Estimation of Biomass Enzymatic Hydrolysis State in Stirred Tank Reactor through Moving Horizon Algorithms with Fixed and Dynamic Fuzzy Weights
Abstract
:1. Introduction
2. Materials and Methods
2.1. Hydrolysis Data and Kinetic Model
2.1.1. Enzyme and Substrates
2.1.2. Assay Conditions
2.1.3. Sampling and Analysis
2.1.4. Mathematical Modeling
2.2. Agitation Power Soft Sensing
2.2.1. Soft Sensing Data
2.2.2. Local Linear Model Trees Algorithm
2.3. Moving Horizon Estimator
2.3.1. Fixed Weights Tuning
2.3.2. Fuzzy Weights Tuning
3. Results and Discussion
3.1. Soft Sensing Optimization
3.2. Moving Horizon Tuning
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Nomenclature
Variables | |
e | Residuals Vector |
F | Objective Function Optimum Value |
HL | High Solids Fuzzy Rule Lower Bound |
HL | High Solids Fuzzy Rule Upper Bound |
ki | Kinetic constants (min−1) |
ke | First order inactivation constant (min−1) |
Kmi | Michaelis-Menten constant (g L−1) |
Kpi | Products competitive inhibition constant (g L−1) |
LL | Low Solids Fuzzy Rule Lower Bound |
Lv | Instrumentation Prediction Weight Vector |
Lw | Model Prediction Weight Vector |
LH | Low Solids Fuzzy Rule Upper Bound |
MDInst | Membership Degree of the Instrumentation Weights |
MDHSM | Membership Degree of the High Solids Model |
N | Window Size |
Q | Cost Function Weights Matrix |
T | Current Estimation Time |
Moving Horizon Estimator Prediction | |
X− | Model Prediction |
Y | Instrumentation Data |
Moving Horizon Estimator Prediction in Instrumentation Unit | |
Cb | Cellobiose Concentration (g L−1) |
Cl | Cellulose Concentration (g L−1) |
Ei | Enzyme Concentration (g L−1) |
Gl | Glucose Concentration (g L−1) |
He | Hemicellulose Concentration (g L−1) |
Lg | Lignin Concentration (g L−1) |
Pi | Product concentration (g L−1) |
Si | Substrate Concentration (g L−1) |
Xy | Xylose Concentration (g L−1) |
Greek Letters | |
αFUZZY | Fuzzy Model reaction rate (g L−1 min−1) |
αHSM | High Solids Model reaction rate (g L−1 min−1) |
αi | Reaction rate for “i” reaction, where “i” are reactions 1 through 6 (g L−1 min−1) |
αLSM | Low Solids Model reaction rate (g L−1 min−1) |
γCl-Cb | Pseudo-stoichiometric mass relation between cellulose and cellobiose (gCellobiose.gCellulose−1) |
γCb-Gl | Pseudo-stoichiometric mass relation between cellobiose and glucose (gGlucose.gCellobiose−1) |
γHe-Xy | Pseudo-stoichiometric mass relation between Hemicellulose and Xylose gXylose.gHemicellulose−1 |
Abbreviations | |
ANN | Artificial Neural Network |
FM | Fuzzy Model |
HSB | High Solids Batch |
HSM | High Solids Model |
LLM | Local Linear Model |
LLNFM | Local Linear Neuro-Fuzzy Models |
LOLIMOT | Local Linear Model Trees |
LOWESS | Locally Weighted Scatterplot Smoothing |
LSF | Low Solids Fed-batch |
LSM | Low Solids Model |
MHE | Moving Horizon Estimator |
MSE | Mean Squared Error |
MPF | Mixed Profile Fed-batch |
ODE | Ordinary Differential Equation Solver |
RMSE | Root Mean Squared Error |
RS | Reactive Solids |
References
- Zhang, J.; Chu, D.; Huang, J.; Yu, Z.; Dai, G.; Bao, J. Simultaneous saccharification and ethanol fermentation at high corn stover solids loading in a helical stirring bioreactor. Biotechnol. Bioeng. 2010, 105, 718–728. [Google Scholar] [CrossRef] [PubMed]
- Correâ, L.J.; Badino, A.C.; Cruz, A.J.G. Mixing design for enzymatic hydrolysis of sugarcane bagasse: Methodology for selection of impeller configuration. Bioprocess Biosyst. Eng. 2016, 39, 285–294. [Google Scholar] [CrossRef] [PubMed]
