Drying Applications during Value-Added Sustainable Processing for Selected Mass-Produced Food Coproducts
Abstract
:1. Introduction
2. Production of the Selected Materials
3. General Description of the Selected Materials and Their Coproducts
3.1. Soybean Okara
3.1.1. The Plant
3.1.2. Origin of Soybean Okara
3.1.3. Contained Nutrients in Soybean Okara
3.2. Wheat Germ
3.2.1. The Plant
3.2.2. Origin of Wheat Germ
3.2.3. Contained Nutrients in Wheat Germ
3.3. Banana
3.3.1. The Plant
3.3.2. Origin of Banana Pulp/Peel
3.3.3. Contained Nutrients in Banana Pulp/Peel
3.4. Spent Coffee Ground
3.4.1. The Plant
3.4.2. Origin of Spent Coffee Ground
3.4.3. Contained Nutrient in Spent Coffee Ground
4. Drying Processes for Mass-Produced Foods and Their Coproducts
4.1. Soybean Okara Drying
4.2. Wheat Germ Drying
4.3. Dried Pulp/Peel Flour of Banana (Fruit)
4.4. Spent Coffee Ground Drying
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Sariatli, F. Linear economy versus circular economy: A comparative and analyzer study for optimization of economy for sustainability. Visegrad J. Bioecon. Sustain. Dev. 2017, 6, 31–34. [Google Scholar] [CrossRef] [Green Version]
- Coulomb, D. Refrigeration and cold chain serving the global food industry and creating a better future: Two key IIR challenges for improved health and environment. Trends Food Sci. Technol. 2008, 19, 413–417. [Google Scholar] [CrossRef]
- Geng, Y.; Fu, J.; Sarkis, J.; Xue, B. Towards a national circular economy indicator system in China: An evaluation and critical analysis. J. Clean. Prod. 2012, 23, 216–224. [Google Scholar] [CrossRef]
- Martindale, W. Waste: Uncovering the global food scandal. Int. J. Sustain. Eng. 2010, 3, 144–145. [Google Scholar] [CrossRef]
- Headey, D.; Fan, S. Anatomy of a crisis: The causes and consequences of surging food prices. J. Agric. Econ. 2008, 39, 375–391. [Google Scholar] [CrossRef] [Green Version]
- Toivonen, P.M.A.; Brummell, D.A. Biochemical bases of appearance and texture changes in fresh-cut fruit and vegetables. Postharvest Biol. Technol. 2008, 48, 1–14. [Google Scholar] [CrossRef]
- Nguyen-the, C.; Carlin, F. The microbiology of minimally processed fresh fruits and vegetables. Crit. Rev. Food Sci. Nutr. 1994, 34, 371–401. [Google Scholar] [CrossRef]
- Artés, F.; Gómez, P.A.; Artés-Hernández, F. Physical, physiological and microbial deterioration of minimally fresh processed fruits and vegetables. Food Sci. Technol. Int. 2016, 13, 177–188. [Google Scholar] [CrossRef]
- Rashid, M.T.; Voroney, R.P.; Khalid, M. Application of food industry waste to agricultural soils mitigates green house gas emissions. Bioresour. Technol. 2010, 101, 485–490. [Google Scholar] [CrossRef]
- Goodland, R. Environmental sustainability in agreculture: Diet matter. Ecol. Econ. 1997, 23, 189–200. [Google Scholar] [CrossRef]
- Katayama, M.; Wilson, L.A. Utilization of okara, a byproduct from soymilk production, through the development of soy-based snack food. J. Food Sci. 2008, 73, 152–157. [Google Scholar] [CrossRef] [PubMed]
- Waliszewski, K.N.; Pardio, V.; Carreon, E. Physicochemical and sensory properties of corn tortillas made from nixtamalzed corn flour fortified with spent soymilk residue (okara). J. Food Sci. 2002, 67, 3194–3197. [Google Scholar] [CrossRef]
- Ahlawat, D.; Punia, D.; Ahlwat, M. Studies on shelf life developed extruded (noodles and macroni) and baked (rusk and cookie) products incorporaed with okara (soubean milk byproduct) powders. J. Pharm. Innov. 2017, 6, 822–826. [Google Scholar]
- Muller, D.C.A.; Marechal, F.M.A.; Wolewinski, T.; Roux, P.J. An energy management method for the food industry. Appl. Eng. 2007, 27, 2677–2686. [Google Scholar] [CrossRef]
- Wheeler, T.; von Braun, J. Climate change impacts on global food security. Science 2013, 341, 508–513. [Google Scholar] [CrossRef]
- Colak, N.; Hepbasli, A. Performance analysis of drying of green olive in a tray dryer. J. Food Eng. 2007, 80, 1188–1193. [Google Scholar] [CrossRef]
- Wang, L. Energy efficiency technologies for sustainable food processing. Energy Effic. 2014, 7, 791–810. [Google Scholar] [CrossRef]
- Jumah, R. Modelling and simulation of continuous and intermittent radio frequency-assisted fluidized bed drying of grains. Food Bioprod. Process. 2005, 83, 203–210. [Google Scholar] [CrossRef]
- Use of Energy Explained-Energy Use in Industry: Energy Information Administration of the United States. Available online: https://www.eia.gov/energyexplained/use-of-energy/industry.php (accessed on 11 November 2019).
