.L.; Starling, K.E. Generalized multiparameter correlation for nonpolar and polar fluid transport properties. Ind. Eng. Chem. Res. 1988, 27, 671–679. [Google Scholar] [CrossRef]
- Bondi, A.A. Physical Properties of Molecular Crystals, Liquids and Glasses; John Wiley & Sons, Inc.: New York, NY, USA, 1968. [Google Scholar]
- Schreiber, D.R.; Pitzer, K.S. Equation of state in the acentric factor system. Fluid Phase Equilib. 1989, 46, 113–130. [Google Scholar] [CrossRef]
- Baum, E.J. Chemical Property Estimation: Theory and Application; CRC Press: New York, NY, USA, 1997. [Google Scholar]
- Gharagheizi, F.; Eslamimanesh, A.; Sattari, M.; Tirandazi, B.; Mohammadi, A.H.; Richon, D. Evaluation of Thermal Conductivity of Gases at Atmospheric Pressure through a Corresponding States Method. Ind. Eng. Chem. Res. 2012, 51, 3844–3849. [Google Scholar] [CrossRef]
- Watson, K.M. Prediction of Critical Temperatures and Heats of Vaporization. Ind. Eng. Chem. 1931, 23, 360–364. [Google Scholar] [CrossRef]
Parameter | C7H16 Est. | C7H16 Meas. | C14H30 Est. | Diesel Meas. |
---|---|---|---|---|
Tb (K) | 359.56 | 371.4 1 | 519.72 | 536.4 1 |
Tc (K) | 523.11 | 540.17 1 | 679.33 | 725.9 1 |
pc (bar) | 27.99 | 27.4 2 | 15.24 | 15.73 2 |
Vc (cm3/mol) | 427.5 | 428 2 | 819.5 | 894 2 |
Parameter | Reference |
---|---|
µv (Pa∙s) | Chung et al. [37,38] |
cp,v (J/(kg∙K)) | Joback et al. [31,32] |
cp,f (J/(kg∙K)) | Corresponding states principle [4,39] |
kv (W/(m∙K)) | Chung et al. [37,38] |
L (J/kg) | Schreiber and Pitzer [40] |
ρf (kg/m3) | Baum [41] |
ρv (kg/m3) | ideal gas |
Parameter | Values |
---|---|
D0 (µm) | 1, 10, 100 |
wg,r (m/s) | 0, 1, 5, 20 |
T∞ (K) | 500, 750, 1000 |
Trad (K) | 0, 1000, 1500, 2000 |
pga (bar) | Ma0 (–) | Wea (–) | AFR (–) | SMD (µm) | tres,0 (ms) |
---|---|---|---|---|---|
0.056 | 0.279 | 109,214 | 0.339 | 52.5 | 45.80 |
0.115 | 0.396 | 215,986 | 0.484 | 36.7 | 23.38 |
0.180 | 0.491 | 327,113 | 0.605 | 29.6 | 15.65 |
0.254 | 0.577 | 443,043 | 0.717 | 25.3 | 11.71 |
0.338 | 0.657 | 564,303 | 0.824 | 22.4 | 9.30 |
0.433 | 0.734 | 691,518 | 0.930 | 20.2 | 7.67 |
0.543 | 0.811 | 825,435 | 1.038 | 18.4 | 6.48 |
0.672 | 0.887 | 966,964 | 1.150 | 17.0 | 5.57 |
0.824 | 0.966 | 1,117,228 | 1.267 | 15.7 | 4.85 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Csemány, D.; Józsa, V. Fuel Evaporation in an Atmospheric Premixed Burner: Sensitivity Analysis and Spray Vaporization. Processes 2017, 5, 80. https://doi.org/10.3390/pr5040080
Csemány D, Józsa V. Fuel Evaporation in an Atmospheric Premixed Burner: Sensitivity Analysis and Spray Vaporization. Processes. 2017; 5(4):80. https://doi.org/10.3390/pr5040080
Chicago/Turabian StyleCsemány, Dávid, and Viktor Józsa. 2017. "Fuel Evaporation in an Atmospheric Premixed Burner: Sensitivity Analysis and Spray Vaporization" Processes 5, no. 4: 80. https://doi.org/10.3390/pr5040080
APA StyleCsemány, D., & Józsa, V. (2017). Fuel Evaporation in an Atmospheric Premixed Burner: Sensitivity Analysis and Spray Vaporization. Processes, 5(4), 80. https://doi.org/10.3390/pr5040080