A Review on the Modeling, Control and Diagnostics of Continuous Pulp Digesters
Abstract
:1. Introduction
2. Materials and Methods
3. Modeling of Pulp Digesters
3.1. Purdue Model
3.2. Gustafson Model
3.3. Andersson Model
3.4. Other Models and Comparative Studies
3.5. Discussion and Future Research Directions for Pulp Digester Modeling
4. Control of Pulp Digesters
4.1. Kappa Number Control
4.2. Chip Level Control
4.3. Residual Alkali Control
4.4. Discussion and Future Research Directions of Pulp Digesters Control
5. Diagnostics of Pulp Digesters
Discussion and Future Research Directions in Pulp Digester Diagnostics
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Notation and Symbols
Positive constants | |
H | H-factor |
Temperature dependent function | |
L | Lignin concentration |
Gamma function | |
Intersection lignin level | |
Exponents of concentration | |
Fast, intermediate and slow lignin concentration | |
Carbohydrate reaction rates | |
R | Universal gas constant |
Lignin reaction rates | |
S | Concentration dependent function |
Fitting parameters | |
T | Temperature |
t | Time |
Chip temperature | |
Pre-exponential factor | |
Carbohydrate concentration | |
C | Wood component concentration |
Sulfide concentration | |
Nonreactive wood component concentration | |
Sodium concentration | |
Activation energies | |
Alkali concentration |
Abbreviations
EA | Effective alkali |
MLR | Multiple linear regression |
CSTR | Continuously stirred-tank reactor |
GA | Genetic algorithm |
CFD | Computational fluid dynamics |
MISO | Multi-input single-output |
PID | Proportional-integral-derivative |
PLS | Partial least square |
MPC | Model predictive control |
RBF | Radial basis function |
AR | Auto-regressive |
ANN | Artificial neural network |
PI | Proportional-integral |
MR-EKF | Multi-rate extended Kalman filter |
MV | Manipulated variable |
SOM | Self-organizing map |
MCC | Modified continuous cooking |
NIR | Near infrared |
EMCC | Extended modified continuous cooking |
STR | Self-tuning regulator |
DMC | dynamic matrix control |
GPC | Generalized predictive control |
SISO | Single-input-single-output |
BN | Bayesian network |
MIMO | Multi-inputs-multi-outputs |
PCA | Principal component analysis |
RDC | Reduced dimension control |
SDG | Signed directed graph |
RGA | Relative gain array |
DAE | Differential-algebraic equation |
RTD | Residence time distribution |
AI | Artificial Intelligence |
References
- FAO (Forest and Agriculture Organization of the United Nations). Data: Forestry Production and Trade. Available online: http://www.fao.org/faostat/en/#data/FO (accessed on 4 February 2020).
- Bajpai, P. Biermann’s Handbook of Pulp and Paper, 3rd ed.; Elsevier: Amsterdam, The Netherlands, 2018; p. 668. [Google Scholar] [CrossRef]
- Domínguez de María, P. Industrial Biorenewables—A Practical Approach, 1st ed.; Wiley-Blackwell: Hoboken, NJ, USA, 2016; p. 576. [Google Scholar]
- Empie, H.J. Fundamentals of the Kraft Recovery Process; Tappi Press: Atlanta, GA, USA, 2009. [Google Scholar]
- Pikka, O.; de Andrade, M.A. New developments in pulping technology. In Proceedings of the 7th ICEP— International Colloquium on Eucalyptus Pulp, Vitória, Brazil, 26–29 May 2015. [Google Scholar]
- Rahman, M.; Avelin, A.; Kyprianidis, K. An Approach for Feedforward Model Predictive Control of Continuous Pulp Digesters. Processes 2019, 7, 602. [Google Scholar] [CrossRef] [Green Version]
- Halmevaara, K. Simulation Assisted Performance Optimization of Large-Scale Multiparameter Technical Systems. Ph.D. Thesis, Helsinki University of Technology, Espoo, Finland, 2009. [Google Scholar]
- Correia, F.M.; D’Angelo, J.V.H.; Zemp, R.J.; Mingoti, S.A. Prediction of Kappa Number in Eucalyptus Kraft Pulp Continuous Digester Using the Box-Jenkins Methodology. Adv. Chem. Eng. Sci. 2014, 04, 539–547. [Google Scholar] [CrossRef] [Green Version]
- Dufour, P.; Bhartiya, S.; Dhurjati, P.S.; Doyle, F.J. Neural network-based software sensor: Training set design and application to a continuous pulp digester. Control Eng. Pract. 2005, 13, 135–143. [Google Scholar] [CrossRef] [Green Version]
