Biogas Generation through Anaerobic Digestion of Compost Leachate in Semi-Continuous Completely Stirred Tank Reactors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Pilot Plant
2.3. Leachate Pretreatment Tests
2.4. Operational Pattern of Semi-Continuous Anaerobic Digestion Process
2.5. Analytical Methods
3. Results and Discussion
3.1. Compost Leachate and Activated Sludge Characteristics
3.2. Pretreatment Tests
3.3. Semi-Continuous Digestion Process
3.3.1. Start-Up Phase
3.3.2. Operational Phase
- COD removal and biogas production
- Effects of pH and VFA/ALK ratio
- COD/N ratio
- COD/SO4 ratio
3.4. Characteristics of Digestate
3.5. Economic Evaluation
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Hoornweg, D.; Bhada-Tata, P. What a Waste: A Global Review of Solid Waste Management; Urban Development Series Knowledge Papers; Urban Development & Local Government Unit, The World Bank: Washington, DC, USA, 2016.
- Karak, T.; Bhagat, R.M.; Bhattacharyya, P. Municipal Solid Waste Generation, Composition, and Management: The World Scenario. Crit. Rev. Environ. Sci. Technol. 2012, 42, 1509–1630. [Google Scholar] [CrossRef]
- Rózsenberszki, T.; Koók, L.; Hutvágner, D.; Nemestóthy, N.; Bélafi-Bakó, K.; Bakonyi, P.; Kurdi, R.; Sarkady, A. Comparison of Anaerobic Degradation Processes for Bioenergy Generation from Liquid Fraction of Pressed Solid Waste. Waste Biomass Valoriz. 2015, 6, 465–473. [Google Scholar] [CrossRef] [Green Version]
- Metcalf & Eddy Inc.; Tchobanoglous, G.; Burton, F.L.; Stensel, H.D. Wastewater Engineering: Treatment and Reuse, 4th ed.; McGraw-Hill: New York, NY, USA, 2003. [Google Scholar]
- Iqbal, M.K.; Shafiq, T.; Ahmed, K. Effect of different techniques of composting on stability and maturity of municipal solid waste compost. Environ. Technol. 2010, 31, 205–214. [Google Scholar] [CrossRef] [PubMed]
- Özyaka, V.S.; Çakmakcı, M.; Yaman, F.B.; Özkaya, B.; Karadağ, D. Treatment of compost leachate by membrane processes. Environ. Eng. Manag. J. 2015, 14, 2237–2241. [Google Scholar]
- Safari, E.; Ghazizade, M.J.; Shokouh, A.; Bidhendi, G.R. Anaerobic removal of COD from high strength fresh and partially stabilized leachates and application of multi stage kinetic model. Int. J. Environ. Res. 2011, 5, 255–270. [Google Scholar]
- Tchobanoglous, G.; Theisen, H.; Vigil, S. Integratd Solid Waste Management: Engineering Principle and Management Issue; McGraw-Hill: New York, NY, USA, 1993. [Google Scholar]
- Krogmann, U.; Woyczechowski, H. Selected characteristics of leachate, condensate and runoff released during composting of biogenic waste. Waste Manag. Res. 2000, 18, 235–248. [Google Scholar] [CrossRef]
- Liu, J.; Zhong, J.; Wang, Y.; Liu, Q.; Qian, G.; Zhong, L.; Guo, R.; Zhang, P.; Xu, Z.P. Effective bio-treatment of fresh leachate from pretreated municipal solid waste in an expanded granular sludge bed bioreactor. Bioresour. Technol. 2010, 101, 1447–1452. [Google Scholar] [CrossRef] [PubMed]
- Hashemi, H.; Ebrahimi, A.; Khodabakhshi, A. Investigation of anaerobic biodegradability of real compost leachate emphasis on biogas harvesting. Int. J. Environ. Sci. Technol. 2015, 12, 2841–2846. [Google Scholar] [CrossRef] [Green Version]
- Mokhtarani, N.; Bayatfard, A.; Mokhtarani, B. Full scale performance of compost’s leachate treatment by biological anaerobic reactors. Waste Manag. Res. 2012, 30, 524–529. [Google Scholar] [CrossRef]