- Food and Agriculture Organization of the United Nations: FAOSTAT. Available online: http://www.fao.org/faostat/en/#home (accessed on 11 November 2019).
- Sarwar, G.; Peace, R.W.; Botting, H.G.; Brule, D. Relationship between amino acid scores and protein quality indices based on rat growth. Plant Foods Hum. Nutr 1989, 39, 33–44. [Google Scholar] [CrossRef]
- Khare, S.K.; Jha, K.; Gandhi, A.P. Citric acid production from okara (soy−residue) by solid−state fermentation. Biores. Technol. 1995, 54, 323–325. [Google Scholar] [CrossRef]
- Redondo-Cuenca, A.; Villanueva-Suarez, M.J.; Mateos-Aparicio, I. Soybean seeds and its by-product okara as sources of dietary fibre. Measurement by aoac and englyst methods. Food Chem. 2008, 108, 1099–1105. [Google Scholar] [CrossRef] [PubMed]
- Ramdath, D.D.; Padhi, E.M.; Sarfaraz, S.; Renwick, S.; Duncan, A.M. Beyond the cholesterol-lowering effect of soy protein: A review of the effects of dietary soy and its constituents on risk factors for cardiovascular disease. Nutrients 2017, 9, 324. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.C.; Albrecht, D.; Bomser, J.; Schwartz, S.J.; Vodovotz, Y. Isoflavone profile and biological activity of soy bread. J. Agric. Food Chem. 2003, 51, 7611–7616. [Google Scholar] [CrossRef] [PubMed]
- Okubo, K.; Iijima, M.; Kobayashi, Y.; Yoshikoshi, M.; Uchida, T.; Kudou, S. Components responsible for the undesirable taste of soybean seeds. Biosci. Biotechnol. Biochem. 2015, 56, 99–103. [Google Scholar] [CrossRef] [Green Version]
- Chung, I.M.; Seo, S.H.; Ahn, J.K.; Kim, S.H. Effect of processing, fermentation, and aging treatment to content and profile of phenolic compounds in soybean seed, soy curd and soy paste. Food Chem. 2011, 127, 960–967. [Google Scholar] [CrossRef]
- Lee, S.J.; Kim, J.J.; Moon, H.I.; Ahn, J.K.; Chun, S.C.; Jung, W.S. Analysis of isoflavones and phenolic compounds in Korean soybean [Glycine max (L.) Merrill] seeds of different seed weights. J. Agric. Food Chem 2008, 56, 2751–2758. [Google Scholar] [CrossRef]
- Potters, S.M.; Pertile, J.; Berber-Jimenez, M.D. Soy protein concentrate and isolated soy protein similarly lower blood serum cholesterol but differently affects thyroid hormones in hamsters. J. Nutr. 1996, 126, 2007–2011. [Google Scholar]
- Frokjaer, S. Use of hydrolysates for protein supplementation. Food Technol. 1994, 48, 86–88. [Google Scholar]
- Yoshikawa, M.; Fujita, H.; Matoba, N.; Takenaka, Y.; Yamamoto, T.; Yamauchi, R.; Tsuruki, H.; Takahata, K. Bioactive peptides derived from food proteins preventing lifestyle—Related diseases. Biofactors 2000, 12, 143–146. [Google Scholar]
- Chen, H.M.; Muramoto, K.; Yamauchi, F. Structural analysis of antioxidative peptides from soybean beta-conglycinin. J. Agric. Food Chem. 1995, 43, 574–578. [Google Scholar]
- Davalos, A.; Miguel, M.; Bartolome, B.; Lopez-Fandino, R. Antioxidant activity of peptides derived from egg white proteins by enzymatic hydrolysis. J. Food Prot. 2004, 67, 1939–1944. [Google Scholar] [CrossRef]