- Ahvenlampi, T.; Kortela, U. Clustering algorithms in process monitoring and control application to continuous digesters. Informatica 2005, 29, 101–109. [Google Scholar]
- Galicia, H.J.; He, Q.P.; Wang, J. A reduced order soft sensor approach and its application to a continuous digester. J. Process Control 2011, 21, 489–500. [Google Scholar] [CrossRef]
- Correia, F.M.; D’Angelo, J.V.; Almeida, G.M.; Mingoti, S.A. Predicting Kappa number in a Kraft pulp continuous digester: A comparison of forecasting methods. Braz. J. Chem. Eng. 2018, 35, 1081–1094. [Google Scholar] [CrossRef]
- Harkonen, E.J. A mathematical model for two-phase flow in a continuous digester. Tappi J. 1987, 70, 122–126. [Google Scholar]
- Agarwal, N.; Gustafson, R. A contribution to the modeling of kraft pulping. Can. J. Chem. Eng. 1997, 75, 8–15. [Google Scholar] [CrossRef]
- Fernandes, N.C.P.; Castro, J.J. Steady-state simulation of a continuous moving bed reactor in the pulp and paper industry. Chem. Eng. Sci. 2000, 55, 3729–3738. [Google Scholar] [CrossRef] [Green Version]
- Vroom, K.E. The “H" factor: A means of expressing cooking times and temperatures as a single variable. Pulp Pap. Mag. Can. 1957, 58, 228–231. [Google Scholar]
- Kleinert, T. Mechanisms of alkaline delignifi cation. I. The overall reaction pattern. Tappi 1966, 49, 53–57. [Google Scholar]
- Kerr, A.J. Kinetics of kraft pulping-progress in development of a mathematical model. Appita 1970, 24, 180. [Google Scholar]
- Kerr, A.; Uprichard, J. The kinetics of kraft pulping—Refinement of a mathematical model. Appita 1976, 30, 48–54. [Google Scholar]
- Clarke, F. A kraft delignification model and its use in production optimization. Pulp Pap. Can. 1987, 88, 197–201. [Google Scholar]
- LeMon, S.; Teder, A. Kinetics of the delignification in kraft pulping. Sven. Papperstidning 1973, 76, 228–233. [Google Scholar]
- Smith, C.C.; Williams, T.J. Mathematical Modelling, Simulation and Control of the Operation of a Kamyr Continuous Digester for the Kraft Process; Purdue Laboratory for Applied Industrial Control, Schools of Engineering, Purdue University: West Lafayette, IN, USA, 1974. [Google Scholar]
- Christensen, T.; Albright, L.F.; Williams, T.J. A kinetic mathematical model for the Kraft pulping of wood. In Proceedings of the TAPPI Annual Meeting, Atlanta, GA, USA, 2–4 March 1983; pp. 239–246. [Google Scholar]
- Saltin, J. Predictive Dynamic Model for Continuous Digesters. TAPPI Pulping Conference; TAPPI Press: Boston, MA, USA, 1992; pp. 261–268. [Google Scholar]
- Michelsen, F.A. A Dynamic Mechanistic Model and Model-Based Analysis of a Continuous Kamyr Digester. Ph.D. Thesis, The Norwegian Institute of Technology University of Trondheim, Trondheim, Norway, 1995. [Google Scholar]
- Kayihan, F.; Gelormino, M.S.; Hanczyc, E.M.; Doyle, F.J.; Arkun, Y. A Kamyr continuous digester model for identification and controller design. Proc. IFAC World Congress 1996, 29, 5835–5840. [Google Scholar] [CrossRef]
- Lindgren, C.T.; Lindström, M.E. Kinetics of the bulk and residual delignification in kraft pulping of birch and factors affecting the amount of residual phase lignin. Nord. Pulp Pap. Res. J. 1997, 12, 124–127. [Google Scholar] [CrossRef]
- Miyanishi, T.; Shimada, H. Improvement of pulp strength and yield by computer simulation of Lo-Solids kraft cooking. Tappi J. 2001, 84, 65. [Google Scholar]
- Bhartiya, S.; Dufour, P.; Doyle, F.J. Fundamental thermal-hydraulic pulp digester model with grade transition. AIChE J. 2003, 49, 411–425. [Google Scholar] [CrossRef] [Green Version]
- Kayihan, F.; Bills, A.; Hart, P.W. Mill application of a new continuous digester model. AIChE J. 2005, 51, 2489–2494. [Google Scholar] [CrossRef]
- Pougatch, K.; Salcudean, M.; Gartshore, I. A numerical model of the reacting multiphase flow in a pulp digester. Appl. Math. Model. 2006, 30, 209–230. [Google Scholar] [CrossRef]