- Bondancia, T.J.; Corrêa, L.J.; Cruz, A.J.G.; Badino, A.C.; Mattoso, L.H.C.; Marconcini, J.M.; Farinas, C.S. Enzymatic production of cellulose nanofibers and sugars in a stirred-tank reactor: Determination of impeller speed, power consumption, and rheological behavior. Cellulose 2018, 25, 4499–4511. [Google Scholar] [CrossRef]
- Palmqvist, B.; Lidén, G. Torque measurements reveal large process differences between materials during high solid enzymatic hydrolysis of pretreated lignocellulose. Biotechnol. Biofuels 2012, 5, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, T.C.; Anne-Archard, D.; Coma, V.; Cameleyre, X.; Lombard, E.; Binet, C.; Nouhen, A.; To, K.A.; Fillaudeau, L. In situ rheometry of concentrated cellulose fibre suspensions and relationships with enzymatic hydrolysis. Bioresour. Technol. 2013, 133, 563–572. [Google Scholar] [CrossRef] [Green Version]
- Sotaniemi, V.H.; Taskila, S.; Ojamo, H.; Tanskanen, J. Controlled feeding of lignocellulosic substrate enhances the performance of fed-batch enzymatic hydrolysis in a stirred tank reactor. Biomass Bioenergy 2016, 91, 271–277. [Google Scholar] [CrossRef]
- Samaniuk, J.R.; Scott, C.T.; Root, T.W.; Klingenberg, D.J. Rheological modification of corn stover biomass at high solids concentrations solids concentrations. J. Rheol. 2012, 56, 649–665. [Google Scholar] [CrossRef]
- Du, J.; Zhang, F.; Li, Y.; Zhang, H.; Liang, J.; Zheng, H.; Huang, H. Enzymatic liquefaction and saccharification of pretreated corn stover at high-solids concentrations in a horizontal rotating bioreactor. Bioprocess Biosyst. Eng. 2014, 37, 173–181. [Google Scholar] [CrossRef]
- Kadhum, H.J.; Mahapatra, D.M.; Murthy, G.S. A novel method for real-time estimation of insoluble solids and glucose concentrations during enzymatic hydrolysis of biomass. Bioresour. Technol. 2019, 275, 328–337. [Google Scholar] [CrossRef]
- Sagmeister, P.; Wechselberger, P.; Jazini, M.; Meitz, A.; Langemann, T.; Herwig, C. Soft sensor assisted dynamic bioprocess control: Efficient tools for bioprocess development. Chem. Eng. Sci. 2013, 96, 190–198. [Google Scholar] [CrossRef]
- Kadam, K.L.; Rydholm, E.C.; McMillan, J.D. Development and validation of a kinetic model for enzymatic saccharification of lignocellulosic biomass. Biotechnol. Prog. 2004, 20, 698–705. [Google Scholar] [CrossRef] [PubMed]
- Furlong, V.B.; Pereira Filho, R.D.; Margarites, A.C.; Goularte, P.G.; Costa, J.A.V. Estimating microalgae Synechococcus nidulans daily biomass concentration using neuro-fuzzy network. Food Sci. Technol. 2013, 33, 142–147. [Google Scholar] [CrossRef] [Green Version]
- Mohd Ali, J.; Hussain, M.A.; Tade, M.O.; Zhang, J. Artificial Intelligence techniques applied as estimator in chemical process systems—A literature survey. Expert Syst. Appl. 2015, 42, 5915–5931. [Google Scholar] [CrossRef]
- Haseltine, E.L.; Rawlings, J.B. Critical evaluation of extended Kalman filtering and moving-horizon estimation. Ind. Eng. Chem. Res. 2005, 44, 2451–2460. [Google Scholar] [CrossRef]
- Rincón, F.D.; Le Roux, G.A.C.; Lima, F.V. The autocovariance least-squares method for batch processes: Application to experimental chemical systems. Ind. Eng. Chem. Res. 2014, 53, 18005–18015. [Google Scholar] [CrossRef]
- Rawlings, J.B.; Ji, L. Optimization-based state estimation: Current status and some new results. J. Process Control 2012, 22, 1439–1444. [Google Scholar] [CrossRef]
- Lima, F.V.; Rawlings, J.B. Nonlinear stochastic modeling to improve state estimation in process monitoring and control. AIChE J. 2011, 57, 996–1007. [Google Scholar] [CrossRef]
