Process Optimization of Microwave Assisted Simultaneous Distillation and Extraction from Siam cardamom using Response Surface Methodology
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Microwave-Assisted Simultaneous Distillation and Extraction (MA-SDE) Process
2.3. Conventional Simultaneous Distillation and Extraction
2.4. Gas chromatography–Mass Spectrometry (GC–MS) Analysis
2.5. Single Factor Design
2.6. Optimization of the MA-SDE Process Using RSM Procedure
2.7. Antibacterial Activity Testing
2.8. Scanning Electron Microscopy (SEM)
2.9. Statistical Analysis
3. Results and Discussion
3.1. Composition Identification Using GC–MS
3.2. Single Factor Investigation of the 1,8-cineole Compound
3.3. Optimization of Experimental Conditions on the Content of 1,8-Cineole Using RSM
3.4. Antibacterial Assay
3.5. Structural Changes
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- De Boer, H.; Newman, M.; Poulsen, A.D.; Droop, A.J.; Fér, T.; Hiên, L.T.T.; Hlavatá, K.; Lamxay, V.; Richardson, J.E.; Steffen, K.; et al. Convergent morphology in Alpinieae (Zingiberaceae): Recircumscribing Amomum as a monophyletic genus. Taxon 2018, 67, 6–36. [Google Scholar] [CrossRef]
- Paul, K.; Bhattacharjee, P. Process Optimization of Supercritical Carbon Dioxide Extraction of 1,8-Cineole from Small Cardamom Seeds by Response Surface Methodology: In Vitro Antioxidant, Antidiabetic and Hypocholesterolemic Activities of Extracts. J. Essent. Oil Bear. Plants 2018, 21, 317–329. [Google Scholar] [CrossRef]
- Juergens, U. Anti-inflammatory Properties of the Monoterpene 1.8-cineole: Current Evidence for Co-medication in Inflammatory Airway Diseases. Drug Res. 2014, 64, 638–646. [Google Scholar] [CrossRef] [PubMed]
- Diao, W.-R.; Zhang, L.-L.; Feng, S.-S.; Xu, J.-G. Chemical Composition, Antibacterial Activity, and Mechanism of Action of the Essential Oil from Amomum kravanh. J. Food Prot. 2014, 77, 1740–1746. [Google Scholar] [CrossRef]
- Al-Zuhair, H. Pharmacological studies of cardamom oil in animals. Pharmacol. Res. 1996, 34, 79–82. [Google Scholar] [CrossRef]
- Williams, A.; Barry, B.W. Terpenes and the Lipid–Protein–Partitioning Theory of Skin Penetration Enhancement. Pharm. Res. 1991, 8, 17–24. [Google Scholar] [CrossRef]
- Presti, M.L.; Ragusa, S.; Trozzi, A.; Dugo, P.; Visinoni, F.; Fazio, A.; Dugo, G.; Mondello, L. A comparison between different techniques for the isolation of rosemary essential oil. J. Sep. Sci. 2005, 28, 273–280. [Google Scholar] [CrossRef]
- Moradi, S.; Fazlali, A.; Hamedi, H. Microwave-Assisted Hydro-Distillation of Essential Oil from Rosemary: Comparison with Traditional Distillation. Avicenna J. Med Biotechnol. 2018, 10, 22–28. [Google Scholar]
- Yu, G.-W.; Nie, J.; Song, Z.-Y.; Li, Z.G.; Lee, M.-R.; Wang, S.-P. Microwave-Assisted Simplified Simultaneous Distillation Coupled with Ionic Liquid Pretreatment for the Analysis of Essential Oil in Schisandra sphenanthera. J. Chromatogr. Sci. 2017, 55, 1051–1058. [Google Scholar] [CrossRef] [Green Version]
