Analysis of Soot Deposition Mechanisms on Nickel-Based Anodes of SOFCs in Single-Cell and Stack Environment
Abstract
:1. Introduction
2. Experimental Setup
2.1. Single-Cell Testing
2.2. Stack Testing
3. Results and Discussion
3.1. Single SOFC
3.2. SOFC Stack
- thermodynamics at least close to the boundary of the heterogenic process,
- presence of the catalytical Ni–YSZ SOFC anode,
- fluctuations of the gas composition (according to data presented in Table 2).
3.3. Comparison of Carbon Contamination for Single-Cell and Stack Environments
4. Summary
- Higher velocity accelerates the degradation of solid oxide cells in the region which corresponds to irreversible changes (Zone 2).
- Anode thickness affects performance in such a way that performance of SOFCs with a thin electrode degrades faster than for those with a thick electrode. This is related to carbon deposits located directly in the TPB. As such, thickening the anode can be considered as a countermeasure to inhibit performance degradation due to carbon formation from hydrocarbonaceous fuels.
- Lowering the operating temperature of an SOFC fed by hydrocarbonaceous fuels favors carbon deposition. This is directly related to the carbon formation isotherms, which were presented using ternary diagrams.
- Measurements performed in stack conditions included visual inspection of the gas delivery link in order to determine whether carbon deposits were located in the pipes and fittings. No deposits outside the anodic compartments of the SOFC stack were identified. This is related to the catalytic properties of the anodic material.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Liso, V.; Zhao, Y.; Brandon, N.; Nielsen, M.P.; Kær, S.K. Analysis of the impact of heat-to-power ratio for a SOFC-based mCHP system for residential application under different climate regions in Europe. Int. J. Hydrog. Energy 2011, 36, 13715–13726. [Google Scholar] [CrossRef]
- Powell, M.R.; Meinhardt, K.D.; Sprenkle, V.; Chick, L.; McVay, G. Demonstration of a highly efficient solid oxide fuel cell power system using adiabatic steam reforming and anode gas recirculation. J. Power Sources 2012, 205, 377–384. [Google Scholar] [CrossRef]
- Beigzadeh, M.; Pourfayaz, F.; Ahmadi, M.H. Modeling and improvement of solid oxide fuel cell-single effect absorption chiller hybrid system by using nanofluids as heat transporters. Appl. Therm. Eng. 2020, 166, 114707. [Google Scholar] [CrossRef]
- Santarelli, M.; Briesemeister, L.; Gandiglio, M.; Herrmann, S.; Kuczynski, P.; Kupecki, J.; Lanzini, A.; Llovell, F.; Papurello, D.; Spliethoff, H.; et al. Carbon recovery and re-utilization (CRR) from the exhaust of a solid oxide fuel cell (SOFC): Analysis through a proof-of-concept. J. CO2 Util. 2017, 18, 206–221. [Google Scholar] [CrossRef]
- Kupecki, J.; Jewulski, J.; Motylinski, K. Parametric evaluation of a micro-CHP unit with solid oxide fuel cells integrated with oxygen transport membranes. Int. J. Hydrog. Energy 2015, 40, 11633–11640. [Google Scholar] [CrossRef] [Green Version]
- Ramadhani, F.; Hussain, M.A.; Mokhlis, H.; Hajimolana, S. Optimization strategies for Solid Oxide Fuel Cell (SOFC) application: A literature survey. Renew. Sustain. Energy Rev. 2017, 76, 460–484. [Google Scholar] [CrossRef]
- Singhal, S.C.; Kendall, K. High Temperature Solid Oxide Fuel Cells: Fundamentals, Design and Applications; Elsevier: Amsterdam, The Netherlands, 2003. [Google Scholar]
- Srinivasan, S. Fuel Cells. From Fundamentals to Applications; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Song, C. Fuel processing for low-temperature and high-temperature fuel cells. Challenges, and opportunities for sustainable development in the 21st century. Catal. Today 2002, 77, 17–49. [Google Scholar] [CrossRef]