- Ding, L.; Gustafsson, T.; Johansson, A. Model parameter estimation of simplified linear models for a continuous paper pulp digester. J. Process Control 2007, 17, 115–127. [Google Scholar] [CrossRef] [Green Version]
- Araneda, F.J.; Melo, D.L.; Canales, E.R. Industrial Lo-Solids pulp digester simulation by the Purdue model. Tappi J. 2009, 8, 4–9. [Google Scholar] [CrossRef]
- Mattsson, S.E.; Elmqvist, H.; Otter, M. Physical system modeling with Modelica. Control Eng. Pract. 1998, 6, 501–510. [Google Scholar] [CrossRef]
- Choi, H.; Kwon, J.S. Multiscale modeling and multiobjective control of wood fiber morphology in batch pulp digester. AIChE J. 2020, 66, e16972. [Google Scholar] [CrossRef]
- Gustafson, R.R.; Sleicher, C.A.; McKean, W.T.; Finlayson, B.A. Theoretical model of the kraft pulping process. Ind. Eng. Chem. Process Des. Dev. 1983, 22, 87–96. [Google Scholar] [CrossRef] [Green Version]
- Pu, Q.; McKean, W.; Gustafson, R. Kinetic model of softwood kraft pulping and simulation of RDH process. Appita 1991, 44, 399–404. [Google Scholar]
- Vanchinathan, S.; Krishnagopalan, G.A. Dynamic modeling of kraft pulping of southern pine based on on-line liquor analysis. Tappi J. 1997, 80, 123–133. [Google Scholar]
- Walkush, K.; Gustafson, R.G. Application of pulping models to investigate the performance of commercial continuous digesters. TAPPI J. 2002, 1, 13–19. [Google Scholar]
- Rantanen, B.; Similä, E.; Ahvenlampi, T. Modeling of Kappa number in Downflow Lo-Solids cooking using Gustafson’s model. Pulp Pap. Can. 2005, 106, 31–34. [Google Scholar]
- Ahvenlampi, T.; Rantanen, R.; Kortela, U. Visualizing yield profiles in continuous cooking processes. IFAC Proc. Vol. 2005, 38, 219–224. [Google Scholar] [CrossRef]
- Santos, R.B.; Jameel, H.; Chang, H.M.; Hart, P.W. Kinetics of hardwood carbohydrate degradation during kraft pulp cooking. Ind. Eng. Chem. Res. 2012, 51, 12192–12198. [Google Scholar] [CrossRef]
- Andersson, N. Modelling of Kraft Cooking Kinetics Using Near Infrared Spectroscopy. Ph.D. Thesis, Karlstad University, Karlstad, Sweden, 2003. [Google Scholar]
- Andersson, N.; Wilson, D.; Germgård, U. An improved kinetic model structure for softwood kraft cooking. Nordic Pulp & Paper Research Journal 2003, 64, 683–692. [Google Scholar] [CrossRef]
- Sixta, H.; Rutkowska, E.W. Comprehensive kinetic study of delignification, carbohydrate degradation, cellulose chain scissions, and hexenuronic acid reactions during kraft pulping of Eucalyptus globulus. Lenzing. Berichte 2006, 18, 200–2009. [Google Scholar]
- Paananen, M.; Tamminen, T.; Nieminen, K.; Sixta, H. Galactoglucomannan stabilization during the initial kraft cooking of Scots pine. Holzforschung 2010, 64, 683–692. [Google Scholar] [CrossRef]
- He, P.; Salcudean, M.; Gartshore, I.; Bibeau, E. Modeling of kraft two-phase digester pulping processes. In Process and Product Quality Conference and Trade Fair; TAPPI Press: Anaheim, CA, USA, 1999; Volume 3, pp. 1407–1418. [Google Scholar]
- Fan, Y. Numerical Investigation of Industrial Continuous Digesters. Ph.D. Thesis, University of British Columbia, Vancouver, BC, Canada, 2005. [Google Scholar] [CrossRef]
- Pourian, B. Analyzing the Hydro Dynamics and the Chemical Reactions in Pulp Digester Systems Using CFD Modelling. Ph.D. Thesis, Mälardalen University, Västerås, Sweden, 2011. [Google Scholar]
- Burazin, M.A.; McDonough, T.J. Building a mechanistic model of kraft-anthraquinone pulping kinetics. IPC Tech. Pap. Ser. 1987, 250, 1–7. [Google Scholar]
- Burazin, M.A.; McDonough, T.J. Building a mechanistic model of kraft-anthraquinone pulping kinetics. Tappi J. 1988, 71, 165–169. [Google Scholar]
- Giudici, R.; Park, S.W. Kinetic Model for Kraft Pulping of Hardwood. Ind. Eng. Chem. Res. 1996, 35, 856–863. [Google Scholar] [CrossRef]
- Masura, V. A mathematical model of kraft pulping related to the alkali concentration in the cooking liquor. Wood Sci. Technol. 1999, 33, 381–389. [Google Scholar] [CrossRef]