- Teo, C.C.; Tan, S.N.; Yong, J.W.H.; Hew, C.S.; Ong, E.S. Evaluation of the extraction efficiency of thermally labile bioactive compounds in Gastrodia elata Blume by pressurized hot water extraction and microwave-assisted extraction. J. Chromatogr. A 2008, 1182, 34–40. [Google Scholar] [CrossRef]
- Mandal, V.; Mohan, Y.; Hemalatha, S. Microwave assisted extraction—An innovative and promising extraction tool for medicinal plant research. Pharmacogn. Rev. 2007, 1, 7–18. [Google Scholar]
- Stashenko, E.E.; Jaramillo, B.E.; Martínez, J.R. Analysis of volatile secondary metabolites from Colombian Xylopia aromatica (Lamarck) by different extraction and headspace methods and gas chromatography. J. Chromatogr. A 2004, 1025, 105–113. [Google Scholar] [CrossRef] [PubMed]
- Lucchesi, M.E.; Chemat, F.; Smadja, J. An original solvent free microwave extraction of essential oils from spices. Flavour Fragr. J. 2004, 19, 134–138. [Google Scholar] [CrossRef]
- Golmakani, M.-T.; Rezaei, K. Comparison of microwave-assisted hydrodistillation with the traditional hydrodistillation method in the extraction of essential oils from Thymus vulgaris L. Food Chem. 2008, 109, 925–930. [Google Scholar] [CrossRef] [PubMed]
- Tran, Q.T.; Thi, T.L.V.; Do, T.L.; Thi, H.M.P.; Thi, B.H.; Chu, Q.T.; Phuong, P.T.L.; Do, H.N.; Than, H.T.H.; Luu, V.H.; et al. Optimization of Microwave-Assisted Extraction Process of Callicarpa candicans (Burm. f.) Hochr Essential Oil and Its Inhibitory Properties against Some Bacteria and Cancer Cell Lines. Processes 2020, 8, 173. [Google Scholar] [CrossRef] [Green Version]
- Chen, F.; Du, X.; Zu, Y.; Yang, L. A new approach for preparation of essential oil, followed by chlorogenic acid and hyperoside with microwave-assisted simultaneous distillation and dual extraction (MSDDE) from Vaccinium uliginosum leaves. Ind. Crop. Prod. 2015, 77, 809–826. [Google Scholar] [CrossRef]
- Filek, G.; Bergamini, M.; Lindner, W. Steam distillation-solvent extraction, a selective sample enrichment technique for the gas chromatographic-electron-capture detection of organochlorine compounds in milk powder and other milk products. J. Chromatogr. A 1995, 712, 355–364. [Google Scholar] [CrossRef]
- Zhao, C.; He, X.; Li, C.; Yang, L.; Fu, Y.-J.; Wang, K.; Zhang, Y.; Ni, Y. A Microwave-Assisted Simultaneous Distillation and Extraction Method for the Separation of Polysaccharides and Essential Oil from the Leaves of Taxus chinensis Var. mairei. Appl. Sci. 2016, 6, 19. [Google Scholar] [CrossRef] [Green Version]
- Cardoso-Ugarte, G.A.; Juárez-Becerra, G.P.; Sosa-Morales, M.E.; López-Malo, A. Microwave-assisted extraction of essential oils from herbs. J. Microw. Power Electromagn. Energy 2013, 47, 63–72. [Google Scholar] [CrossRef]
- Yothipitak, W.; Goto, M.; Tonanon, N.; Boonnoun, P.; Shotipruk, A. Response Surface Methodology to Supercritical Carbon Dioxide Extraction of Essential Oil from Amormum krevanh Pierre. Sep. Sci. Technol. 2009, 44, 3923–3936. [Google Scholar] [CrossRef]