- Kupecki, J.; Skrzypkiewicz, M.; Wierzbicki, M.; Stepien, M. Analysis of a micro-CHP unit with in-series SOFC stacks fed by biogas. Energy Procedia 2015, 75, 2021–2026. [Google Scholar] [CrossRef] [Green Version]
- Rokn, M. Thermodynamic analyses of municipal solid waste gasification plant integrated with solid oxide fuel cell and Stirling hybrid system. Int. J. Hydrog. Energy 2015, 40, 7855–7869. [Google Scholar] [CrossRef] [Green Version]
- Lanzini, A.; Madi, H.; Chiodo, V.; Papurello, D.; Maisano, S.; Santarelli, M.; Van Herle, J. Dealing with fuel contaminants in biogas-fed solid oxide fuel cell (SOFC) and molten carbonate fuel cell (MCFC) plants: Degradation of catalytic and electro-catalytic active surfaces and related gas purification methods. Prog. Energy Comb. Sci. 2017, 61, 150–188. [Google Scholar] [CrossRef] [Green Version]
- Papurello, D.; Lanzini, A.; Tognana, L.; Silvestri, S.; Santarelli, M. Waste to energy: Exploitation of biogas from organic waste in a 500 Wel solid oxide fuel cell (SOFC) stack. Energy 2015, 85, 145–158. [Google Scholar] [CrossRef]
- Kupecki, J.; Skrzypkiewicz, M.; Wierzbicki, M.; Stepien, M. Experimental and numerical analysis of a serial connection of two SOFC stacks in a micro-CHP system fed by biogas. Int. J. Hydrog. Energy 2017, 42, 3487–3497. [Google Scholar] [CrossRef]
- Kupecki, J.; Jewulski, J.; Badyda, K. Comparative study of biogas and DME fed micro-CHP system with solid oxide fuel cell. Appl. Mech. Mater. 2012, 267, 53–56. [Google Scholar] [CrossRef]
- Meng, X.; De Jong, W.; Pal, R.; Verkooijen, A.H. In bed and downstream hot gas desulphurization during solid fuel gasification: A review. Fuel Process. Technol. 2010, 91, 964–981. [Google Scholar] [CrossRef]
- Błesznowski, M.; Jewulski, J.; Zieleniak, A. Determination of H2S and HCl concentration limits in the fuel for anode supported SOFC operation. Cent. Eur. J. Chem. 2013, 11, 960–967. [Google Scholar] [CrossRef]
- Van Biert, L.; Visser, K.; Aravind, P.V. A comparison of steam reforming concepts in solid oxide fuel cell systems. Appl. Energy 2020, 264, 114748. [Google Scholar] [CrossRef]
- Thattai, A.T.; van Biert, L.; Aravind, P.V. On direct internal methane steam reforming kinetics in operating solid oxide fuel cells with nickel-ceria anodes. J. Power Sources 2017, 370, 71–86. [Google Scholar] [CrossRef]
- Barelli, L.; Bidini, G.; Cinti, G. Steam vs. Dry Reformer: Experimental Study on a Solid Oxide Fuel Cell Short Stack. Catalysts 2018, 8, 599. [Google Scholar] [CrossRef] [Green Version]
- Hagen, A. Sulfur Poisoning of the Water Gas Shift Reaction on Anode Supported Solid Oxide Fuel Cells. J. Electrochem. Soc. 2012, 160, 111–118. [Google Scholar] [CrossRef]
- Li, C.; Shi, Y.; Cai, N. Carbon deposition on nickel cermet anodes of solid oxide fuel cells operating on carbon monoxide fuel. J. Power Sources 2013, 225, 1–8. [Google Scholar] [CrossRef]
- Alzate-Restrepo, V.; Hill, J.M. Carbon deposition on Ni/YSZ anodes exposed to CO/H2 feeds. J. Power Sources 2010, 195, 134451. [Google Scholar] [CrossRef]
- Penchini, D.; Cinti, G.; Discepoli, G.; Sisani, E.; Desideri, U. Characterization of a 100 W SOFC stack fed by carbon monoxide rich fuels. Int. J. Hydrog. Energy 2013, 38, 525–531. [Google Scholar] [CrossRef]
- Gholaminezhad, I.; Paydar, M.H.; Jafarpur, K.; Paydar, S. Multi-scale mathematical modeling of methane-fueled SOFCs: Predicting limiting current density using a modified Fick’s model. Energy Convers. Manag. 2017, 148, 222–237. [Google Scholar] [CrossRef]
- Kupecki, J. Modeling platform for a micro-CHP system with SOFC operating under load changes. Appl. Mech. Mater. 2014, 607, 205–208. [Google Scholar] [CrossRef]