- Murase, H.; Nagao, A.; Terao, J. Antioxidant and emulsifying activity of N-(long-chain-acyl) histidine and N-(long-chain-acyl) carnosine. J. Agric. Food Chem. 1993, 41, 1601–1604. [Google Scholar]
- Chen, H.M.; Muramoto, K.; Yamauchi, F.; Nokihara, K. Antioxidant activity of designed peptides based on the antioxidative peptide isolated from digests of a soybean protein. J. Agric. Food Chem. 1996, 44, 2619–2623. [Google Scholar] [CrossRef]
- Chen, H.M.; Muramoto, K.; Yamauchi, F.; Fujimoto, K.; Nokihara, K. Antioxidative properties of histidine-containing peptides designed from peptide fragments found in the digests of a soybean protein. J. Agric. Food Chem. 1998, 46, 49–53. [Google Scholar] [CrossRef] [PubMed]
- Curtis, B.C.; Rajaram, S.; Macpherson, H.G. Bread Wheat: Improvement and Production; FAO Plant Production and Protection Series, no. 30; Food and Agriculture Organization of the United Nations: Rome, Italy, 2002. [Google Scholar]
- Brandolini, A.; Hidalgo, A. Wheat germ: Not only a by-product. Int. J. Food Sci. Nutr. 2012, 63, 71–74. [Google Scholar] [CrossRef] [PubMed]
- Boukid, F.; Folloni, S.; Ranieri, R.; Vittadini, E. A compendium of wheat germ: Separation, stabilization and food applications. Trends Food Sci. Technol. 2018, 78, 120–133. [Google Scholar] [CrossRef]
- Cornell, H.J.; Hoveling, A.W. Wheat Chemistry and Utilization; Technomic Publishing Company, Inc.: Lancaster, PA, USA, 1998; pp. 1–373. [Google Scholar]
- Chan, D.S.; Kuo, M.I. Wheat germ drying with different time-temperature combinations in a fluidized bed dryer. Processes 2018, 6, 245. [Google Scholar] [CrossRef] [Green Version]
- Hassan, H.M.M.; Afify, A.S.; Basyiony, A.E.; Ahmed, G.T. Nutritional and functional properties of defatted wheat protein isolates. Aust. J. Basic Appl. Sci. 2010, 4, 348–358. [Google Scholar]
- Morrison, W.R. Wheat lipid composition. Cereal Chem. 1978, 55, 548–558. [Google Scholar]
- Megahed, G.M. Study on stability of wheat germ oil and lipase activity of wheat germ during periodical storage. Agric. Biol. J. N. Am. 2011, 2, 163–168. [Google Scholar] [CrossRef]
- Zou, Y.; Gao, Y.; He, H.; Yang, T. Effect of roasting on physico-chemical properties, antioxidant capacity, and oxidative stability of wheat germ oil. LWT–Food Sci. Technol. 2018, 90, 246–253. [Google Scholar] [CrossRef]
- Delcour, J.A.; Hoseney, R.C. Principles of Cereal Science and Technology; AACC International, Inc.: Saint Paul, MN, USA, 2010; pp. 1–373. [Google Scholar]
- Singh, B.; Singh, J.P.; Kaur, A.; Singh, N. Bioactive compounds in banana and their associated health benefits–a review. Food Chem. 2016, 206, 1–11. [Google Scholar] [CrossRef]
- Osuji, J.O.; Okoli, B.; Vuylsteke, D.; Ortiz, R. Multivariate pattern of quantitative trait variation in triploid banana and plantain cultivars. Sci. Hortic. 1997, 71, 197–202. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations: Banana and Plantain Processing Technologies. Available online: http://faostat3.fao.org/browse/Q/QC/E (accessed on 28 September 2015).