- Feng, X.; Jiang, Z.-T.; Wang, Y.; Li, R. Composition Comparison of Essential Oils Extracted by Hydro distillation and Microwave-assisted Hydrodistillation from Amomum kravanh and Amomum compactum. J. Essent. Oil Bear. Plants 2011, 14, 354–359. [Google Scholar] [CrossRef]
- Liu, Z.; Deng, B.; Li, S.; Zou, Z. Optimization of solvent-free microwave assisted extraction of essential oil from Cinnamomum camphora leaves. Ind. Crop. Prod. 2018, 124, 353–362. [Google Scholar] [CrossRef]
- Tatke, P.; Jaiswal, Y. An Overview of Microwave Assisted Extraction and its Applications in Herbal Drug Research. Res. J. Med. Plant 2011, 5, 21–31. [Google Scholar] [CrossRef] [Green Version]
- Patil, D.M.; Akamanchi, K.G. Microwave assisted process intensification and kinetic modelling: Extraction of camptothecin from Nothapodytes nimmoniana plant. Ind. Crop. Prod. 2017, 98, 60–67. [Google Scholar] [CrossRef]
- Dhobi, M.; Mandal, V.; Hemalatha, S. Optimization of microwave assisted extraction of bioactive flavonolignan-silybinin. J. Chem. Metrol. 2009, 3, 13. [Google Scholar]
- Phuc, N.D.; Thy, L.H.P.; Lam, T.D.; Yen, V.H.; Lan, N.T.N. Extraction of Jasmine Essential Oil By Hydrodistillation method and Applications On Formulation of Natural Facial Cleansers. In Proceedings of the IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2019; Volume 542, p. 012057. [Google Scholar]
- Leonelli, C.; Veronesi, P.; Cravotto, G. Microwave-Assisted Extraction: An Introduction to Dielectric Heating. In Advances in Food Process Engineering Research and Applications; Springer Science and Business Media LLC: New York, NY, USA, 2012; pp. 1–14. [Google Scholar]
- Tran, T.H.; Nguyen, H.H.H.; Nguyen, T.D.; Nguyen, T.Q.; Tan, H.; Nhan, L.H.; Nguyen, D.H.; Tran, D.L.; Do, S.T.; Nguyen, T.D. Optimization of Microwave-Assisted Extraction of Essential Oil from Vietnamese Basil (Ocimum basilicum L.) Using Response Surface Methodology. Processes 2018, 6, 206. [Google Scholar] [CrossRef] [Green Version]
- Chemat, S.; Ait-Amar, H.; Lagha, A.; Esveld, D. Microwave-assisted extraction kinetics of terpenes from caraway seeds. Chem. Eng. Process. Process. Intensif. 2005, 44, 1320–1326. [Google Scholar] [CrossRef]
- Benmoussa, H.; Farhat, A.; Romdhane, M.; Bouajila, J. Enhanced solvent-free microwave extraction of Foeniculum vulgare Mill. essential oil seeds using double walled reactor. Arab. J. Chem. 2019, 12, 3863–3870. [Google Scholar] [CrossRef]
Independent Variables | Symbol | Factor Level | ||
---|---|---|---|---|
−1 | 0 | 1 | ||
Extraction time (min) | X1 | 40 | 80 | 120 |
Material-to-water ratio (g/mL) | X2 | 1:10 | 1:12.5 | 1:15 |
Microwave power (W) | X3 | 140 | 210 | 280 |
Peak | RI | Compounds | Molecular Formula | % Relative Abundance | |
---|---|---|---|---|---|
MA-SDE | SDE | ||||
1 | 1033 | 1,8-cineole | C10H18O | 20.63 ± 0.03 * | 18.54 ± 0.51 * |
2 | 1123 | trans-p-2,8-Menthadien-1-ol | C10H16O | 9.66 ± 0.02 * | 9.20 ± 0.17 * |
