Methane Emission Reduction Enhanced by Hydrophobic Biochar-Modified Soil Cover
Abstract
:1. Introduction
2. Materials and Methods
2.1. Biochar Pretreatment
2.2. Hydrophobic Modification of Biochar
2.3. Construction of Columns and Material Properties
3. Results and discussion
3.1. CH4 Oxidation in the Columns
3.2. Effect of Temperature in the Columns
3.3. Effect of Depth in the Columns
3.4. Effect of Moisture Content
4. Conclusions and Practical Implications
Author Contributions
Funding
Conflicts of Interest
References
- Yaghoubi, P. Development of Biochar-Amended Landfill Cover for Landfill Gas Mitigation. Ph.D. Thesis, University of Illinois, Chicago, IL, USA, 2011. [Google Scholar]
- Stocker, T.F.; Qin, D.; Plattner, G.-K.; Tignor, M.; Allen, S.K.; Boschung, J.; Naues, A.; Xia, Y.; Bex, V.; Midgley, P.M. (Eds.) Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013; p. 1535. [Google Scholar]
- Forster, P.; Ramaswamy, V.; Artaxo, P.; Berntsen, T.; Betts, R.; Fahey, D.W.; Haywood, J.; Lean, J.; Lowe, D.C.; Myhre, G.; et al. Changes in Atmospheric Constituents and in Radiative Forcing; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2007. [Google Scholar]
- Powell, J.T.; Townsend, T.G.; Zimmerman, J.B. Estimates of solid waste disposal rates and reduction targets for landfill gas emissions. Nat. Clim. Chang. 2015, 6, 162–165. [Google Scholar] [CrossRef]
- Matsufuji, Y.; Hanashima, M. Characteristic and mechanism of Semi-aerobic Landfill on Stabilization of Solid waste. In Proceedings of the First Korea-Japan Society of Solid Waste Management. 1997, pp. 87–94. Available online: www.ixueshu.com (accessed on 20 January 2020).
- Scheutz, C.; Pedersen, R.B.; Petersen, P.H.; Jorgensen, J.H.B.; Ucendo, I.M.B.; Monster, J.G.; Samuelsson, J.; Kjeldsen, P. Mitigation of methane emission from an old unlined landfill in Klintholm, Denmark using a passive biocover system. Waste Manag. 2014, 34, 1179–1190. [Google Scholar] [CrossRef] [PubMed]
- Parthiba Karthikeyan, O.; Jane, S.Y.M.; Balasubramanian, R. Gradient packing bed bio-filter for landfill methane mitigation. Bioresour. Technol. 2016, 217, 205–209. [Google Scholar] [CrossRef]
- Wang, J.; Xia, F.F.; Bai, Y.; Fang, C.R.; Shen, D.S.; He, R. Methane oxidation in landfill waste biocover soil: Kinetics and sensitivity to ambient conditions. Waste Manag. 2011, 31, 864–870. [Google Scholar] [CrossRef] [PubMed]
- Scheutz, C.; Kjeldsen, P.; Bogner, J.E.; De Visscher, A.; Gebert, J.; Hilger, H.; Huber-Humer, M.; Spokas, K. Microbial methane oxidation processes and technologies for mitigation of landfill gas emissions. Waste Manag. Res. 2009, 27, 409–455. [Google Scholar] [CrossRef] [PubMed]
- Netz, B.; Davidson, O.R.; Bosch, P.R.; Dave, R.; Meyer, L.A. (Eds.) Climate Change 2007: Mitigation of Climate Change; Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2007. [Google Scholar] [CrossRef] [Green Version]
- Pedersen, G.B.; Scheutz, C.; Kjeldsen, P. Availability and properties of materials for the Fakse Landfill biocover. Waste Manag. 2011, 31, 884–894. [Google Scholar] [CrossRef] [PubMed]
- Scheutz, C.; Pedicone, A.; Pedersen, G.B.; Kjeldsen, P. Evaluation of respiration in compost landfill biocovers intended for methane oxidation. Waste Manag. 2011, 21, 895–902. [Google Scholar] [CrossRef]
- Roncato, C.D.; Cabral, A.R. Evaluation of methane oxidation efficiency of two biocovers: Field and laboratory results. Environ. Eng. 2011, 138, 164–173. [Google Scholar] [CrossRef]
- Wong, J.T.F.; Chen, X.W.; Deng, W.J.; Chai, Y.M.; Ng, C.W.W.; Wong, M.H. Effects of biochar on bacterial communities in a newly established landfill cover topsoil. J. Environ. Manag. 2019, 236, 667–673. [Google Scholar] [CrossRef]
- Chen, W.; Hu, X.Y.; Zhang, Y.Y.; Zhang, D.; Song, J.Z. Estimation of Carbon Sequestration Potential of Rice Straw Pyrolyzing to Biochar. Environ. Sci. Technol. 2015, 38, 265–270. [Google Scholar] [CrossRef]
- Hilger, H.; Humer, M. Biotic landfill cover treatments for mitigating methane emissions. Environ. Monitor. Assess. 2003, 84, 71–84. [Google Scholar] [CrossRef] [PubMed]