- Grenman, H.; Warna, J.; Mikkola, J.P.; Sifontes, V.; Fardim, P.; Murzin, D.Y.; Salmi, T. Modeling the Influence of Wood Anisotropy and Internal Diffusion on Delignification Kinetics. Ind. Eng. Chem. Res. 2010, 49, 9703–9711. [Google Scholar] [CrossRef]
- Nieminen, K.; Paananen, M.; Sixta, H. Kinetic Model for Carbohydrate Degradation and Dissolution during Kraft Pulping. Ind. Eng. Chem. Res. 2014, 53, 11292–11302. [Google Scholar] [CrossRef]
- Bogren, J.; Brelid, H.; Theliander, H. Towards a general kraft delignification model. Nord. Pulp Pap. Res. J. 2009, 24, 33–37. [Google Scholar] [CrossRef]
- Andersson, N.; Wilson, D.I.; Germgård, U. Validating continuous kraft digester kinetic models with online NIR measurements. Proc. Am. Control Conf. 2002, 5, 3783–3787. [Google Scholar] [CrossRef]
- Nieminen, K.; Sixta, H. Comparative evaluation of different kinetic models for batch cooking: A review. Holzforschung 2012, 66, 791–799. [Google Scholar] [CrossRef]
- Fearon, O.; Kuitunen, S.; Ruuttunen, K.; Alopaeus, V.; Vuorinen, T. Detailed modeling of kraft pulping chemistry. Delignification. Ind. Eng. Chem. Res. 2020, 59, 12977–12985. [Google Scholar] [CrossRef]
- Fearon, O.; Nykänen, V.; Kuitunen, S.; Ruuttunen, K.; Alén, R.; Alopaeus, V.; Vuorinen, T. Detailed modeling of the kraft pulping chemistry: Carbohydrate reactions. AIChE J. 2020, 66. [Google Scholar] [CrossRef]
- Ding, F.; Gagne, P.; Talbot, H.; Lejeune, C. A multisensor fusion and integration system design and its application. In Proceedings of the 2016 IEEE International Instrumentation and Measurement Technology Conference, Taipei, Taiwan, 23–26 May 2016. [Google Scholar] [CrossRef]
- Trung, T.; Conroy, B.; Wilson, D. NIR spectroscopy: A paradigm shift in pulp properties measurements. Pulp Pap. Can. 2015, 116, 24–25. [Google Scholar]
- Trung, T.; Downes, G.; Meder, R.; Allison, B. Pulp mill and chemical recovery control with advanced analysers - from trees to final product. Appita 2015, 68, 39–46. [Google Scholar]
- Goswami, S.; Pant, H.J.; Sheoran, M.; Chandra, A.; Sharma, V.K.; Bhunia, H. Residence time distribution measurements in an industrial-scale pulp digester using technetium-99 m as radiotracer. J. Radioanal. Nucl. Chem. 2020, 323, 1373–1379. [Google Scholar] [CrossRef]
- Sheoran, M.; Goswami, S.; Pant, H.J.; Biswal, J.; Sharma, V.K.; Chandra, A.; Bhunia, H.; Bajpai, P.K.; Rao, S.M.; Dash, A. Measurement of residence time distribution of liquid phase in an industrial-scale continuous pulp digester using radiotracer technique. Appl. Radiat. Isot. 2016, 111, 10–17. [Google Scholar] [CrossRef]
- Mercangöz, M.; Doyle, F.J. Model based control for Pulp and Paper industry. IEEE Control Syst. 2006, 26, 30–39. [Google Scholar]
- Smith, E.J. A computerized pulp and paper mill instrumentation and control system. IEEE Trans. Ind. Electron. Control. Instrum. 1966, IECI-13, 10–16. [Google Scholar] [CrossRef]
- Badwe, A.; Satini, R. Continuous digester optimization using advanced process control. In SICE International Symposium on Control Systems; Computer Society of India: Mumbai, India, 2016. [Google Scholar]
- Segura, T.E.S.; Vivian, M.A.; Bonfatti, J.; Sarto, C.; Schmidt, F.; Silva, J. Effectiveness of the H-factor for controlling Eucalyptus kraft pulping. Sci. For. 2019, 124, 791–798. [Google Scholar] [CrossRef]
- Gough, B.; Meade, D.; England, G.; Kovac, S. Model based predictive adaptive control of pulp & paper mill processes. In Proceedings of the 2007 TAPPI Papermakers and PIMA International Leadership Conference, Jacksonville, FL, USA, 11–15 March 2007. [Google Scholar]
- Rahman, M. Towards a Learning System for Process and Energy Industry: Enabling Optimal Control, Diagnostics and Decision Support; Mälardalen University: Västerås, Sweden, 2019. [Google Scholar] [CrossRef]
- Cegrell, T.; Hedqvist, T. A new approach to continuous digester control. In Proceedings of the 4th IFAC/IFIP International Conference on Digital Computer Applications to Process Control, Zürich, Switzerland, 19–22 March 1974; Springer: New York, NY, USA, 1974; pp. 300–311. [Google Scholar]
