Hydroxypropyl Methylcellulose-Based Hydrogel Copolymeric for Controlled Delivery of Galantamine Hydrobromide in Dementia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Drug Loading and Entrapment Efficiency
2.2.2. Sol-Gel Fraction
2.2.3. Fourier Transform Infrared (FTIR) Spectroscopy
2.2.4. Differential Scanning Calorimetry (DSC)
2.2.5. Thermogravimetric Analysis (TGA)
2.2.6. Powered X-ray Diffraction (PXRD)
2.2.7. Energy Dispersive X-ray (EDX) Spectroscopy
2.2.8. Porosity Test
2.2.9. Mechanical Strength
2.2.10. Swelling Studies
2.2.11. Galantamine Hydrobromide Release Study
2.2.12. Release Kinetics
2.2.13. Acute Oral Toxicity Studies
3. Results and Discussion
3.1. FTIR Analysis
3.2. Swelling Studies
3.2.1. Influence of MBA on Swelling Percentage
3.2.2. Influence of Pectin on Swelling Percentage
3.2.3. Influence of HPMC on Swelling Percentage
3.2.4. Influence of Acrylic Acid on Swelling Percentage
3.3. Drug Loading Efficiency
3.3.1. Influence of Cross-Linker on Drug Loading Efficiency
3.3.2. Influence of Pectin on Drug Loading Efficiency
3.3.3. Influence of HPMC on Drug Loading Efficiency
3.3.4. Influence of Acrylic Acid on Drug Loading Efficiency
3.4. Sol-Gel Fraction
3.5. Thermal Analysis
3.6. X-ray Diffraction
3.7. Energy Dispersive X-ray Spectrum (EDX) Spectroscopy
3.8. Porosity Measurements
3.9. Tensile Strength
3.10. In Vitro Release % of Galantamine Hydrobromide from HPMC-Pectin-Co-acrylic Acid Hydrogel
3.10.1. Influence of MBA Amount on Drug Release Percentage
3.10.2. Influence of Pectin Amount on Drug Release Percentage
3.10.3. Influence of HPMC and Acrylic Acid Amount on Drug Release Percentage
3.11. Assessment of Galantamine Hydrobromide Release through Kinetic Modeling
3.12. Acute Oral Toxicity Study
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Moghanjoughi, A.A.; Khoshnevis, D.; Zarrabi, A. A concise review on smart polymers for controlled drug release. Drug Deliv. Transl. Res. 2016, 6, 333–340. [Google Scholar] [CrossRef] [PubMed]
- Gupta, P.K.; Robinson, J.R. Oral controlled-release delivery. In Treatise on Controlled Drug Delivery; Taylor & Francis group, CRC Press: London, UK, 2017; pp. 255–313. [Google Scholar]
- Arslan, M.; Tasdelen, M.A. Click chemistry in macromolecular design: Complex architectures from functional polymers. Chem. Afr. 2019, 2, 195–214. [Google Scholar] [CrossRef] [Green Version]
- Robertis, S.D.; Bonferoni, M.C.; Elviri, L.; Sandri, G.; Caramella, C.; Bettini, R. Advances in oral controlled drug delivery: The role of drug-polymer and interpolymer non-covalent interactions. Expert Opin. Drug Deliv. 2014, 12, 441–453. [Google Scholar] [CrossRef] [PubMed]