- Food and Agriculture Organization of the United Nations: The World Banana Economy 1985–2002. Available online: http://www.fao.org/ (accessed on 20 February 2011).
- Arias, P.; Dankers, C.; Liu, P.; Pilkauskas, P. The World Banana Economy: 1985–2002; Food and Agriculture Organization of the United Nations: Rome, Italy, 2003. [Google Scholar]
- Amini Khoozani, A.; Birch, J.; Bekhit, A.E.D.A. Production, application and health effects of banana pulp and peel flour in the food industry. J. Food Sci. Technol. 2019, 56, 548–559. [Google Scholar] [CrossRef] [PubMed]
- Aurore, G.; Parfait, B.; Fahrasmane, L. Bananas, raw materials for making processed food products. Trends Food Sci. Technol. 2009, 2, 78–91. [Google Scholar] [CrossRef]
- Harnly, J.M.; Doherty, R.F.; Beecher, G.R.; Holden, J.M.; Haytowitz, D.B.; Bhagwat, S.; Gebhardt, S. Flavonoid content of US fruits, vegetables, and nuts. J. Agric. Food Chem. 2006, 54, 9966–9977. [Google Scholar] [CrossRef] [PubMed]
- Balasundram, N.; Sundram, K.; Samman, S. Phenolic compounds in plants and agri-industrial by-products: Antioxidant activity, occurrence, and potential uses. Food Chem. 2006, 99, 191–203. [Google Scholar] [CrossRef]
- Emaga, T.H.; Andrianaivo, R.H.; Wathelet, B.; Tchango, J.T.; Paquot, M. Effects of the stage of maturation and varieties on the chemical composition of banana and plantain peels. Food Chem. 2007, 103, 590–600. [Google Scholar] [CrossRef]
- Kanazawa, K.; Sakakibara, H. High content of dopamine, a strong antioxidant, in cavendish banana. J. Agric. Food Chem. 2000, 48, 844–848. [Google Scholar] [CrossRef]
- Vijayakumar, S.; Presannakumar, G.; Vijayalakshmi, N. Antioxidant activity of banana flavonoids. Fitoterapia 2008, 79, 279–282. [Google Scholar] [CrossRef]
- Sharma, G.P.; Verma, R.C.; Pathare, P. Mathematical modeling of infrared radiation thin layer drying of onion slices. J. Food Eng. 2005, 71, 282–286. [Google Scholar] [CrossRef]
- Jiménez-Zamora, A.; Pastoriza, S.; Rufián-Henares, J.A. Revalorization of coffee by-products. Prebiotic, antimicrobial and antioxidant properties. LWT Food Sci. Technol. 2015, 61, 12–18. [Google Scholar]
- Murthy, P.S.; Naidu, M.M. Sustainable management of coffee industry by-products and value addition—A review. Resour. Conserv. Recycl. 2012, 66, 45–58. [Google Scholar] [CrossRef]
- Moreira, M.D.; Melo, M.M.; Coimbra, J.M.; Reis, K.C.D.; Schwan, R.F.; Silva, C.F. Solid coffee waste as alternative to produce carotenoids with antioxidant and antimicrobial activities. Waste Manag. 2018, 82, 93–99. [Google Scholar] [CrossRef] [PubMed]
- Campos-Vega, R.; Loarca-Piña, G.; Vergara-Castañeda, H.A.; Oomah, B.D. Spent coffee grounds: A review on current research and future prospects. Trends Food Sci. Technol. 2015, 45, 24–36. [Google Scholar] [CrossRef]
- Bravo, J.; Juaniz, I.; Monente, C.; Caemmerer, B.; Kroh, L.W.; De Pena, M.P.; Cid, C. Evaluation of spent coffee obtained from the most common coffeemakers as a source of hydrophilic bioactive compounds. J. Agric. Food Chem. 2012, 60, 12565–12573. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Qiao, M.; Lu, F. Composition, nutrition, and utilization of okara (soybean residue). Food Rev. Int. 2012, 28, 231–252. [Google Scholar] [CrossRef]