- Badyda, K.; Kupecki, J.; Milewski, J. Modelling of integrated gasification hybrid power systems. Rynek Energii 2010, 88, 74–79. [Google Scholar]
- Kupecki, J.; Jewulski, J.; Badyda, K. Selection of a fuel processing method for SOFC-based micro-CHP system. Rynek Energii 2011, 97, 157–162. [Google Scholar]
- Subotic, V.; Schluckner, C.; Stoeckl, B.; Reichholf, D.; Lawlor, V.; Pofahl, S.; Schroettner, H.; Hochenauer, C. In-Operando Detection of Carbon Depositions and Carbon Formation Predictions for Industrial-Sized SOFCs Fueled with Synthetic Diesel Reformate. ECS Trans. 2017, 78, 2451–2460. [Google Scholar] [CrossRef]
- Jaworski, Z.; Zakrzewska, B.; Pianko-Oprych, P. On thermodynamic equilibrium of carbon deposition from gaseous C-H-O mixtures: Updating for nanotubes. Rev. Chem. Eng. 2016, 33, 217–235. [Google Scholar] [CrossRef]
- Khan, M.S.; Lee, S.-B.; Song, R.-H.; Lee, J.-W.; Lim, T.-H.; Park, S.-J. Fundamental mechanisms involved in the degradation of nickel-yttria stabilized zirconia (Ni-YSZ) anode during solid oxide fuel cells operation: A review. Ceram. Int. 2016, 42, 35–48. [Google Scholar] [CrossRef]
- Lanzini, A.; Leone, P.; Guerra, C.; Smeacetto, F.; Brandon, N.; Santarelli, M. Durability of anode supported Solid Oxides Fuel Cells (SOFC) under direct dry reforming of methane. Chem. Eng. J. 2013, 220, 254–263. [Google Scholar] [CrossRef]
- Stoeckl, B.; Subotić, V.; Preininger, M.; Schroettner, H.; Hochenauer, C. SOFC operation with carbon oxides: Experimental analysis of performance and degradation. Electrochim. Acta 2018, 275, 256–264. [Google Scholar] [CrossRef]
- Chen, T.; Wang, W.G.; Miao, H.; Li, T.; Xu, C. Evaluation of carbon deposition behavior on the nickel/yttrium-stabilized zirconia anode-supported fuel cell fueled with simulated syngas. J. Power Sources 2011, 196, 2461–2468. [Google Scholar] [CrossRef]
- Koh, J.H.; Yoo, Y.S.; Park, J.W.; Lim, H.C. Carbon deposition and cell performance of Ni-YSZ anode support SOFC with methane fuel. Solid State Ion. 2002, 149, 157–166. [Google Scholar] [CrossRef]
- Lyu, Z.; Li, H.; Han, M. Electrochemical properties and thermal neutral state of solid oxide fuel cells with direct internal reforming of methane. Int. J. Hydrog. Energy 2019, 44, 12151–12162. [Google Scholar] [CrossRef]
- Silva-Mosqueda, D.M.; Elizalde-Blancas, F.; Pumiglia, D.; Santoni, F.; Boigues-Muñoz, C.; McPhail, S.J. Intermediate temperature solid oxide fuel cell under internal reforming: Critical operating conditions, associated problems and their impact on the performance. Appl. Energy 2019, 235, 625–640. [Google Scholar] [CrossRef]
- Papurello, D.; Iafrate, C.; Lanzini, A.; Santarelli, M. Trace compounds impact on SOFC performance: Experimental and modelling approach. Appl. Energy 2017, 208, 637–654. [Google Scholar] [CrossRef]
- Takeguchi, T.; Kikuchi, R.; Yano, T.; Eguchi, K.; Murata, K. Effect of precious metal addition to Ni–YSZ cermet on reforming of CH4 and electrochemical activity as SOFC anode. Catal. Today 2003, 84, 217–222. [Google Scholar] [CrossRef]
- Takeguchi, T.; Kani, Y.; Yano, T.; Kikuchi, R.; Eguchi, K.; Tsujimoto, K.; Uchida, Y.; Ueno, A.; Omoshiki, K.; Aizawa, M. Study on steam reforming of CH4 and C2 hydrocarbons and carbon deposition on Ni–YSZ cermets. J. Power Sources 2002, 112, 588–595. [Google Scholar] [CrossRef]
- Borowiecki, T.; Gotebiowski, A.; Stasifiska, B. Effects of small MoO3 additions on the properties of nickel catalysts for the steam reforming of hydrocarbons. Appl. Catal. A Gen. 1997, 153, 141–156. [Google Scholar] [CrossRef]