- Moulton, S.E.; Wallace, G.G. 3-dimensional (3D) fabricated polymer based drug delivery systems. J. Controlled Release 2014, 193, 27–34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ofridam, F.; Lebaz, N.; Gagnière, É.; Mangin, D.; Elaissari, A. Effect of secondary polymer on self-precipitation of pH-sensitive polymethylmethacrylate derivatives Eudragit E100 and Eudragit L100. Polym. Adv. Technol. 2020, 31, 1270–1279. [Google Scholar] [CrossRef]
- Ranucci, E.; Manfredi, A. Polyamidoamines: Versatile bioactive polymers with potential for biotechnological applications. Chem. Afr. 2019, 2, 167–193. [Google Scholar] [CrossRef] [Green Version]
- Deen, G.; Loh, X. Stimuli-responsive cationic hydrogels in drug delivery applications. Gels 2018, 4, 13. [Google Scholar] [CrossRef] [Green Version]
- Levourch, G.; Lebaz, N.; Elaissari, A. Hydrophilic submicron nanogel particles for specific recombinant proteins extraction and purification. Polymers 2020, 12, 1413. [Google Scholar] [CrossRef]
- Grande, D.; Rohman, G. Oligoester-derivatized (semi-)interpenetrating polymer networks as nanostructured precursors to porous materials with tunable porosity. Chem. Afr. 2019, 2, 253–265. [Google Scholar] [CrossRef] [Green Version]
- Parhi, R. Cross-linked hydrogel for pharmaceutical applications: A review. Adv. Pharm. Bull. 2017, 7, 515–530. [Google Scholar] [CrossRef]
- Gupta, P.; Vermani, K.; Garg, S. Hydrogels: From controlled release to pH-responsive drug delivery. Drug Discov. Today 2002, 7, 569–579. [Google Scholar] [CrossRef]
- Moussa, E.; Siepmann, F.; Flament, M.P.; Benzine, Y.; Penz, F.; Siepmann, J.; Karrout, Y. Controlled release tablets based on HPMC:lactose blends. J. Drug Deliv. Sci. Technol. 2019, 52, 607–617. [Google Scholar] [CrossRef]
- Raj, A.A.S. A review on pectin: chemistry due to general properties of pectin and its pharmaceutical uses. Sci. Rep. 2012, 1, 550. [Google Scholar]
- Yen, W.F.; Basri, M.; Ahmad, M.; Ismail, M. Formulation and evaluation of galantamine gel as drug reservoir in transdermal patch delivery system. Sci. World J. 2015, 2015, 1–7. [Google Scholar]
- Mahmood, A.; Ahmad, M.; Sarfraz, R.M.; Minhas, M.U. β-CD based hydrogel microparticulate system to improve the solubility of acyclovir: Optimization through in-vitro, in-vivo and toxicological evaluation. J. Drug Deliv. Sci. Technol. 2016, 36, 75–88. [Google Scholar] [CrossRef]
- Khanum, H.; Ullah, K.; Murtaza, G.; Khan, S.A. Fabrication and in vitro characterization of HPMC-g-poly(AMPS) hydrogels loaded with loxoprofen sodium. Int. J. Biol. Macromol. 2018, 120, 1624–1631. [Google Scholar] [CrossRef]
- Khan, Z.; Minhas, M.U.; Ahmad, M.; Khan, K.U.; Sohail, M.; Khalid, I. Functionalized pectin hydrogels by cross-linking with monomer: Synthesis, characterization, drug release and pectinase degradation studies. Polym. Bull. 2019, 77, 339–356. [Google Scholar] [CrossRef]
- Vega-Chacón, J.; Tarhini, M.; Lebaz, N.; Jafelicci, M.; Zine, N.; Errachid, A.; Elaissari, A. Protein-silica hybrid submicron particles: Preparation and characterization. Chem. Afr. 2020, 3, 1–9. [Google Scholar] [CrossRef]