- Liao, Y.S.; Wu, S.M. A Kamyr Digester Pulping Process Control by a Time Series Approach. IFAC Proc. Vol. 1983, 16, 141–149. [Google Scholar] [CrossRef]
- Dumont, G.A. Application of advanced control methods in the pulp and paper industry—A survey. Automatica 1986, 22, 143–153. [Google Scholar] [CrossRef]
- Michaelsen, R.; Christensen, T.; Lunde, G.G.; Johansson, K. Model predictive control of a continuous Kamyr digester at SCA-Nordliner, Munksund, Sweden. Pulp Pap. Can. Ont. 1994, 95, 146. [Google Scholar]
- Funkquist, J. Control of the washing zone in a continuous digester. In Proceedings of the IEEE International Conference on Control and Applications, Glasgow, UK, 24–26 August 1994; pp. 513–518. [Google Scholar] [CrossRef]
- Sidrak, Y.L. Model-based optimization of Kamyr digester operation. Tappi J. 1995, 78, 93–98. [Google Scholar]
- Wisnewski, P.A.; Doyle, F.J. A reduced model approach to estimation and control of a Kamyr digester. Comput. Chem. Eng. 1996, 20, S1053–S1058. [Google Scholar] [CrossRef]
- Wisnewski, P.A.; Doyle, F.J.; Kayihan, F.; Arkun, Y. Measurement Selection for Model Predictive Control of the Weyerhaeuser Benchmark Digester Problem. IFAC Proc. Vol. 1997, 30, 425–430. [Google Scholar] [CrossRef]
- Wisnewski, P.A.; Doyle, F.J. Control structure selection and model predictive control of the Weyerhaeuser digester problem. J. Process Control 1998, 8, 487–495. [Google Scholar] [CrossRef]
- Amirthalingam, R.; Lee, J.H. Subspace identification based inferential control of a continuous pulp digester. Comput. Chem. Eng. 1997, 21, S1143–S1148. [Google Scholar] [CrossRef]
- Amirthalingam, R.; Lee, J.H. Subspace identification based inferential control applied to a continuous pulp digester. J. Process Control 1999, 9, 397–406. [Google Scholar] [CrossRef]
- Kayihan, F. Model-based Management of Continuous Digesters to Minimize Kappa Number Variability. In Proceedings of the AIChE Annual Meeting, Los Angeles, CA, USA, 16–21 November 1997. [Google Scholar]
- Kayihan, F. Kappa Number Profile Control for Continuous Digesters. In Nonlinear Model Based Process Control; Springer: Dordrecht, The Netherlands, 1998; pp. 805–829. [Google Scholar] [CrossRef]
- Al-Awami, L.; Sidrak, Y.; Bettayeb, M. Classical and Dynamic Matrix Control of Kamyr DigestersA Comparative Study. Ind. Eng. Chem. Res. 1999, 38, 3950–3956. [Google Scholar] [CrossRef]
- Clarke-Pringle, T.; MacGregor, J.F. Reduced Dimension Control of Dynamic Systems. Ind. Eng. Chem. Res. 2000, 39, 2970–2980. [Google Scholar] [CrossRef]
- Wisnewski, P.A.; Doyle, F.J. Model-based predictive control studies for a continuous pulp digester. IEEE Trans. Control Syst. Technol. 2001, 9, 435–444. [Google Scholar] [CrossRef]
- Castro, J.J.; Doyle, F.J. Plantwide control of the fiber line in a pulp mill. Ind. Eng. Chem. Res. 2002, 41, 1310–1320. [Google Scholar] [CrossRef]
- Mori, Y.; Sueda, R.; Takeuchi, S. Pulp cooking control and wood species change control for a Kamyr continuous digester. In Proceedings of the SICE 2003 Annual Conference (IEEE Cat. No. 03TH8734), Fukui, Japan, 4–6 August 2003; Volume 1, pp. 397–402. [Google Scholar]
- Silva, C.; Biscaia, E. Multiobjective optimization of a continuous pulp digester. Comput. Aided Chem. Eng. 2003, 14, 1055–1060. [Google Scholar] [CrossRef]
- Alexandridis, A.; Sarimveis, H.; Bafas, G. Modeling and control of continuous digesters using the PLS methodology. Chem. Eng. Commun. 2004, 191, 1271–1284. [Google Scholar] [CrossRef]
- Alexandridis, A.; Sarimveis, H.; Bafas, G. Adaptive control of continuous pulp digesters based on radial basis function neural network models. In European Symposium on Computer Aided Process Engineering-13; Kraslawski, A., Turunen, I., Eds.; Elsevier: Amsterdam, The Netherlands, 2003; Volume 14, pp. 995–1000. [Google Scholar] [CrossRef]
- Alexandridis, A.; Sarimveis, H. Nonlinear adaptive model predictive control based on self-correcting neural network models. AIChE J. 2005, 51, 2495–2506. [Google Scholar] [CrossRef]