- Yilmaz, T.; Erdirencelebi, D.; Berktay, A. Effect of COD/SO ratio on anaerobic treatment of landfill leachate during the start-up period. Environ. Technol. 2012, 33, 313–320. [Google Scholar] [CrossRef]
- Siciliano, A.; Ruggiero, C.; De Rosa, S. A new integrated treatment for the reduction of organic and nitrogen loads in methanogenic landfill leachates. Process Saf. Environ. Prot. 2013, 91, 311–320. [Google Scholar] [CrossRef]
- Siciliano, A.; Stillitano, M.A.; Limonti, C.; Marchio, F. Ammonium removal from landfill leachate by means of multiple recycling of struvite residues obtained through acid decomposition. Appl. Sci. 2016, 6, 345. [Google Scholar] [CrossRef]
- Mahvi, A.H.; Feizabadi, G.K.; Dehghani, M.H.; Mazloomi, S. Efficiency of different coagulants in pretreatment of composting plant leachate. J. Biodivers. Environ. Sci. 2015, 6, 21–28. [Google Scholar]
- Maleki, A.; Zazouli, M.A.; Izanloo, H.; Rezaee, R. Composting plant leachate treatment by coagulation-flocculation process. Am. Eurasian J. Agric. Environ. Sci. 2009, 5, 638–643. [Google Scholar]
- Simonič, M. Compost leachate treatment using polyaluminium chloride and nanofiltration. Open Chem. 2017, 15, 123–128. [Google Scholar] [CrossRef]
- Trujillo, D.; Font, X.; Sanchez, A. Use of Fenton reaction for the treatment of leachate from composting of different wastes. J. Hazard. Mater. 2006, 138, 201–204. [Google Scholar] [CrossRef] [Green Version]
- Soubh, A.; Mokhtarani, N. The post treatment of composting leachate with a combination of ozone and persulfate oxidation processes. RSC Adv. 2016, 6, 76113–76122. [Google Scholar] [CrossRef]
- Ozkaya, B. Chlorophenols in leachates originating from different landfills and aerobic composting plants. J. Hazard. Mater. 2005, 124, 107–112. [Google Scholar] [CrossRef]
- Siciliano, A.; De Rosa, S. Experimental formulation of a kinetic model describing the nitrification process in biological aerated filters filled with plastic elements. Environ. Technol. 2015, 36, 293–301. [Google Scholar] [CrossRef]
- Siciliano, A.; De Rosa, S. An experimental model of COD abatement in MBBR based on biofilm growth dynamic and on substrates’ removal kinetics. Environ. Technol. 2016, 37, 2058–2071. [Google Scholar] [CrossRef]
- Khanal, S.K. Anaerobic Biotecnology for Bioenergy Production: Principles and Applications; Wiley-Blackwell: Ames, IA, USA, 2008. [Google Scholar]
- Siciliano, A.; Limonti, C.; Mehariya, S.; Molino, A.; Calabrò, V. Biofuel production and phosphorus recovery through an integrated treatment of agro-industrial waste. Sustainability 2019, 11, 52. [Google Scholar] [CrossRef]
- Dearman, B.; Bentham, R.H. Anaerobic digestion of food waste: Comparing leachate exchange rates in sequential batch systems digesting food waste and biosolids. Waste Manag. 2007, 27, 1792–1799. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Chen, L.; Liu, X.; Mei, Z.; Ren, H.; Cao, Q.; Yan, Z. Instability mechanisms and early warning indicators for mesophilic anaerobic digestion of vegetable waste. Bioresour. Technol. 2017, 245, 90–97. [Google Scholar] [CrossRef] [PubMed]
- Álvarez, J.A.; Otero, L.; Lema, J.M. A methodology for optimising feed composition for anaerobic co-digestion of agro-industrial wastes. Bioresour. Technol. 2010, 101, 1153–1158. [Google Scholar] [CrossRef] [PubMed]
- Zahan, Z.; Othman, M.Z.; Muster, T.H. Anaerobic digestion/co-digestion kinetic potentials of different agro-industrial wastes: A comparative batch study for C/N optimisation. Waste Manag. 2018, 71, 663–674. [Google Scholar] [CrossRef]