- Ouanji, F.; Ellouzi, I.; Kacimi, M.; Ziyad, M. Ca-hydroxyzincate: Synthesis and enhanced photocatalytic activity for the degradation of methylene blue under uv-light irradiation. Chem. Afr. 2019, 2, 395–400. [Google Scholar] [CrossRef] [Green Version]
- Hebeish, A.; Hashem, M.; El-Hady, M.M.A.; Sharaf, S. Development of CMC hydrogels loaded with silver nano-particles for medical applications. Carbohydr. Polym. 2013, 92, 407–413. [Google Scholar] [CrossRef]
- Shin, M.-S.; Kim, S.J.; Kim, I.Y.; Kim, N.G.; Song, C.G.; Kim, S.I. Swollen behavior of crosslinked network hydrogels based on poly(vinyl alcohol) and polydimethylsiloxane. J. Appl. Polym. Sci. 2002, 85, 957–964. [Google Scholar] [CrossRef]
- Saqib, M.; Bhatti, A.S.A.; Ahmad, N.M.; Ahmed, N.; Shahnaz, G.; Lebaz, N.; Elaissari, A. Amphotericin B loaded polymeric nanoparticles for treatment of leishmania infections. Nanomaterials 2020, 10, 1152. [Google Scholar] [CrossRef] [PubMed]
- Mahmood, A.; Sharif, A.; Muhammad, F.; Sarfraz, R.M.; Abrar, M.A.; Qaisar, M.N.; Anwer, N.; Amjad, M.W.; Zaman, M. Development and in vitro evaluation of (β-cyclodextrin-g-methacrylic acid)/Na+-montmorillonite nanocomposite hydrogels for controlled delivery of lovastatin. Int. J. Nanomedicine 2019, 14, 5397–5413. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rehmani, S.; Ahmad, M.; Minhas, M.U.; Anwar, H.; Zangi, M.I.; Sohail, M. Development of natural and synthetic polymer-based semi-interpenetrating polymer network for controlled drug delivery: Optimization and in vitro evaluation studies. Polym. Bull. 2016, 74, 737–761. [Google Scholar] [CrossRef]
- Akhlaq, M.; Maryam, F.; Elaissari, A.; Ullah, H.; Adeel, M.; Hussain, A.; Ramzan, M.; Ullah, O.; Danish, M.Z.; Iftikhar, S.; et al. Pharmacokinetic evaluation of quetiapine fumarate controlled release hybrid hydrogel: A healthier treatment of schizophrenia. Drug Deliv. 2018, 25, 916–927. [Google Scholar] [CrossRef] [Green Version]
- Hanafy, A.S.; Farid, R.M.; ElGamal, S.S. Complexation as an approach to entrap cationic drugs into cationic nanoparticles administered intranasally for Alzheimer\textquotesingles disease management: Preparation and detection in rat brain. Drug Dev. Ind. Pharm. 2015, 41, 2055–2068. [Google Scholar] [CrossRef]
- Feng, L.; Yang, H.; Dong, X.; Lei, H.; Chen, D. pH-sensitive polymeric particles as smart carriers for rebar inhibitors delivery in alkaline condition. J. Appl. Polym. Sci. 2017, 135. [Google Scholar] [CrossRef]
- Ibrahim, A.G. Synthesis of poly(acrylamide-graft-chitosan) hydrogel: Optimization of the grafting parameters and swelling studies. Am. J. Polym. Sci. Technol. 2019, 5, 55–62. [Google Scholar] [CrossRef]
- Mittal, N.; Kaur, G. In situ gelling ophthalmic drug delivery system: Formulation and evaluation. J. Appl. Polym. Sci. 2013, 131. [Google Scholar] [CrossRef]