- Padhiyar, N.; Gupta, A.; Gautam, A.; Bhartiya, S.; Doyle, F.J.; Dash, S.; Gaikwad, S. Nonlinear inferential multi-rate control of Kappa number at multiple locations in a continuous pulp digester. J. Process Control 2006, 16, 1037–1053. [Google Scholar] [CrossRef]
- Rantanen, R.A.A. Modelling and Control of Cooking Degree in Conventional and Modified Continuous Pulping Processes. Ph.D. Thesis, University of Oulu, Oulu, Finland, 2006. [Google Scholar]
- Ahvenlampi, T.; Rantanen, R. Enhancing Kappa number control in Downflow Lo-Solids digester using diagnosis and modelling. In Proceedings of the Fourth International Conference on Informatics in Control, Automation and Robotics; SciTePress—Science and and Technology Publications: Setubal, Portugal, 2007; Volume 2, pp. 161–166. [Google Scholar] [CrossRef]
- Padhiyar, N.; Bhartiya, S. Profile control in distributed parameter systems using lexicographic optimization based MPC. J. Process Control 2009, 19, 100–109. [Google Scholar] [CrossRef]
- Galicia, H.J.; Peter He, Q.; Wang, J. Comparison of the performance of a reduced-order dynamic PLS soft sensor with different updating schemes for digester control. Control Eng. Pract. 2012, 20, 747–760. [Google Scholar] [CrossRef]
- Choi, H.K.; Kwon, J.S.I. Multiscale modeling and model-based feedback control of pulp digester. In Proceedings of the 2019 American Control Conference (ACC), Philadelphia, PA, USA, 10–12 July 2019; pp. 2819–2824. [Google Scholar]
- Dumont, G.A. Control techniques in the pulp and paper industry. Ad. Ind. Syst. Control Dyn. Syst. 2012, 37, 65–114. [Google Scholar]
- Amirthalingam, R. Data-Based Design of an Inferential Control System for Chemical Processes. Ph.D. Thesis, Auburn University, Auburn, AL, USA, 2000. [Google Scholar]
- Chircoski, J.; Leclerc, M.; Morissette, L. Improved continuous digester controls using wood chip analyzer at Zellstoff-Celgar. In Proceedings of the PacWest Conference organized by Paptac, Sun Peaks, BC, Canada, 12–15 June 2013. [Google Scholar]
- Amirthalingam, R.; Lee, J.H. Inferential control of a continuous pulp digester in the presence of chip level variations. In Proceedings of the Control Systems Conference, Victoria, BC, Canada, 1–4 May 2000; pp. 26–39. [Google Scholar]
- Dumont, G.; Gendron, S.; Belanger, P. Practical Experience with Kamyr Digester Level Self-Tuning Control. In Proceedings of the 1984 American Control Conference, San Diego, CA, USA, 6–8 June 1984; pp. 48–53. [Google Scholar] [CrossRef]
- Belanger, P.R.; Rochon, L.; Dumont, G.A.; Gendron, S. Self-tuning control of chip level in a Kamyr digester. AIChE J. 1986, 32, 65–74. [Google Scholar] [CrossRef]
- Allison, B.J.; Dumont, G.A.; Novak, L.H.; Cheetham, W.J. Adaptive-predictive control of Kamyr digester chip level. AIChE J. 1990, 36, 1075–1086. [Google Scholar] [CrossRef]
- Allison, B.J.; Dumont, G.A.; Novak, L.H. Multi-input adaptive-predictive control of kamyr digester chip level. Can. J. Chem. Eng. 1991, 69, 111–119. [Google Scholar] [CrossRef]
- Lindgren, T.; Gustafsson, T.; Forsgren, H.; Johansson, D.; Östensson, J. Model predictive control of the chip level in a continuous pulp digester, a case study. In Control Systems Conference 2004; Pulp and Paper Canada: Luleå, Sweden, 2004; pp. 5–11. [Google Scholar]
- Alen, R.; Andersson, R.; Annergreen, G.; Berg, C.G.; Chirat, C.; van Dam, J.; Danielsson, M.; Engelfeldt, A.; Engstrom, J.; Germgard, U. Chemical Pulping Part 1, Fibre Chemistry and Technology; Paper Engineers’ Association/Paperi ja Puu Oy: Helsinki, Finland, 2011; Volume 6. [Google Scholar]
- Ahvenlampi, T.; Malmi, T.; Liedes, M.; Ikonen, E. Energy efficient control techniques in continuous cooking application. IFAC Proc. Vol. 2010, 43, 297–302. [Google Scholar] [CrossRef]
- Sixta, H. Handbook of Pulp; Wiley: Weinheim, Germany, 2006; Volume 1–2. [Google Scholar] [CrossRef]
- Ribeiro, R.A.; Colodette, J.L.; Vaz Júnior, S. Effect of residual effective alkali on eucalyptus kraft pulp yield and chemistry. Cerne 2018, 24, 408–419. [Google Scholar] [CrossRef] [Green Version]