- Ostermann-Porcel, M.V.; Rinaldoni, A.N.; Rodriguez-Furlán, L.T.; Campderrós, M.E. Quality assessment of dried okara as a source of production of gluten-free flour. J. Sci. Food Agric. 2017, 97, 2934–2941. [Google Scholar] [CrossRef]
- Wachiraphansakul, S.; Devahastin, S. Drying kinetics and quality of soy residue (okara) dried in a jet spouted-bed dryer. Dry. Technol. 2005, 23, 1229–1242. [Google Scholar] [CrossRef]
- Wiriyaumpaiwong, S.; Soponronnarit, S.; Prachayawarakorn, S. Comparative study of heating processes for full-fat soybeans. J. Food Eng. 2004, 65, 371–382. [Google Scholar] [CrossRef]
- Bo, L.; Jang, Y.S.; Li, J.F.; Yang, H.L. Effect of Drying Methods on the Functional Properties of Bean Curd Dregs. J. Henan Inst. Sci. Technol. 2008, 36, 64–66. [Google Scholar]
- Perussello, C.A.; Camargo do Amarante, A.C.; Mariani, V.C. Convective drying kinetics and darkening of okara. Dry. Technol. 2009, 27, 1132–1141. [Google Scholar] [CrossRef]
- Wachiraphansakul, S.; Devahastin, S. Drying kinetics and quality of okara dried in a jet spouted bed of sorbent particles. LWT Food Sci. Technol. 2007, 40, 207–219. [Google Scholar] [CrossRef]
- Wang, G.; Deng, Y.; Xu, X.; He, X.; Zhao, Y.; Zou, Y.; Liu, Z.; Yue, J. Optimization of air jet impingement drying of okara using response surface methodology. Food Control 2016, 59, 743–749. [Google Scholar] [CrossRef]
- Li, B.; Wang, D.L.; Han, W.Y.; Lu, F. Study on the bean curd residue in microwave-vacuum drying experiment. Sci. Technol. Food Ind. 2011, 12, 318–324. [Google Scholar]
- Li, F.D.; Li, L.T.; Sun, J.F.; Tatsumi, E. Effect of electrohydrodynamic (EHD) technique on drying process and appearance of okara cake. J. Food Eng. 2006, 77, 275–280. [Google Scholar] [CrossRef]
- Li, F.D.; Li, L.T.; Sun, J.F.; Tatsumi, E. Electrohydrodynamic (EHD) drying characteristic of okara cake. Dry. Technol. 2005, 23, 565–580. [Google Scholar] [CrossRef]
- Sengupta, S.; Chakraborty, M.; Bhowal, J.; Bhattacharya, D. Study on the effects of drying process on the composition and quality of wet okara. Int. J. Sci. 2012, 4, 319–330. [Google Scholar]
- Perussello, C.A.; Mariani, V.C.; Camargo do Amarante, Á.C. Numerical and experimental analysis of the heat and mass transfer during okara drying. Appl. Eng. 2012, 48, 325–331. [Google Scholar] [CrossRef]
- Xu, B.; Chang, S.K. Total phenolics, phenolic acids, isoflavones, and anthocyanins and antioxidant properties of yellow and black soybeans as affected by thermal processing. J Agric. Food Chem. 2008, 56, 7165–7175. [Google Scholar] [CrossRef]
- Yang, H.W.; Hsu, C.K.; Yang, Y.F. Effect of thermal treatments on anti-nutritional factors and antioxidant capabilities in yellow soybeans and green-cotyledon small black soybeans. J Sci. Food Agric. 2014, 94, 1794–1801. [Google Scholar] [CrossRef]
- Gili, R.D.; Irigoyen, R.M.T.; Penci, M.C.; Giner, S.A.; Ribotta, P.D. Wheat germ thermal treatment in fluidised bed. Experimental study and mathematical modelling of the heat and mass transfer. J. Food Eng. 2018, 221, 11–19. [Google Scholar]
- Chan, D.S.; Chan, J.S.; Kuo, M.I. Modelling condensation and simulation for wheat germ drying in fluidized bed dryer. Processes 2018, 6, 71. [Google Scholar] [CrossRef] [Green Version]