- Hastuti, B.; Mudasir, M.; Siswanta, D.; Triyono, T. Preparation and Pb(II) adsorption properties of crosslinked pectin-carboxymethyl chitosan film. Indones. J. Chem. 2015, 15, 248–255. [Google Scholar] [CrossRef]
- Tan, H.L.; Tan, L.S.; Wong, Y.Y.; Muniyandy, S.; Hashim, K.; Pushpamalar, J. Dual crosslinked carboxymethyl sago pulp/pectin hydrogel beads as potential carrier for colon-targeted drug delivery. J. Appl. Polym. Sci. 2016, 133. [Google Scholar] [CrossRef]
- Wang, T.; Chen, L.; Shen, T.; Wu, D. Preparation and properties of a novel thermo-sensitive hydrogel based on chitosan/hydroxypropyl methylcellulose/glycerol. Int. J. Biol. Macromol. 2016, 93, 775–782. [Google Scholar] [CrossRef] [PubMed]
- Yoshinobu, M.; Morita, M.; Sakata, I. Porous structure and rheological properties of hydrogels of highly water-absorptive cellulose graft copolymers. J. App. Polym. Sci. 1992, 45, 805–812. [Google Scholar] [CrossRef]
- Ouyang, L.; Highley, C.B.; Rodell, C.B.; Sun, W.; Burdick, J.A. 3D printing of shear-thinning hyaluronic acid hydrogels with secondary cross-linking. ACS Biomat. Sci. Eng. 2016, 2, 1743–1751. [Google Scholar] [CrossRef]
Formulation Codes | HPMC (g) | Pectin (g) | MBA (g) | Acrylic Acid (mL) | APS (g) |
---|---|---|---|---|---|
SN1 | 0.5 | 0.5 | 0.3 | 15 | 0.2 |
SN2 | 0.5 | 0.5 | 0.5 | 15 | 0.2 |
SN3 | 0.5 | 0.5 | 0.7 | 15 | 0.2 |
SN4 | 0.5 | 1 | 0.3 | 15 | 0.2 |
SN5 | 0.5 | 1.5 | 0.3 | 15 | 0.2 |
SN6 | 1 | 0.5 | 0.3 | 15 | 0.2 |
SN7 | 1.5 | 0.5 | 0.3 | 15 | 0.2 |
SN8 | 0.5 | 0.5 | 0.3 | 17 | 0.2 |
SN9 | 0.5 | 0.5 | 0.3 | 19 | 0.2 |
Type of Material | Elements | % Weight | % Atomic |
---|---|---|---|
Galantamine hydrobromide | Carbon | 51.96 | 76.81 |
Oxygen | 10.83 | 12.01 | |
Bromine | 25.11 | 5.58 | |
Nitrogen | 3.64 | 4.61 | |
Unloaded HPMC-pectin-co-acrylic acid | Carbon | 51.77 | 59.08 |
Oxygen | 47.09 | 40.35 | |
Galantamine hydrobromide loaded HPMC-pectin-co-acrylic acid | Carbon | 52.83 | 73.82 |
Oxygen | 39.99 | 73.82 | |
Bromine | 2.33 | 0.86 | |
Sodium | 0.76 | 0.98 | |
Potassium | 18.73 | 14.15 | |
Phosphorous | 10.68 | 10.19 |
Formulation Code | Zero Order | First Order | Higuchi Model | Korsemeyer–Peppas | |
---|---|---|---|---|---|
R2 | R2 | R2 | R2 | R2 | n |
SN1 | 0.9911 | 0.7241 | 0.9715 | 0.9887 | 0.431 |
SN2 | 0.9907 | 0.7585 | 0.9789 | 0.9902 | 0.426 |
SN3 | 0.9909 | 0.7909 | 0.9817 | 0.9917 | 0.433 |
SN4 | 0.9906 | 0.7001 | 0.9630 | 0.9878 | 0.440 |
SN5 | 0.9908 | 0.7392 | 0.9350 | 0.9848 | 0.405 |
SN6 | 0.9908 | 0.7921 | 0.9605 | 0.9874 | 0.436 |
SN7 | 0.9905 | 0.7133 | 0.9165 | 0.9883 | 0.389 |
SN8 | 0.9901 | 0.6769 | 0.9049 | 0.9852 | 0.377 |
SN9 | 0.9874 | 0.6679 | 0.8788 | 0.9873 | 0.358 |
Clinical Monitoring | Control Animal Group (A) | Tested Animal Group (B) |
---|---|---|