- Quinde, A. Residual effective alkali control: Maintain ideal levels in Kraft pulping, from the digester to the recovery cycle. Pulp Pap. Can. 2019, 120, 16–19. [Google Scholar]
- Gough, B.; Kay, J.T. Kraft continuous digester cooking control: DMT controls effective alkali, reduces kappa number variability. Pulp Pap. Can. 1996, 97, 56–60. [Google Scholar]
- Luo, X.; Liu, J.; Zhan, H.; Cao, S.; Huang, L.; Chen, L. Prediction Model and In-Digester Control of Residual Alkali Content in Black Liquor During Kraft Pulping of Eucalyptus. J. Biobased Mater. Bioenergy 2013, 7, 559–565. [Google Scholar] [CrossRef]
- Doyle, F.J.; Kayihan, F. Reaction profile control of the continuous pulp digester. Chem. Eng. Sci. 1999, 54, 2679–2688. [Google Scholar] [CrossRef]
- Doyle, F.J.; Wisnewski, P.A. Nonlinear multi-rate mpc with Large scale fundamental models:Application to a continuous kamyr digester. In Nonlinear Model Predictive Control; Birkhäuser: Basel, Switzerland, 2000; pp. 419–432. [Google Scholar] [CrossRef]
- Trung, T.; Allison, B. Advanced online process analyzer for chemical recovery and pulp mill control. O Pap. 2015, 76, 47–56. [Google Scholar] [CrossRef]
- Yang, H.; Liu, Y.; Xiong, Z.; Liang, L. Rapid Determination of Holocellulose and Lignin in Wood by Near Infrared Spectroscopy and Kernel Extreme Learning Machine. Anal. Lett. 2020, 53, 1140–1154. [Google Scholar] [CrossRef]
- Mohammadi, A.R.; Bennington, C.P.J.; Chiao, M. Development of a combined piezoresistive pressure and temperature sensor using a chemical protective coating for Kraft pulp digester process monitoring. J. Micromech. Microeng. 2011, 21, 15009. [Google Scholar] [CrossRef]
- Li, M.; Hu, W. Pulp black liquor concentration’s online measurement and its application. In Proceedings of the 2010 Chinese Control and Decision Conference, Xuzhou, China, 26–28 May 2010; pp. 361–365. [Google Scholar] [CrossRef]
- Gros, S.; Zanon, M. Reinforcement Learning for mixed-integer problems based on MPC. In Proceedings of the 21st IFAC World Congress, Berlin, Germany, 11–17 July 2020. [Google Scholar]
- Napat, K.; Valls, M.I.; Hoeller, D.; Hutter, M. Practical Reinforcement Learning For MPC: Learning from sparse objectives in under an hour on a real robot. In Proceedings of the 2nd Annual Conference on Learning for Dynamics and Control (L4DC 2020) (online), Berkeley, CA, USA, 10–11 June 2020. [Google Scholar] [CrossRef]
- Spielberg, S.P.K.; Gopaluni, R.B.; Loewen, P.D. Deep reinforcement learning approaches for process control. In Proceedings of the 2017 6th International Symposium on Advanced Control of Industrial Processes (AdCONIP), Taipei, Taiwan, 28–31 May 2017; pp. 201–206. [Google Scholar] [CrossRef] [Green Version]
- Jansson, J.; Linberg, T.; Dahlquist, E. Process Optimization and Model Based Control in Pulp and Paper Industry. In Proceedings of the AFCON Conference, Cape Town, South Africa, 30 June–2 July 2003. [Google Scholar]
- Pourian, B.; Dahlquist, E. CFD modeling of the continuous chemical interaction between the multiphase flows of the pulp and paper digester using the mass transfer scheme. World J. Model. Simul. 2011, 7, 189–205. [Google Scholar]
- Gao, Z.; Cecati, C.; Ding, S. A Survey of Fault Diagnosis and Fault-Tolerant Techniques Part II: Fault Diagnosis with Knowledge-Based and Hybrid/Active Approaches. IEEE Trans. Ind. Electron. 2015. [Google Scholar] [CrossRef]
- Gao, Z.; Cecati, C.; Ding, S.X. A Survey of Fault Diagnosis and Fault-Tolerant Techniques—Part I: Fault Diagnosis With Model-Based and Signal-Based Approaches. IEEE Trans. Ind. Electron. 2015, 62, 3757–3767. [Google Scholar] [CrossRef] [Green Version]
- Puranen, T. Jatkuvatoimisen Sellukeittimen Häiriöntunnistus Sumealla Logiikalla. Ph.D. Thesis, Department of Electrical Engineering, Automation and Control Engineering, Tampere University of Technology, Tampere, Finland, 1997. [Google Scholar]
- Alhoniemi, E. Analysis of pulping data using the self-organizing map. Tappi J. 2000, 83, 66. [Google Scholar]