3 | 1137 | cis-p-Mentha-2,8-dien-1-ol | C10H16O | 6.50 ± 0.02 | 6.57 ± 0.08 |
4 | 1140 | L-Pinocarveol | C10H16O | 1.83 ± 0.10 * | 2.26 ± 0.25 * |
5 | 1144 | (+)-Camphor | C10H16O | 0.87 ± 0.03 * | 1.07 ± 0.01 * |
6 | 1162 | Pinocarvone | C10H14O | 1.15 ± 0.05 | 1.20 ± 0.10 |
7 | 1166 | δ-Terpineol | C10H18O | 1.08 ± 0.02 * | 1.33 ± 0.08 * |
8 | 1176 | Terpinen-4-ol | C10H18O | 0.91 ± 0.06 * | 1.20 ± 0.09 * |
9 | 1193 | Iso-carveol | C10H16O | 14.3 ± 0.01 * | 15.42 ± 0.12 * |
10 | 1194 | α-Terpineol | C10H18O | 0.91 ± 0.01 | |
11 | 1198 | Myrtenol | C10H16O | 0.84 ± 0.01 * | 0.96 ± 0.02 * |
12 | 1203 | (-)-trans-Isopiperitenol | C10H16O | 3.16 ± 0.08 * | 5.40 ± 0.23 * |
13 | 1221 | cis-Carveol | C10H16O | 5.87 ± 0.07 | 6.09 ± 0.14 |
14 | 1233 | cis-p-mentha-1(7),8-dien-2-ol | C10H16O | 12.27 ± 0.06 * | 13.95 ± 0.23 * |
15 | 1246 | (-)-Carvone | C10H14O | 2.51 ± 0.02 * | 2.73 ± 0.06 * |
16 | 1418 | β-Caryophyllene | C15H24 | 0.79 ± 0.08 * | 1.34 ± 0.04 * |
17 | 1452 | Humulene | C15H24 | 1.16 ± 0.05 | 1.09 ± 0.07 |
18 | 1485 | β-Selinene | C15H24 | 1.23 ± 0.10 | 1.11 ± 0.11 |
19 | 1565 | Nerolidol | C15H26O | 0.95 ± 0.01 | |
20 | 1582 | Caryophyllene oxide | C15H24O | 2.57 ± 0.05 * | 2.17 ± 0.18 * |
21 | 1609 | Humulene epoxide II | C15H24O | 5.17 ± 0.05 * | 4.13 ± 0.09 * |
22 | 1632 | Humulenol | C15H24O | 1.88 ± *0.04 | 1.22 ± 0.12 * |
23 | 1636 | 11,11-Dimethyl-4,8-dimethylenebicyclo[7.2.0]undecan-3-ol | C15H24O | 2.70 ± 0.07 * | 1.72 ± 0.03 * |
24 | 1838 | Corymbolone | C15H24O2 | 1.01 ± 0.05 | |
Total identified compounds | 99.95 ± 0.03 * | 98.70 ± 0.36 * | |||
Oxygenated monoterpene | 82.49 ± 0.11 * | 85.92 ± 0.24 * | |||
Oxygenated sesquiterpene | 14.26 ± 0.08 * | 9.24 ± 0.07 * | |||
Total oxygenated compounds | 96.75 ± 0.19 * | 95.17 ± 0.16 * | |||
Sesquiterpene | 3.18 ± 0.20 | 3.54 ± 0.21 | |||
Total extraction time (min) | 87.68 | 240 | |||
Yield (%) | 2.120 ± 0.25 * | 1.584 ± 0.21 * | |||
1,8-cineole content (µg/g) | 157.23 ± 4.23 | 119.94 ± 5.65 |
Origin | Cardamom Part | Constituent | Content (%) | Author |
---|---|---|---|---|
Thailand Wurfbainia vera (Amomum krervanh) | leaf sheath | 1,8-cineole | 20.63 | This study |
isocarveol | 14.30 | |||
cis-p-mentha-1(7),8-dien-2-ol | 12.27 | |||
trans-p-2,8-menthadien-1-ol | 9.66 | |||
Thailand Reported as: Amomum krevanh | seed | 1,8-cineole | 70.87 | Yothipitak et al. (2009) [20] |
α-pinene | 8.89 | |||
limonene | 4.81 | |||
China Reported as: Amomum kravanh | fruit | 1,8-cineole | 68.42 | Diao et al. (2014) [4] |
α-pinene | 5.71 | |||
α-terpinene | 2.63 | |||
β-pinene | 2.41 | |||
China Reported as: Amomum kravanh | fruit | 1,8-cineole | 59.7 | Feng et al. (2011) [21] |
α-terpinyl acetate | 5.0 | |||
β-pinene | 3.1 |
StdOrder | RunOrder | X1 | X2 | X3 | 1,8 cineole Content (µg/g) |
---|---|---|---|---|---|
15 | 1 | 80 | 1:12.5 | 210 | 150.36 |
10 | 2 | 80 | 1:15 | 140 | 45.77 |
8 | 3 | 120 | 1:12.5 | 280 | 83.12 |
2 | 4 | 120 | 1:10 | 210 | 16.37 |