- Haslinda, W.H.; Cheng, L.H.; Chong, L.C.; Noor Aziah, A.A. Chemical composition and physicochemical properties of green banana (musa acuminata x balbisiana colla cv. Awak) flour. Int. J. Food Sci. Nutr. 2009, 60, 232–239. [Google Scholar] [CrossRef] [PubMed]
- Khalili, L.; Amini, A. Resistant starch in food industry. In Polysaccharides: Bioactivity and Biotechnology; Ramawat, K.G., Merillon, J.M., Eds.; Springer Nature: Cham, Switzerland, 2014; pp. 1–10. [Google Scholar]
- Amini, A.; Khalili, L.; Keshtiban, A.K.; Homayouni, A. Resistant starch as a bioactive compound in colorectal cancer prevention. In Probiotics, Prebiotics, and Synbiotics: Bioactive Foods in Health Promotion; Watson, R.R., Preedy, V.R., Eds.; Elsevier Inc.: Amsterdam, The Netherlands, 2016; pp. 773–780. [Google Scholar]
- La Fuente, C.I.A.; Zabalaga, R.F.; Tadini, C.C. Combined effects of ultrasound and pulsed-vacuum on air-drying to obtain unripe banana flour. Innov. Food Sci. Emerg. Technol. 2017, 44, 123–130. [Google Scholar] [CrossRef]
- Segundo, C.; Román, L.; Lobo, M.; Martinez, M.M.; Gómez, M. Ripe banana flour as a source of antioxidants in layer and sponge cakes. Plant Food Hum. Nutr. 2017, 72, 365–371. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yangilar, F. Effects of green banana flour on the physical, chemical and sensory properties of ice cream. Food Technol. Biotechnol. 2015, 53, 315–323. [Google Scholar] [CrossRef] [PubMed]
- Alkarkhi, A.F.M.; Ramli, S.B.; Yong, Y.S.; Easa, A.M. Comparing physicochemical properties of banana pulp and peel flours prepared from green and ripe fruits. Food Chem. 2011, 129, 312–318. [Google Scholar] [CrossRef]
- Türker, B.; Savlak, N.; Kaşıkcı, M.B. Effect of Green Banana Peel Flour Substitution on Physical Characteristics of Gluten-Free Cakes. Curr. Res. Nutr. Food Sci. 2016, 4, 197–204. [Google Scholar] [CrossRef]
- Vu, H.T.; Scarlett, C.J.; Vuong, Q.V. Effects of drying conditions on physicochemical and antioxidant properties of banana (Musa cavendish) peels. Dry. Technol. 2017, 35, 1141–1151. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, M.; Mujumdar, A.S. Influence of green banana flour substitution for cassava starch on the nutrition, color, texture and sensory quality in two types of snacks. LWT Food Sci. Technol. 2012, 47, 175–182. [Google Scholar] [CrossRef]
- Tribess, T.B.; Hernández-Uribe, J.P.; Méndez-Montealvo, M.G.C.; Menezes, E.W.; Bello-Perez, L.A.; Tadini, C.C. Thermal properties and resistant starch content of green banana flour (musa cavendishii) produced at different drying conditions. LWT Food Sci. Technol. 2009, 42, 1022–1025. [Google Scholar] [CrossRef]
- Rayo, L.M.; Chagurie Carvalho, L.; Sardá, F.A.H.; Dacanal, G.C.; Menezes, E.W.; Tadini, C.C. Production of instant green banana flour (musa cavendischii, var. Nanicão) by a pulsed-fluidized bed agglomeration. LWT Food Sci. Technol. 2015, 63, 461–469. [Google Scholar] [CrossRef] [Green Version]
- Kris-Etherton, P.M.; Hecker, K.D.; Bonanome, A.; Coval, S.M.; Binkoski, A.E.; Hilpert, K.F.; Friel, A.E.; Etherton, T.D. Bioactive compounds in foods: Their role in the prevention of cardiovascular disease and cancer. Am. J. Med. 2002, 113, 71–88. [Google Scholar] [CrossRef]