- Dufour, P.; Bhartiya, S.; English, T.J.; Gatzke, E.P.; Dhurjati, P.S.; Doyle, F.J. Fault Detection in a Continuous Pulp Digester. IFAC Proc. Vol. 2001, 34, 93–98. [Google Scholar] [CrossRef] [Green Version]
- Dufour, P.; Bhartiya, S.; Dhurjati, P.S.; Doyle, F.J. A neural network approach for the diagnosis of the continuous pulp digester. In Digester Workshop; Hyper Articles en Ligne (HAL): Lyon, France, 2001. [Google Scholar]
- Weidl, G.; Dahlquist, E. Root cause analysis for pulp and paper applications. In Proceedings of the 10th Control Systems conference, Stockholm, Sweden, 27–28 April 2002. [Google Scholar]
- Ahvenlampi, T.; Tervaskanto, M.; Kortela, U. Diagnosis system for continuous cooking process. IFAC Proc. Vol. 2005, 38, 483–488. [Google Scholar] [CrossRef] [Green Version]
- Ahvenlampi, T.; Uusitalo, M. Diagnosis of extraction screen plugging in continuous cooking application. In Proceedings of the ESM 2008—2008 European Simulation and Modelling Conference: Modelling and Simulation, Le Havre, France, 27–29 October 2008; pp. 161–167. [Google Scholar]
- Lee, G.; Tosukhowong, T.; Lee, J.H. Fault detection and diagnosis of pulp mill process. In Computer Aided Chemical Engineering; Elsevier: Amsterdam, The Netherlands, 2006; Volume 21, pp. 1461–1466. [Google Scholar] [CrossRef]
- Correia, F.M.; Lana, E.P. Chip Retention Disturbances at the Continuous Digester: One Alternative for Performance Optimization. In Proceedings of the 60th Appita Annual Conference and Exhibition, Melbourne, Australia, 3–5 April 2006; Appita Inc.: Bundoora, Australia, 2006; p. 249. [Google Scholar]
- Tervaskanto, M.; Kyli-Korpela, A.; Luukkainen, S.; Timonen, O.; Ikonen, E. Identification and monitoring of failure pathways in a chemical pulping line. Nord. Pulp Pap. Res. J. 2012, 27, 568–576. [Google Scholar] [CrossRef]
- Yli-Korpela, A.; Tervaskanto, M.; Timonen, O.; Luukkainen, S.; Ikonen, E. Identification of runnability failures in continuous cooking. In Proceedings of the Paper Conference and Trade Show 2012 (PaperCon 2012), New Orleans, LA, USA, 22–25 April 2012; Volume 2, pp. 1147–1155. [Google Scholar]
- Pourian, J.; Dahlquist, E. Modelling of the channelling phenomenon of the pulping digester using porous Media. In Proceedings of the Scandinavian Modelling and Simulation Society, Conference in Fredrice, Aalborg, Denmark, 7–8 October 2009. [Google Scholar]
- Koujok, M.E.; Ragab, A.; Amazouz, M. A Multi-Agent Approach Based on Machine-Learning for Fault Diagnosis. In Proceedings of the 13th IFAC Workshop on Intelligent Manufacturing Systems, Oshawa, ON, Canada, 12–14 August 2019; Volume 52, pp. 103–108. [Google Scholar] [CrossRef]
- Nor, N.M.; Hassan, C.R.C.; Hussain, M.A. A review of data-driven fault detection and diagnosis methods: Applications in chemical process systems. Rev. Chem. Eng. 2020, 36, 513–553. [Google Scholar] [CrossRef]
- Economic Commission for Europe (ECE). Trends and Perspectives for Pulp and Paper; Technical Report; Economic and Social Council, UN: Geneva, Switzerland, 2016.
- Hujala, M.; Tuppura, A.; Jantunen, A.; Arminen, H. Structural changes and effects of R&D investments in the pulp and paper industry. Int. Wood Prod. J. 2015, 6, 181–188. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rahman, M.; Avelin, A.; Kyprianidis, K. A Review on the Modeling, Control and Diagnostics of Continuous Pulp Digesters. Processes 2020, 8, 1231. https://doi.org/10.3390/pr8101231
Rahman M, Avelin A, Kyprianidis K. A Review on the Modeling, Control and Diagnostics of Continuous Pulp Digesters. Processes. 2020; 8(10):1231. https://doi.org/10.3390/pr8101231
Chicago/Turabian StyleRahman, Moksadur, Anders Avelin, and Konstantinos Kyprianidis. 2020. "A Review on the Modeling, Control and Diagnostics of Continuous Pulp Digesters" Processes 8, no. 10: 1231. https://doi.org/10.3390/pr8101231
APA StyleRahman, M., Avelin, A., & Kyprianidis, K. (2020). A Review on the Modeling, Control and Diagnostics of Continuous Pulp Digesters. Processes, 8(10), 1231. https://doi.org/10.3390/pr8101231