Signs of any illness | None | None |
Body Weight (g) | ||
Before treatment | 1653.78 ± 0.40 | 1738.91 ± 0.40 |
On Day 1 | 1651.43 ± 0.60 | 1735.42 ± 0.60 |
On Day 7 | 1651.39 ± 0.50 | 1733.49 ± 0.40 |
On Day 14 | 1650.84 ± 0.20 | 1733.64 ± 0.50 |
Food consumption (g) | ||
Before treatment | 75.87 ± 3.045 | 74.28 ± 2.87 |
On Day 1 | 73.49 ± 2.183 | 77.93 ± 1.06 |
On Day 7 | 76.48 ± 4.184 | 67.85 ± 3.04 |
On Day 14 | 68.98 ± 3.789 | 72.48 ± 3.98 |
Water intake (mL) | ||
Before treatment | 200.52 ± 2.45 | 180.62 ± 2.90 |
On Day 1 | 190.48 ± 4.21 | 187.59 ± 1.60 |
On Day 7 | 195.82 ± 3.48 | 204.92 ± 3.10 |
On Day 14 | 203.26 ± 2.49 | 200.65 ± 2.40 |
Signs of skin allergy | None | None |
Signs of ocular toxicity | None | None |
Any mortality | None | None |
Finding Parameters | Controlled Animal Group (A) | Tested Animal Group (B) |
---|---|---|
White blood cells (× 103/µL) | 4.50 ± 0.34 | 5.20 ± 0.25 |
Red blood cells (× 106/ µL) | 3.98 ± 0.49 | 4.46 ± 0.51 |
Hemoglobin (g/dL) | 11.93 ± 0.76 | 12.86 ± 0.69 |
Platelets (× 103/ µL) | 42.63 ± 0.87 | 44.52 ± 0.47 |
Lymphocytes % | 63.10 ± 0.58 | 68.70 ± 0.81 |
Monocytes % | 3.10 ± 0.35 | 3.00 ± 0.21 |
Mean corpuscular volume (fL) | 60.90 ± 2.90 | 61.40 ± 2.32 |
Mean corpuscular hemoglobin (pg) | 19.90 ± 0.50 | 20.90 ± 0.10 |
Mean corpuscular hemoglobin concentration (g/dL) | 35.80 ± 1.41 | 33.90 ± 1.84 |
Finding Parameters | Controlled Animal Group (A) | Tested Animal Group (B) |
---|---|---|
ALT(U/L) | 52.45 ± 1.42 | 57.28 ± 1.59 |
AST (U/L) | 126.00 ± 2.33 | 135.00 ± 2.84 |
ALP (U/L) | 135.00 ± 1.46 | 148.20 ± 1.68 |
ALB (g/L) | 5.17 ± 0.45 | 4.90 ± 0.82 |
Creatinine (mg/dL) | 0.79 ± 0.11 | 0.60 ± 0.12 |
Uric acid (mg/dL) | 2.40 ± 0.25 | 2.90 ± 0.21 |
Urea (mg/dL) | 16.02 ± 0.15 | 13.50 ± 0.18 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bashir, S.; Zafar, N.; Lebaz, N.; Mahmood, A.; Elaissari, A. Hydroxypropyl Methylcellulose-Based Hydrogel Copolymeric for Controlled Delivery of Galantamine Hydrobromide in Dementia. Processes 2020, 8, 1350. https://doi.org/10.3390/pr8111350
Bashir S, Zafar N, Lebaz N, Mahmood A, Elaissari A. Hydroxypropyl Methylcellulose-Based Hydrogel Copolymeric for Controlled Delivery of Galantamine Hydrobromide in Dementia. Processes. 2020; 8(11):1350. https://doi.org/10.3390/pr8111350
Chicago/Turabian StyleBashir, Sidra, Nadiah Zafar, Noureddine Lebaz, Asif Mahmood, and Abdelhamid Elaissari. 2020. "Hydroxypropyl Methylcellulose-Based Hydrogel Copolymeric for Controlled Delivery of Galantamine Hydrobromide in Dementia" Processes 8, no. 11: 1350. https://doi.org/10.3390/pr8111350
APA StyleBashir, S., Zafar, N., Lebaz, N., Mahmood, A., & Elaissari, A. (2020). Hydroxypropyl Methylcellulose-Based Hydrogel Copolymeric for Controlled Delivery of Galantamine Hydrobromide in Dementia. Processes, 8(11), 1350. https://doi.org/10.3390/pr8111350