- Yargicoglu, E.N.; Reddy, K.R. Biochar-amended soil cover for microbial methane oxidation: Effect of biochar amendment ratio and cover profile. J. Geotech. Geoenviron. Eng. 2018, 144, 04017123. [Google Scholar] [CrossRef]
- Sadasivam, B.Y.; Reddy, K.R. Adsorption and transport of methane in biochars derived from waste wood. Waste Manag. 2015, 43, 218–229. [Google Scholar] [CrossRef] [PubMed]
- Reddy, K.R.; Yargicoglu, E.N.; Yue, D.; Yaghoubi, P. Enhanced microbial methane oxidation in landfill cover soil amended with biochar. J. Geotech. Geoenviron. Eng. 2014, 140, 04014047. [Google Scholar] [CrossRef]
- Rachor, I.; Gebert, J.; Gröngröft, A.; Pfeiffer, E.M. Assessment of the methane oxidation capacity of compacted soils intended for use as landfill cover materials. Waste Manag. 2010, 31, 833–842. [Google Scholar] [CrossRef] [PubMed]
- Einola, J.M.; Karhu, A.E.; Rintala, J.A. Mechanically–biologically treated municipal solid waste as a support medium for microbial methane oxidation to mitigate landfill greenhouse emissions. Waste Manag. 2008, 28, 97–111. [Google Scholar] [CrossRef] [PubMed]
- Börjesson, G.; Samuelsson, J.; Chanton, J. Methane oxidation in Swedish landfills quantified with the stable carbon isotope technique in combination with an optical method for emitted methane. Environ. Sci. Technol. 2007, 41, 6684–6690. [Google Scholar] [CrossRef] [PubMed]
- Stern, J.C.; Chanton, J.; Abichou, T.; Powelson, D.; Bogner, J. Use of a biologically active cover to reduce landfill methane emissions and enhance methane oxidation. Waste Manag. 2007, 27, 1248–1258. [Google Scholar] [CrossRef] [PubMed]
- Yaghoubi, P.; Yargicoglu, E.N.; Reddy, K.R. Effects of Biochar-Amendment to Landfill Cover Soil on Microbial Methane Oxidation: Initial Results. In Geo-Congress 2014: Geo-Characterization and Modeling for Sustainability; American Society of Civil Engineers: Chicago, IL, USA, 2014; pp. 1849–1858. [Google Scholar] [CrossRef]
- Kumar, G.; Yepes, J.E.; Hoyos, L.R.; Reddy, K.R. Unsaturated Hydraulic Properties of Biochar and Biochar-Amended Soils for Landfill Covers. In Proceedings of the American Society of Civil Engineers Second Pan-American Conference on Unsaturated Soils, Dallas, TX, USA, 12–15 November 2017; pp. 417–426. [Google Scholar] [CrossRef]
- Huber-Humer, M.; Gebert, J.; Hilger, H. Biotic systems tomitigate landfill methane emissions. Waste Manage. Res. 2008, 26, 33–46. [Google Scholar] [CrossRef] [PubMed]
- Sadasivam, B.Y.; Reddy, K.R. Landfill methane oxidation in soil and bio-based covers: A review. Rev. Environ. Sci. Biotechnol. 2014, 13, 79–107. [Google Scholar] [CrossRef]
Indicator | pH | C (%) | P (%) | K (%) | Ash (%) | Fill Density (g/cm3) | Specific Surface Area (m2/g) |
---|---|---|---|---|---|---|---|
Biochar | 10.8 | 64.2 | 0.16 | 0.33 | 30.2 | 0.131 | 66 |
Parameters | Col. 1 | Col. 2 | Col. 3 |
---|---|---|---|
pH | 5.57 | 8.18 | 7.46 |
Compacted maximum dry density (g/cm−3) | 1.94 | 1.56 | 1.58 |
Optimum moisture content (%) | 18.1 | 34 | 32 |
Plastic limit (%) | 17 | 32 | 36 |
Liquid limit (%) | 27 | 53 | 45 |
Plasticity index | 10 | 21 | 9 |
P (%) | 0.08 | 0.1 | 0.09 |
K (%) | 0.15 | 0.19 | 0.21 |
Organic matter (%) | 4.1 | 14.75 | 14.93 |
Moisture content (%) | 10 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, B.; Xi, B.; He, X.; Sun, X.; Li, Q.; Ouche, Q.; Zhang, H.; Xue, C. Methane Emission Reduction Enhanced by Hydrophobic Biochar-Modified Soil Cover. Processes 2020, 8, 162. https://doi.org/10.3390/pr8020162
Wu B, Xi B, He X, Sun X, Li Q, Ouche Q, Zhang H, Xue C. Methane Emission Reduction Enhanced by Hydrophobic Biochar-Modified Soil Cover. Processes. 2020; 8(2):162. https://doi.org/10.3390/pr8020162
Chicago/Turabian StyleWu, Beibei, Beidou Xi, Xiaosong He, Xiaojie Sun, Qian Li, Quanyi Ouche, Hongxia Zhang, and Chennan Xue. 2020. "Methane Emission Reduction Enhanced by Hydrophobic Biochar-Modified Soil Cover" Processes 8, no. 2: 162. https://doi.org/10.3390/pr8020162
APA StyleWu, B., Xi, B., He, X., Sun, X., Li, Q., Ouche, Q., Zhang, H., & Xue, C. (2020). Methane Emission Reduction Enhanced by Hydrophobic Biochar-Modified Soil Cover. Processes, 8(2), 162. https://doi.org/10.3390/pr8020162