The Production of Gaseous Biofuels Using Biomass Waste from Construction Sites in Recife, Brazil
Abstract
:1. Introduction
2. Materials and Methods
2.1. CCbiowaste Characterization
2.2. Gasification Experiments
3. Results and Discussion
3.1. Biomass Collection and Sampling
3.2. Biomass Characterization
3.2.1. Density, Moisture, and Ash Content
3.2.2. Ultimate Analysis
3.2.3. Proximate Analysis
3.2.4. Calorimetric Analysis
3.3. Biomass Waste Gasification
3.4. Energy Production and the Brazilian ProGD
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Vanderlei e Silva, F.M. Potencial Energético dos Resíduos de Biomassa Oriundos da Construção Civil. Master’s Thesis, University of Pernambuco, Recife-PE, Brazil, 2014. [Google Scholar]
- Ximenes, F.; Björdal, C.; Cowie, A.; Barlaz, M. The decay of wood in landfills in contrasting climates in Australia. Waste Manag. 2015, 41, 101–110. [Google Scholar] [CrossRef] [PubMed]
- Carpenter, A.; Jambeck, J.R.; Gardner, K.; Weitz, K. Life Cycle assessment of end-of-life management options for construction and demolition debris. J. Ind. Ecol. 2012, 17, 396–406. [Google Scholar] [CrossRef]
- Diyamandoglu, V.; Fortuna, L.M. Deconstruction of wood-framed houses: Material recovery and environmental impact. Resour. Conserv. Recycl. 2015, 100, 21–30. [Google Scholar] [CrossRef]
- Wang, X.; Padgett, J.M.; De la Cruz, F.B.; Barlaz, M.A. Wood biodegradation in laboratory-scale landfills. Environ. Sci. Technol. 2011, 45, 6864–6871. [Google Scholar] [CrossRef] [PubMed]
- Ximenes, F.A.; Gardner, W.D.; Cowie, A.L. The decomposition of wood products in landfills in Sydney, Australia. Waste Manag. 2008, 28, 2344–2354. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.U.; Ahring, B.K. Lignin degradation under anaerobic digestion: Influence of lignin modifications—A review. Biomass Bioenergy 2019, 128, 105325. [Google Scholar] [CrossRef]
- Badu, P. Biomass Gasification and Pyrolysis: Practical Design and Theory; Academic Press: Burlington, MA, USA, 2010; p. 365. ISBN 978-0-12-374988-8. [Google Scholar]
- Buendia-Kandia, F.; Brosse, N.; Petitjean, D.; Mauviel, G.; Rondags, E.; Guedon, E.; Dufour, A. Hydrothermal conversion of wood, organosolv, and chlorite pulps. Biomass Convers. Biorefinery 2019. [Google Scholar] [CrossRef]
- Passos, J.; Alves, O.; Brito, P. Management of municipal and construction and demolition wastes in Portugal: Future perspectives through gasification for energetic valorisation. Int. J. Environ. Sci. Technol. 2020. [Google Scholar] [CrossRef]
- Toor, S.S.; Rosendahl, L.; Rudolf, A. Hydrothermal liquefaction of biomass: A review of subcritical water technologies. Energy 2011, 36, 2328–2342. [Google Scholar] [CrossRef]
- Gumisiriza, R.; Hawumba, J.F.; Okure, M.; Hensel, O. Biomass waste-to-energy valorization technologies: A review case for banana processing in Uganda. Biotechnol. Biofuels 2017, 10, 11. [Google Scholar] [CrossRef] [Green Version]
- Ruiz, J.A.; Juárez, M.C.; Morales, M.P.; Muñoz, P.; Mendívil, M.A. Biomass gasification for electricity generation: Review of current technology barriers. Renew. Sustain. Energy Rev. 2013, 18, 174–183. [Google Scholar] [CrossRef]
- Peres, S. Catalytic Indirectly Heated Gasification of Bagasse. Ph.D. Thesis, University of Florida, Gainesville, FL, USA, 1997. [Google Scholar]
- Peres, S.; Green, A. Catalytic Indirectly Heated Gasification of Bagasse. In Proceedings of the ASME 1998 International Gas Turbine and Aeroengine Congress and Exhibition, Stockholm, Sweden, 2–5 June 1998. [Google Scholar] [CrossRef] [Green Version]
- Samiran, N.A.; Jaafar, M.N.M.; Ng, J.; Lam, S.S.; Chong, C.T. Progress in biomass gasification technique—With focus on Malaysian palm biomass for syngas production. Renew. Sustain. Energy Rev. 2016, 62, 1047–1062. [Google Scholar] [CrossRef]