- Siciliano, A.; Stillitano, M.A.; De Rosa, S. Increase of the anaerobic biodegradability of olive mill wastewaters through a pre-treatment with hydrogen peroxide in alkaline conditions. Desalin. Water Treat. 2014, 55, 1735–1746. [Google Scholar] [CrossRef]
- Siciliano, A.; Stillitano, M.A.; Limonti, C. Energetic valorization of wet olive mill wastes through a suitable integrated treatment: H2O2 with lime and anaerobic digestion. Sustainability 2016, 8, 1150. [Google Scholar] [CrossRef]
- Ebrahimi, A.; Hashemi, H.; Eslami, H.; Fallahzadeh, R.A.; Khosravi, R.; Askari, R.; Ghahramani, E. Kinetics of biogas production and chemical oxygen demand removal from compost leachate in an anaerobic migrating blanket reactor. J. Environ. Manag. 2018, 206, 707–714. [Google Scholar] [CrossRef]
- Elyasi, S.; Amani, T.; Dastyar, W. A comprehensive evaluation of parameters affecting treating high-strength compost leachate in anaerobic baffled reactor followed by electrocoagulation-flotation process. Water Air Soil Pollut. 2015, 226, 116. [Google Scholar] [CrossRef]
- Rajabi, S.; Vafajoo, L. Investigating the treatability of a compost leachate in a hybrid anaerobic reactor: An experimental study. World Acad. Sci. Eng. Technol. 2012, 61, 1175–1177. [Google Scholar]
- Hashemi, H.; Ebrahimi, A.; Mokhtari, M.; Jasemizad, T. Removal of PAHs and heavy metals in composting leachate using the anaerobic migrating blanket reactor (AMBR) process. Desalin. Water Treat. 2016, 57, 24960–24969. [Google Scholar] [CrossRef]
- Roy, D.; Azaïs, A.; Benkaraache, S.; Drogui, P.; Tyagi, R.D. Composting leachate: Characterization, treatment, and future perspectives. Rev. Environ. Sci. Biotechnol. 2018, 17, 323–349. [Google Scholar] [CrossRef]
- Lim, B.S.; Kim, B.; Chung, I. Anaerobic treatment of food waste leachate for biogas production using a novel digestion system. Environ. Eng. Res. 2012, 17, 41–46. [Google Scholar] [CrossRef]
- Amin, M.M.; Hashemi, H.; Bina, B.; Ebrahimi, A.; Pourzamani, H.R.; Ebrahimi, A. Environmental pollutants removal from composting leachate using anaerobic biological treatment process. Int. J. Health Syst. Disaster Manag. 2014, 2, 136–141. [Google Scholar]
- Eslami, H.; Hashemi, H.; Fallahzadeh, R.A.; Rasoul Khosravi, R.; Fard, R.F.; Ebrahimi, A.A. Effect of organic loading rates on biogas production and anaerobic biodegradation of composting leachate in the anaerobic series bioreactors. Ecol. Eng. 2018, 110, 165–171. [Google Scholar] [CrossRef]
- APHA. Standard Methods for the Examination of Water and Wastewater, 20th ed.; American Public Health Association and Water Environment Federation: Washington, DC, USA, 1998.
- Romero, C.; Ramos, P.; Costa, C.; Marquez, M.C. Raw and digested municipal waste compost leachate as potential fertilizer: Comparison with a commercial fertilizer. J. Clean Prod. 2013, 59, 73–78. [Google Scholar] [CrossRef]
- Nayono, S.E.; Winter, J.; Gallert, C. Anaerobic digestion of pressed off leachate from the organic fraction of municipal solid waste. Waste Manag. 2010, 30, 1828–1833. [Google Scholar] [CrossRef]
- Hartman, H.; Ahring, B.K. Strategies for the anaerobic digestion of the organic fraction of municipal solid waste: An overview. Water Sci. Technol. 2006, 53, 7–22. [Google Scholar] [CrossRef]
- European Parliament. Regulation of the European Parliament and of the Council Laying Down Rules on the Making Available on the Market. of CE Marked Fertilising Products and Amending Regulations (EC) No 1069/2009 and (EC) No 1107/2009 (COM(2016)0157-C8-0123/2016-2016/0084(COD)); European Parliament: Strasbourg, France, 2019. [Google Scholar]