- Niakolas, D.K.; Ouweltjes, J.; Rietveld, G.; Dracopoulos, V.; Neophytides, S.G. Au-doped Ni/GDC as a new anode for SOFCs operating under rich CH4 internal steam reforming. Int. J. Hydrog. Energy 2010, 35, 7898–7904. [Google Scholar] [CrossRef]
- Skrzypkiewicz, M.; Jewulski, J.; Lubarska-Radziejewska, I. The effect of Fe2O3 catalyst on direct carbon fuel cell performance. Int. J. Hydrog. Energy 2015, 40, 13090–13098. [Google Scholar] [CrossRef]
- Niakolas, D.K.; Ouweltjes, J.; Rietveld, G.; Dracopoulos, V.; Neophytides, S.G. Near net shape manufacturing of planar anode supported solid oxide fuel cells by using ceramic injection molding and screen printing. J. Power Sources 2014, 268, 752–757. [Google Scholar] [CrossRef]
- Niakolas, D.K.; Ouweltjes, J.; Rietveld, G.; Dracopoulos, V.; Neophytides, S.G. Characterization of a circular 80 mm anode supported solid oxide fuel cell (AS-SOFC) with anode support produced using high-pressure injection molding (HPIM). Int. J. Hydrog. Energy 2019, 44, 19405–19411. [Google Scholar] [CrossRef]
- Subotić, V.; Baldinelli, A.; Barelli, L.; Scharler, R.; Pongratz, G.; Hochenauer, C.; Anca-Couce, A. Applicability of the SOFC technology for coupling with biomass-gasifier systems: Short- and long-term experimental study on SOFC performance and degradation behaviour. Appl. Energy 2019, 256, 113904. [Google Scholar] [CrossRef]
- Golec, T. Energetyczne Wykorzystanie Biomasy Poprzez Spalanie i Zgazowanie; Wydawnictwo Naukowe Instytutu Technologii Eksploatacji—PIB, Institute of Power Engineering—Research Institute: Warsaw, Poland, 2014. [Google Scholar]
- Singh, D.; Hernández-Pacheco, E.; Hutton, P.N.; Patel, N.; Mann, M.D. Carbon deposition in an SOFC fuelled by tar-laden biomass gas: A thermodynamic analysis. J. Power Sources 2005, 142, 194–199. [Google Scholar] [CrossRef]
- Bebelis, S.; Neophytides, S. AC impedance study of Ni–YSZ cermet anodes in methane-fuelled internal reforming YSZ fuel cells. Solid State Ion. 2002, 152–153, 447–453. [Google Scholar] [CrossRef]
- Subotić, V.; Menzler, N.H.; Lawlor, V.; Fang, Q.; Pofahl, S.; Harter, P.; Schroettner, H.; Hochenauer, C. On the origin of degradation in fuel cells and its fast identification by applying unconventional online-monitoring tools. Appl. Energy 2020, 277, 115603. [Google Scholar] [CrossRef]
Velocity | 0.1 m/s | 0.3 m/s | 0.5 m/s | 0.7 m/s |
---|---|---|---|---|
OCV | - | |||
3A | - |
Component | Molar Concentration |
---|---|
H2 | 18 ÷ 21% |
CO | 21 ÷ 25% |
CO2 | 8.5 ÷ 11% |
CH4 | 1.5 ÷ 2% |
O2 | 0% |
N2 | 38 ÷ 41% |
H2O | 8 ÷ 10% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Motylinski, K.; Blesznowski, M.; Skrzypkiewicz, M.; Wierzbicki, M.; Zurawska, A.; Baran, A.; Bakala, M.; Kupecki, J. Analysis of Soot Deposition Mechanisms on Nickel-Based Anodes of SOFCs in Single-Cell and Stack Environment. Processes 2020, 8, 1370. https://doi.org/10.3390/pr8111370
Motylinski K, Blesznowski M, Skrzypkiewicz M, Wierzbicki M, Zurawska A, Baran A, Bakala M, Kupecki J. Analysis of Soot Deposition Mechanisms on Nickel-Based Anodes of SOFCs in Single-Cell and Stack Environment. Processes. 2020; 8(11):1370. https://doi.org/10.3390/pr8111370
Chicago/Turabian StyleMotylinski, Konrad, Marcin Blesznowski, Marek Skrzypkiewicz, Michal Wierzbicki, Agnieszka Zurawska, Arkadiusz Baran, Maciej Bakala, and Jakub Kupecki. 2020. "Analysis of Soot Deposition Mechanisms on Nickel-Based Anodes of SOFCs in Single-Cell and Stack Environment" Processes 8, no. 11: 1370. https://doi.org/10.3390/pr8111370
APA StyleMotylinski, K., Blesznowski, M., Skrzypkiewicz, M., Wierzbicki, M., Zurawska, A., Baran, A., Bakala, M., & Kupecki, J. (2020). Analysis of Soot Deposition Mechanisms on Nickel-Based Anodes of SOFCs in Single-Cell and Stack Environment. Processes, 8(11), 1370. https://doi.org/10.3390/pr8111370