- Valdés-González, H.; Flaus, J.M.; Acuña, G. Moving horizon state estimation with global convergence using interval techniques: Application to biotechnological processes. J. Process Control 2003, 13, 325–336. [Google Scholar] [CrossRef]
- Campani, G.; Ribeiro, M.P.A.; Zangirolami, T.C.; Lima, F.V. A hierarchical state estimation and control framework for monitoring and dissolved oxygen regulation in bioprocesses. Bioprocess Biosyst. Eng. 2019, 42, 1467–1481. [Google Scholar] [CrossRef]
- Vercammen, D.; Logist, F.; Impe, J. Van Online moving horizon estimation of fluxes in metabolic reaction networks. J. Process Control 2016, 37, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Abdollahi, J.; Dubljevic, S. Lipid production optimization and optimal control of heterotrophic microalgae fed-batch bioreactor. Chem. Eng. Sci. 2012, 84, 619–627. [Google Scholar] [CrossRef]
- Furlong, V.B.; Corrêa, L.J.; Giordano, R.C.; Ribeiro, M.P.A. Fuzzy-enhanced modeling of lignocellulosic biomass enzymatic saccharification. Energies 2019, 12, 2110. [Google Scholar] [CrossRef] [Green Version]
- Sluiter, A.; Hames, B.; Ruiz, R.O.; Scarlata, C.; Sluiter, J.; Templeton, D.; Energy, D. of Determination of Structural Carbohydrates and Lignin in Biomass. Laboratory ANalytical Procedure (LAP). Biomass Anal. Technol. Team Lab. Anal. Proced. 2004, 2011, 1–14. [Google Scholar]
- Sluiter, A.; Hames, B.; Ruiz, R.; Scarlata, C.; Sluiter, J.; Templeton, D. Determination of Sugars, Byproducts, and Degradation Products in Liquid Fraction Process Samples; Technical Report NREL/TP-510-42623; National Renewable Energy Laboratory: Golden State, CO, USA, 2008; pp. 1–14.
- Yao, M.; Wang, Z.; Wu, Z.; Qi, H. Evaluating kinetics of enzymatic saccharification of lignocellulose by fractal kinetic analysis. Biotechnol. Bioprocess Eng. 2011, 16, 1240–1247. [Google Scholar] [CrossRef]
- Bastin, G.; Dochain, D. On-Line Estimation and Adaptive Control of Bioreactors; Elsevier: Amsterdam, The Netherlands, 1991; Volume 243, ISBN 0444884300. [Google Scholar]
- Nelles, O. Nonlinear System Identification: From Classical Approaches to Neural Networks and Fuzzy Models; Springer: Berlin/Heidelberg, Germany, 2001; ISBN 3540673695. [Google Scholar]
- Nelles, O.; Fink, A.; Isermann, R. Local Linear Model Trees (LOLIMOT) Toolbox for Nonlinear System Identification. IFAC Proc. Vol. 2000, 33, 845–850. [Google Scholar] [CrossRef]
- Rawlings, J.B.; Lima, F.V. State Estimation of Linear and Nonlinear Dynamic Systems. Part IV: Nonlinear Systems: Moving Horizon Estimation (MHE) and Particle Filtering (PF); AICES Regional School, RWTH Aachen: Aachen, Germany, 2008; Available online: https://fernandolima.faculty.wvu.edu/teaching-outreach (accessed on 28 January 2020).
Training Data Sets | Test Data Sets | |||||||
---|---|---|---|---|---|---|---|---|
Data Set 1—High Solids Batch | Data Set 2—Low Solids Fed-Batch | Data Set 3—Mixed Profile Fed-Batch | ||||||
Feeding Time (h) | Solids (gsolids) | Enzyme (gprotein) | Feeding Time (h) | Solids (gsolids) | Enzyme (gprotein) | Feeding Time (h) | Solids (gsolids) | Enzyme (gprotein) |
0.0 | 600.0 | 2.22 | 0.0 | 150.0 | 2.22 | 0.0 | 150.0 | 2.22 |
- | - | - | 2.0 | 150.0 | - | 0.5 | 150.0 | - |
- | - | - | 12.0 | 150.0 | - | 1.0 | 150.0 | - |
- | - | - | 24.0 | 150.0 | - | 2.0 | 150.0 | - |
Reaction | Solids Model | Parameters | |||
---|---|---|---|---|---|
k (min−1) | Km (g L−1) | Kp (g L−1) | ke (min−1) | ||
1 | High | (3.03 ± 0.00) × 10−3 | (5.31 ± 0.01) × 10−2 | (7.65 ± 0.01) × 10−4 | - |
Low | (2.67 ± 0.38) × 10−3 | (9.75 ± 0.25) × 10−3 | (1.11 ± 0.03) × 10−3 | - | |
