Study on Turbulence Intensity Behavior under a Large Range of Temperature Variation
Abstract
:1. Introduction
2. Computational Fluid Dynamics
3. Experiments
4. Result and Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kimura, K. Innovative Bridge Design Handbook; Elsevier: Amsterdam, The Netherlands, 2016; pp. 37–48. [Google Scholar]
- Cook, M.V. Flight Dynamics Principles: A Linear Systems Approach to Aircraft Stability And Control; Elsevier: Amsterdam, The Netherlands, 2013; pp. 4–444. [Google Scholar]
- Dejoan, A.; Leschziner, M.A. Large eddy simulation of a plane turbulent wall jet. Phys. Fluids 2005, 17, 025102. [Google Scholar] [CrossRef]
- Barthelmie, R.J.; Pryor, S.C. Meteorology and wind resource assessment for wind farm development. Wind Energy Syst. 2011, e28, 3–27. [Google Scholar]
- Sørensen, J.D.; Sørensen, J.N. Wind Energy Systems. Woodhead Publ. Ser. Energy 2011, 1, 46–111. [Google Scholar]
- Silva, C.; Hunt, J.; Eames, I.; Westerweel, J. Interfacial Layers Between Regions of Different Turbulence Intensity. Ann. Rev. Fluid Mech. 2014, 46, 567–590. [Google Scholar] [CrossRef]
- Zhang, L.Z. Conjugate Heat and Mass Transfer in Heat Mass Exchanger Ducts; Academic Press: Cambridge, MA, USA, 2013; pp. 181–232. [Google Scholar]
- Ahn, J.; Sparrow, E.M.; Gorman, J.M. Turbulence intensity effects on heat transfer and fluid-flow for a circular cylinder in crossflow. Int. J. Heat Mass Transf. 2017, 113, 613–621. [Google Scholar] [CrossRef]
- Nishih, A.; Miyagi, H.; Higuchi, K. A Computer-Controlled Wind Tunnel. In Proceedings of the 1st International Symposium on Computational Wind Engineering (CWE 92), Tokyo, Japan, 21–23 August 1993; pp. 837–846. [Google Scholar]
- Kelberlau, F.; Neshaug, V.; Lønseth, L.; Bracchi, T.; Mann, J. Taking the Motion out of Floating Lidar: Turbulence Intensity Estimates with a Continuous-Wave Wind Lidar. Remote Sens. 2020, 12, 898. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Yang, H.; Zhu, W.; Li, N.; Yuan, Y. Experimental Study on Aerodynamic Characteristics of a Gurney Flap on a Wind Turbine Airfoil under High Turbulent Flow Condition. Appl. Sci. 2020, 10, 7258. [Google Scholar] [CrossRef]
- Basse, N.T. Turbulence intensity and the friction factor for smooth- and rough-wall pipe flow. Fluids 2017, 2, 30. [Google Scholar] [CrossRef] [Green Version]
- Basse, N.T. Turbulence Intensity Scaling: A Fugue. Fluids 2019, 4, 180. [Google Scholar] [CrossRef] [Green Version]
- Mahta, R.D.; Bradshaw, P. Design rules for small low speed wind tunnels. Aeronaut. J. 1979, 83, 442–449. [Google Scholar]
- Cattafesta, L.; Bahr, C.; Mathew, J. Fundamentals of Wind-Tunnel Design. Exp. Tech. Fluid Dyn. Ther. Sci. 2010, 1–10. [Google Scholar] [CrossRef]
- Pareschi, L.; Zanella, M. Monte Carlo stochastic Galerk in methods for the Boltzmann equation with uncertainties: space-homogeneous case. J. Comput. Phys. 2020, 423, 109822. [Google Scholar] [CrossRef]
- Lee, J.S.; Seo, Y.M.; Jeong, C.H.; Kim, M.S.; Park, Y.G.; Ha, M.Y. Numerical analysis and design optimization of engine room to improve cooling performance for a mid-class excavator. J. Mech. Sci. Technol. 2019, 33, 3265–3275. [Google Scholar] [CrossRef]
- ANSYS. Fluent Theory Guide Release 15.0; ANSYS, Inc.: Canonsburg, PA, USA, 2013; pp. 47–48. [Google Scholar]
Boundary Condition | Parameter |
---|---|
Inlet | Velocity inlet = 20m/s |
Outlet | Pressure Outlet |
Wall | No-slip and Adiabatic condition |
Model and grid parameter | |
Flow regime | 2-D, Steady, Turbulent flow |
Turbulence model Grid type Number of grid | Standard k-ε model Quadrilaterals 51200 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, J.; Lee, J.-H. Study on Turbulence Intensity Behavior under a Large Range of Temperature Variation. Processes 2020, 8, 1403. https://doi.org/10.3390/pr8111403
Lee J, Lee J-H. Study on Turbulence Intensity Behavior under a Large Range of Temperature Variation. Processes. 2020; 8(11):1403. https://doi.org/10.3390/pr8111403
Chicago/Turabian StyleLee, Junsik, and Jae-Hak Lee. 2020. "Study on Turbulence Intensity Behavior under a Large Range of Temperature Variation" Processes 8, no. 11: 1403. https://doi.org/10.3390/pr8111403
APA StyleLee, J., & Lee, J.-H. (2020). Study on Turbulence Intensity Behavior under a Large Range of Temperature Variation. Processes, 8(11), 1403. https://doi.org/10.3390/pr8111403