- Pereira, A.; Maraschin, M. Banana (musa spp) from peel to pulp: Ethnopharmacology, source of bioactive compounds and its relevance for human health. J. Ethnopharmacol. 2015, 160, 149–163. [Google Scholar] [CrossRef] [PubMed]
- Eshak, N.S. Sensory evaluation and nutritional value of balady flat bread supplemented with banana peels as a natural source of dietary fiber. Ann. Agric. Sci. 2016, 61, 229–235. [Google Scholar] [CrossRef] [Green Version]
- Juarez-Garcia, E.; Agama-Acevedo, E.; SÁYago-Ayerdi, S.G.; RodrÍGuez-Ambriz, S.L.; Bello-PÉRez, L.A. Composition, digestibility and application in breadmaking of banana flour. Plant Food. Hum. Nutr. 2006, 61, 131–137. [Google Scholar] [CrossRef] [PubMed]
- Biernacka, B.; Dziki, D.; Różyło, R.; Gawlik-Dziki, U. Banana Powder as an Additive to Common Wheat Pasta. Foods 2020, 9, 53. [Google Scholar]
- Mussatto, S.I.; Carneiro, L.M.; Silva, J.P.; Roberto, I.C.; Teixeira, J.A. A study on chemical constituents and sugars extraction from spent coffee grounds. Carbohydr. Polym. 2011, 83, 368–374. [Google Scholar] [CrossRef] [Green Version]
- Murthy, P.S.; Naidu, M.M. Recovery of phenolic antioxidants and functional compounds from coffee industry by-products. Food Bioprocess. Technol. 2012, 5, 897–903. [Google Scholar]
- Janissen, B.; Huynh, T. Chemical composition and value-adding applications of coffee industry by-products: A review. Resour. Conserv. Recycl. 2018, 128, 110–117. [Google Scholar] [CrossRef]
- Gómez-de la Cruz, F.J.; Cruz-Peragón, F.; Casanova-Peláez, P.J.; Palomar-Carnicero, J.M. A vital stage in the large-scale production of biofuels from spent coffee grounds: The drying kinetics. Fuel Process. Technol. 2015, 130, 188–196. [Google Scholar] [CrossRef]
- Corrêa, J.L.G.; Santos, J.C.P.; Fonseca, B.E.; da Silva Carvalho, A.G. Drying of spent coffee grounds in a cyclonic dryer. Coffee Sci. 2014, 9, 68–76. [Google Scholar]
- Martinez-Saez, N.; García, A.T.; Pérez, I.D.; Rebollo-Hernanz, M.; Mesías, M.; Morales, F.J.; Martin-Cabrejas, M.A.; Dolore del Castillo, M. Use of spent coffee grounds as food ingredient in bakery products. Food Chem. 2017, 216, 114–122. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Wang, S.; Yang, H. Evaluation of Thermal Effects on the Bioactivity of Curcumin Microencapsulated with Porous Starch-Based Wall Material Using Spray Drying. Processes 2020, 8, 172. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, H.; Sombatngamwilai, T.; Yu, W.-Y.; Kuo, M.-I. Drying Applications during Value-Added Sustainable Processing for Selected Mass-Produced Food Coproducts. Processes 2020, 8, 307. https://doi.org/10.3390/pr8030307
Yang H, Sombatngamwilai T, Yu W-Y, Kuo M-I. Drying Applications during Value-Added Sustainable Processing for Selected Mass-Produced Food Coproducts. Processes. 2020; 8(3):307. https://doi.org/10.3390/pr8030307
Chicago/Turabian StyleYang, Huaiwen, Tulakorn Sombatngamwilai, Wen-Yao Yu, and Meng-I Kuo. 2020. "Drying Applications during Value-Added Sustainable Processing for Selected Mass-Produced Food Coproducts" Processes 8, no. 3: 307. https://doi.org/10.3390/pr8030307
APA StyleYang, H., Sombatngamwilai, T., Yu, W.-Y., & Kuo, M.-I. (2020). Drying Applications during Value-Added Sustainable Processing for Selected Mass-Produced Food Coproducts. Processes, 8(3), 307. https://doi.org/10.3390/pr8030307