3 | High | (9.13 ± 0.00) × 10−2 | (3.82 ± 0.01) × 10−4 | (1.83 ± 0.00) × 10−1 | - |
Low | (6.41 ± 0.07) × 10−4 | (4.49 ± 0.10) × 10−6 | (2.50 ± 0.00) × 10−1 | - | |
4 | High | (1.28 ± 0.00) × 10−3 | (2.02 ± 0.00) × 10−2 | (3.46 ± 0.00) × 10−1 | - |
Low | (1.13 ± 0.02) × 10−1 | (7.80 ± 0.15) × 10−4 | (3.73 ± 0.35) × 10−3 | - | |
5 | High | - | - | - | (1.16 ± 0.00) × 10−3 |
Low | - | - | - | (1.15 ± 0.35) × 10−3 |
1: | # Initialization |
2: | Set Initial Parameters: N, Lw and Lv. |
3: | # Main Loop |
4: | While: Tuning Algorithm Stopping Criteria = False do: |
5: | For: Every Training Data Set |
6: | For: Hydrolysis Time |
7: | If: Window Size < Maximum Size do: |
8: | Add Measurement from the Neural Network to Window |
9: | Integrate Model for Window |
10: | Else: |
11: | Updates Window |
12: | Measurement from the Neural Network |
13: | Integrate Model for Window |
14: | End If |
15: | # State Filtering Step |
16: | While: Filtering Stopping Criteria = False do: |
17: | Evaluate MHE Cost Function with Current Weights |
18: | Reevaluate Stopping Criteria |
19: | End While |
20: | If: Current Time = Feeding Time |
21: | Update State With Substrate Addition |
22: | Reinitialize Moving Horizon Window |
23: | End If |
24: | End For: Hydrolysis Time |
25: | End For: Number of Feeding Profile |
26: | Calculate Current Weights Estimation Squared Errors |
27: | Reevaluate Tuning Stopping Criteria |
28: | Update weights according to Levenberg-Marquardt algorithm |
29: | End While |
30: | # Final Procedures |
31: | Save Optimized Errors |
Prediction Source | Training Data Sets | Test Data Set | |
---|---|---|---|
HSB (g L−1) | LSF (g L−1) | MSF (g L−1) | |
Model Prediction | 0.673 | 1.696 | 3.066 |
Soft Sensing | 5.340 | 3.680 | 7.589 |
Window Size | Fixed Weights MHE | ||
4 | 0.748 | 1.399 | 3.476 |
5 | 0.758 | 1.400 | 3.513 |
6 | 0.824 | 1.461 | 4.371 |
Window Size | Fuzzy Weights MHE | ||
4 | 0.662 | 1.172 | 1.937 |
5 | 0.664 | 1.178 | 15.581 |
6 | 0.664 | 2.417 | 16.365 |
Prediction Source | Training Data Sets | Test Data Set | ||
---|---|---|---|---|
Glu (g L−1) | Xyl (g L−1) | Glu (g L−1) | Xyl (g L−1) | |
Model Prediction | 1.67 | 0.90 | 4.16 | 1.73 |
Soft Sensing | 2.67 | 1.69 | 11.84 | 3.92 |
Fixed Weights MHE | 1.52 | 0.64 | 4.90 | 1.41 |
Fuzzy Weights MHE | 1.28 | 0.60 | 1.85 | 1.49 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Furlong, V.B.; Corrêa, L.J.; Lima, F.V.; Giordano, R.C.; Ribeiro, M.P.A. Estimation of Biomass Enzymatic Hydrolysis State in Stirred Tank Reactor through Moving Horizon Algorithms with Fixed and Dynamic Fuzzy Weights. Processes 2020, 8, 407. https://doi.org/10.3390/pr8040407
Furlong VB, Corrêa LJ, Lima FV, Giordano RC, Ribeiro MPA. Estimation of Biomass Enzymatic Hydrolysis State in Stirred Tank Reactor through Moving Horizon Algorithms with Fixed and Dynamic Fuzzy Weights. Processes. 2020; 8(4):407. https://doi.org/10.3390/pr8040407
Chicago/Turabian StyleFurlong, Vitor B., Luciano J. Corrêa, Fernando V. Lima, Roberto C. Giordano, and Marcelo P. A. Ribeiro. 2020. "Estimation of Biomass Enzymatic Hydrolysis State in Stirred Tank Reactor through Moving Horizon Algorithms with Fixed and Dynamic Fuzzy Weights" Processes 8, no. 4: 407. https://doi.org/10.3390/pr8040407
APA StyleFurlong, V. B., Corrêa, L. J., Lima, F. V., Giordano, R. C., & Ribeiro, M. P. A. (2020). Estimation of Biomass Enzymatic Hydrolysis State in Stirred Tank Reactor through Moving Horizon Algorithms with Fixed and Dynamic Fuzzy Weights. Processes, 8(4), 407. https://doi.org/10.3390/pr8040407