- Sikarwar, V.S.; Zhao, M.; Clough, P.; Zhong, X.; Memon, M.Z.; Shah, N.; Anthony, E.J.; Fennel, P.S. An overview of advances in biomass gasification. Energy Environ. Sci. 2016, 9, 2939–2977. [Google Scholar] [CrossRef] [Green Version]
- Kirubakaran, V.; Sivaramakrishnan, V.; Nalini, R.; Sekar, T.; Premalatha, M.; Subramanian, P. A review on gasification of biomass. Renew. Sustain. Energy Rev. 2009, 13, 179–186. [Google Scholar] [CrossRef]
- Littlejonhs, J.V.; Butler, J.; Luque, L.; Austin, K. Experimental investigation of bioenergy production from small-scale gasification of landfill-diverted wood wastes. Waste Biomass Valorization 2020. [Google Scholar] [CrossRef]
- Martínez, J.D.; Mahkamov, K.; Andrade, R.V.; Lora, E.E.S. Syngas production in downdraft biomass gasifiers and its application using internal combustion engines. Renew. Energy 2012, 38, 1–9. [Google Scholar] [CrossRef]
- Peres, S. Uso da Fração Orgânica dos Resíduos Sólidos Urbanos em Biodigestores para Produção de Biogás e Geração Descentralizada de Energia Elétrica em Pernambuco. Ph.D. Thesis, Universidade de Pernambuco, Recife-PE, Brazil, 2018. [Google Scholar]
- MME. Ministério de Minas e Energia. Programa de Desenvolvimento da Geração Distribuída de Energia Elétrica—PROGD. Portaria 65, de 27 de Fevereiro de 2018. Available online: http://www.lex.com.br/legis_27619397_PORTARIA_N_65_DE_27_DE_FEVEREIRO_DE_2018.aspx (accessed on 20 December 2019).
- Banco Central do Brasil. Taxa de Venda do Dólar (USD to Brazilian Real Exchange Rate). Available online: https://www.bcb.gov.br/estabilidadefinanceira/fechamentodolar (accessed on 27 December 2019).
- Parsekian, G.A.; Medeiros, W.A.; Sipp, G. High-rise concrete and clayblock masonry building in Brazil. Mauerwerk 2018, 22, 260–272. [Google Scholar] [CrossRef]
- ABNT NBR 10.007:2004. Sampling of Solid Waste; Brazilian Standard: Rio de Janeiro Centro, Brazil, 2004; Available online: https://www.abntcatalogo.com.br/ (accessed on 28 December 2019).
- ABNT NBR 7190:1997. Design of Wooden Structures; Brazilian Standard: Rio de Janeiro Centro, Brazil, 1997; Available online: https://www.abntcatalogo.com.br/ (accessed on 28 December 2019).
- ABNT NBR 14929. Determination of Moisture of Chips—Method by Drying in Oven-Dried; Brazilian Standard: Rio de Janeiro Centro, Brazil, 2003; Available online: https://www.abntcatalogo.com.br/ (accessed on 28 December 2019).
- ASTM D4442-07. Standard Test Methods for Direct Moisture Content Measurement of Wood and Wood-Based Materials; United States Standard, 2007; Available online: https://webstore.ansi.org/sdo/astm?gclid=EAIaIQobChMIh6ykm4ze6AIVC5-fCh2MQAi-EAAYASABEgLBXfD_BwE (accessed on 28 December 2019).
- ASTM D3176-15. Standard Method for Ultimate Analysis of Coal and Coke; United States Standard, 2015; Available online: https://webstore.ansi.org/sdo/astm?gclid=EAIaIQobChMIh6ykm4ze6AIVC5-fCh2MQAi-EAAYASABEgLBXfD_BwE (accessed on 28 December 2019).
- ASTM D3172-12 (2008). Standard Method for Ash in the Analysis Sample of Coal and Coke from Coal; United States Standard, 2008; Available online: https://webstore.ansi.org/sdo/astm?gclid=EAIaIQobChMIh6ykm4ze6AIVC5-fCh2MQAi-EAAYASABEgLBXfD_BwE (accessed on 28 December 2019).
- ABNT NBR 8289. Carvão Mineral—Determinação do Teor de Cinzas; 1983 Rio de Janeiro Centro - RJ - 20031-901, Brazil; 2003; Available online: https://www.abntcatalogo.com.br/ (accessed on 28 December 2019).
- ASTM D2974-87. Standard Test Methods for Moisture, Ash, and Organic Matter of Peat and Other Organic Soils; United States Standard, 1987; Available online: https://webstore.ansi.org/sdo/astm?gclid=EAIaIQobChMIh6ykm4ze6AIVC5-fCh2MQAi-EAAYASABEgLBXfD_BwE (accessed on 28 December 2019).