Stat-Up Phase | Operational Phase | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
OLR (kgCOD/m3d) | 1–2 | 4.25 | 5.25 | 6.0 | 9.25 | 11.0 | 14.5 | 18.25 | 24.5 | 32.0 | 38.5 |
HRT (d) | 66–33 | 15.5 | 12.5 | 11.0 | 7.25 | 6.0 | 4.5 | 3.6 | 2.7 | 2.0 | 1.8 |
Volume of fed leachate (L/d) | 0.022–0.044 | 0.097 | 0.12 | 0.14 | 0.21 | 0.25 | 0.33 | 0.415 | 0.555 | 0.75 | 0.833 |
Parameters | U.M. | Leachate | Activated Sludge |
---|---|---|---|
pH | - | 5.3 ± 0.2 | 6.9 ± 0.1 |
Conductivity | mS/cm | 5.6 ± 0.1 | 1.2 ± 0.1 |
TS | g/L | 61.9 ± 2.01 | 10.8 ± 0.08 |
VS | g/L | 38.2 ± 2.11 | 8.9 ± 0.09 |
COD | g/L | 66.5 ± 3.5 | 12.8 ± 0.33 |
CODsol | g/L | 54.3 ± 0.24 | 1.7 ± 0.11 |
Alkalinity | gCaCO3/L | 12.6 ± 0.77 | 0.5 ± 0.04 |
VFA | gCH3COOH/L | 15.2 ± 0.78 | 0.08 ± 0.003 |
TKN | g/L | 1.52 ± 0.14 | 0.78 ± 0.008 |
N-NH4 | g/L | 0.66 ± 0.05 | 1.4 ± 0.11 |
P-PO4 | g/L | 0.55 ± 0.03 | 39.3 ± 3.6 |
SO4 | g/L | 0.45 ± 0.028 | 88.7 ± 2.3 |
Ca | g/L | 3.55 ± 0.021 | 0.098 ± 0.002 |
Mg | g/L | 0.82 ± 0.036 | 0.039 ± 0.001 |
K | g/L | 0.61 ± 0.017 | - |
Fe | mg/L | 113.8 ± 4.1 | 0.3 ± 0.01 |
Pb | mg/L | 34.4 ± 1.1 | - |
Mn | mg/L | 10.6 ± 0.21 | 0.1 ± 0.005 |
Cr | mg/L | - | - |
Cu | mg/L | - | - |
Cd | mg/L | - | - |
Hg | mg/L | - | - |
Zn | mg/L | 20.0 ± 0.40 | - |
Ni | mg/L | 0.2 ± 0.01 | - |
Dosage (g/L) | pH (-) | VFA/ALK (gCH3COOH/gCaCO3) | |
---|---|---|---|
MgO | 5 | 9.1 ± 0.1 | 1.06 ± 0.050 |
25 | 10.1 ± 0.1 | 0.86 ± 0.022 | |
50 | 10.8 ± 0.1 | 0.84 ± 0.031 | |
NaOH | 4 | 10.4 ± 0.2 | 0.84 ± 0.011 |
20 | 13.2 ± 0.1 | 0.42 ± 0.025 | |
40 | 13.7 ± 0.1 | 0.26 ± 0.018 | |
KHCO3 | 45 | 6.5 ± 0.1 | 0.51 ± 0.024 |
85 | 7.6 ± 0.2 | 0.27 ± 0.011 | |
140 | 7.9 ± 0.1 | 0.18 ± 0.008 |
Parameters | U.M. | Digestate |
---|---|---|
pH | - | 7.8 ± 0.2 |
Conductivity | mS/cm | 23.6 ± 0.2 |
TS | g/L | 21.6 ± 1.1 |
VS | g/L | 10.2 ± 0.65 |
COD | g/L | 12.5 ± 0.96 |
Alkalinity | gCaCO3/L | 13.6 ± 0.78 |
VFA | gCH3COOH/L | 6.7 ± 0.31 |
TKN | g/L | 1.52 ± 0.04 |
N-NH4 | g/L | 1.36 ± 0.06 |
P-PO4 | mg/L | 6.9 ± 0.02 |
SO4 | g/L | 0.54 ± 0.03 |
Ca | g/L | 0.65 ± 0.02 |
Mg | g/L | 0.14 ± 0.01 |
K | g/L | 0.61 ± 0.02 |
Fe | mg/L | 21.0 ± 1.6 |
Pb | mg/L | 0.51 ± 0.01 |
Mn | mg/L | 0.60 ± 0.02 |
Cr | mg/L | - |
Cu | mg/L | - |
Cd | mg/L | - |
Hg | mg/L | - |
Zn | mg/L | 0.3 ± 0.01 |
Ni | mg/L | - |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Siciliano, A.; Limonti, C.; Curcio, G.M.; Calabrò, V. Biogas Generation through Anaerobic Digestion of Compost Leachate in Semi-Continuous Completely Stirred Tank Reactors. Processes 2019, 7, 635. https://doi.org/10.3390/pr7090635
Siciliano A, Limonti C, Curcio GM, Calabrò V. Biogas Generation through Anaerobic Digestion of Compost Leachate in Semi-Continuous Completely Stirred Tank Reactors. Processes. 2019; 7(9):635. https://doi.org/10.3390/pr7090635
Chicago/Turabian StyleSiciliano, Alessio, Carlo Limonti, Giulia Maria Curcio, and Vincenza Calabrò. 2019. "Biogas Generation through Anaerobic Digestion of Compost Leachate in Semi-Continuous Completely Stirred Tank Reactors" Processes 7, no. 9: 635. https://doi.org/10.3390/pr7090635
APA StyleSiciliano, A., Limonti, C., Curcio, G. M., & Calabrò, V. (2019). Biogas Generation through Anaerobic Digestion of Compost Leachate in Semi-Continuous Completely Stirred Tank Reactors. Processes, 7(9), 635. https://doi.org/10.3390/pr7090635