11 | 5 | 80 | 1:10 | 280 | 12.13 |
14 | 6 | 80 | 1:12.5 | 210 | 141.41 |
7 | 7 | 40 | 1:12.5 | 280 | 45.13 |
1 | 8 | 40 | 1:10 | 210 | 1.97 |
12 | 9 | 80 | 1:15 | 280 | 92.38 |
9 | 10 | 80 | 1:10 | 140 | 13.51 |
6 | 11 | 120 | 1:12.5 | 140 | 88.03 |
3 | 12 | 40 | 1:15 | 210 | 70.15 |
5 | 13 | 40 | 1:12.5 | 140 | 17.84 |
4 | 14 | 120 | 1:15 | 210 | 88.03 |
13 | 15 | 80 | 1:12.5 | 210 | 152.68 |
Source | Sum of Squares | Df | Mean Square | F-Value | p-Value | Remarks |
---|---|---|---|---|---|---|
Model | 36630.8 | 9 | 4070.1 | 21.29 | 0.002 | significant |
X1 | 2475.6 | 1 | 2475.6 | 12.95 | 0.016 | significant |
X2 | 7958.2 | 1 | 7958.2 | 41.63 | 0.001 | significant |
X3 | 576.5 | 1 | 576.5 | 3.02 | 0.143 | not significant |
X12 | 6852.2 | 1 | 6852.2 | 35.85 | 0.002 | significant |
X22 | 13620.7 | 1 | 13620.7 | 71.26 | 0.000 | significant |
X32 | 7950.8 | 1 | 7950.8 | 41.59 | 0.001 | significant |
X1X2 | 3.5 | 1 | 3.5 | 0.02 | 0.897 | not significant |
X1X3 | 259.2 | 1 | 259.2 | 1.36 | 0.297 | not significant |
X2X3 | 583.0 | 1 | 583 | 3.05 | 0.141 | not significant |
Lack-of-fit | 879.3 | 3 | 293.1 | 7.66 | 0.118 | not significant |
Pure error | 76.5 | 2 | 38.2 | |||
Total | 37586.5 | 14 | ||||
R2 0.9746 | Adjusted R2 0.9288 | Predicted R2 0.6211 |
Bacteria | Inhibition Zone (mm) | |||
---|---|---|---|---|
Tetracycline | MA-SDE | SDE | 1,8-cineole | |
S. aureus DMST 8840 | 24.89 ± 0.61 a | 16.99 ± 0.63 c | 19.00 ± 0.29 b | 6.78 ± 0.21 d |
Str. pyogenes DMST 30563 | 19.97 ± 0.36 b | 30.77 ± 3.46 a | 18.92 ± 0.21 b | 9.91 ± 0.35 c |
B. cereus DMST 5040 | 19.17 ± 0.33 a | 16.47 ± 1.68 b | 16.25 ± 0.35 b | 6.67 ± 0.58 c |
L. monocytogenes DMST 17303 | 24.95 ± 0.85 a | 13.36 ± 1.92 b | 12.82 ± 1.37 b | 7.16 ± 0.29 c |
E. coli DMST 4212 | 22.48 ± 0.67 a | 8.21 ± 0.37 c | 9.91 ± 0.28 b | 7.17 ± 0.29 d |
Sal. Typhi DMST 5784 | 22.68 ± 0.40 a | 9.41 ± 0.20 c | 11.02 ± 0.36 b | 8.87 ± 0.06 c |
P. aeruginosa DMST 4739 | 7.83 ± 0.26 | NA | NA | NA |
Ent. aerogenes DMST 8841 | 18.81 ± 0.29 a | 8.61 ± 0.28 b | 8.75 ± 0.28 b | 8.33 ± 0.26 b |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suttiarporn, P.; Wongkattiya, N.; Buaban, K.; Poolprasert, P.; Tanruean, K. Process Optimization of Microwave Assisted Simultaneous Distillation and Extraction from Siam cardamom using Response Surface Methodology. Processes 2020, 8, 449. https://doi.org/10.3390/pr8040449
Suttiarporn P, Wongkattiya N, Buaban K, Poolprasert P, Tanruean K. Process Optimization of Microwave Assisted Simultaneous Distillation and Extraction from Siam cardamom using Response Surface Methodology. Processes. 2020; 8(4):449. https://doi.org/10.3390/pr8040449
Chicago/Turabian StyleSuttiarporn, Panawan, Nalin Wongkattiya, Kittisak Buaban, Pisit Poolprasert, and Keerati Tanruean. 2020. "Process Optimization of Microwave Assisted Simultaneous Distillation and Extraction from Siam cardamom using Response Surface Methodology" Processes 8, no. 4: 449. https://doi.org/10.3390/pr8040449