- ASTM D2015-77. Standard Methods Method for Gross Calorific Value of Coal and Coke by the Adiabatic Bomb Calorimeter; United States Standard, 1977; Available online: https://webstore.ansi.org/sdo/astm?gclid=EAIaIQobChMIh6ykm4ze6AIVC5-fCh2MQAi-EAAYASABEgLBXfD_BwE (accessed on 28 December 2019).
- Cavalcanti, S.J.L. Estudo do Potencial Energético do Caroço de Manga via Gaseificação. Master’s Thesis, Universidade de Pernambuco, Recife-PE, Brazil, 2017. [Google Scholar]
- Geraldo, B.C.A. Gaseificação da Casca e Torta da Mamona para Produção de gás Combustível. Master’s Thesis, Universidade Federal de Pernambuco, Recife-PE, Brazil, 2012. [Google Scholar]
- Zenid, G.J. Madeira: Uso Sustentável na Construção Civil, 2nd ed.; Instituto de Pesquisas Tecnológicas: São Paulo, Brazil, 2009; Available online: https://www.ipt.br/centros_tecnologicos/CT-FLORESTA/livros/3-madeira:_uso_sustentavel_na_construcao_civil.htm (accessed on 26 February 2020).
- Mello, F.S.; Vieira, G.G. Aproveitamento dos resíduos sólidos de madeira da construção civil, para geração de energia alternativa. Bioenergia Rev. Diálogos 2015, 5, 46–57. [Google Scholar]
- Francescato, V.; Antonini, E.; Bergomi, L.Z.; Metschina, C.; Schnedl, C.; Krajnc, N.; Koscik, K.; Gradziuk, P.; Nocentini, G.; Stranieri, S. Wood Fuels Handbook; AIEL-Italian Agriforestry Energy Association: Legnaro (Pd), Italy, 2008; pp. 1–83. [Google Scholar]
- Reed, T.B.; Gaur, S. An Atlas of Thermal Data for Biomass and Other Fuels, 2nd ed.; The Biomass Energy Foundation Press: Franktown, CO, USA, 2009; pp. 1–290. [Google Scholar]
- Arias, B.; Pevida, C.; Fermoso, J.; Plaza, M.G.; Rubiera, F.; Pis, J.J. Influence of torrefaction on the grindability and reactivity of woody biomass. Fuel Process. Technol. 2008, 89, 169–175. [Google Scholar] [CrossRef] [Green Version]
- Álvarez-Álvarez, P.; Pizarro, C.; Barrio-Anta, M.; Cámara-Obregón, A.; Bueno, J.L.M.; Álvarez, A.; Gutiérrez, I.; Burslem, D.F.R.P. Evaluation of tree species for biomass energy production in northwest Spain. Forests 2018, 9, 160. [Google Scholar] [CrossRef] [Green Version]
- Pinto, F.; Gominho, J.; André, R.N.; Gonçalves, D.; Miranda, M.; Varela, F.; Neves, D.; Santos, J.; Lourenço, A.; Pereira, H. Improvement of gasification performance of Eucalyptus globulus stumps with torrefaction and densification pre-treatments. Fuel 2017, 206, 289–299. [Google Scholar] [CrossRef]
- Wang, G.; Zhang, J.; Shao, J.; Liu, Z.; Zhang, G.; Xu, T.; Guo, J.; Wang, H.; Xu, R.; Lin, H. Thermal behavior and kinetic analysis of co-combustion of waste biomass/low rank coal blends. Energy Convers. Manag. 2016, 124, 414–426. [Google Scholar] [CrossRef]
- Pintor-Ibarra, L.F.; Carrillo-Parra, A.; Herrera-Bucio, R.; López-Albarrán, P.; Rutiaga-Quiñones, J.G. Physical and Chemical properties of timber by-products from Pinus Leiophylla, P. Montezumae and P. Pseudostrobus for a bioenergetic use. Wood Res. 2017, 62, 849–862. [Google Scholar]
- Raj, T.; Kapoor, M.; Gaur, R.; Christopher, J.; Lamba, B.Y.; Tuli, D.K.; Kumar, R. Physical and chemical characterization of various Indian agriculture residues for biofuels production. Energy Fuels 2015, 29, 3111–3118. [Google Scholar] [CrossRef]
- Arena, U.; Gregorio, F.D.; Troia, G.D.; Saponaro, A. A techno-economic evaluation of a small-scale fluidized be gasifier for solid recovered fuel. Fuel Process. Technol. 2015, 131, 69–77. [Google Scholar] [CrossRef]
Biomass Type | Mass (ton) * | Mass Percentage (%) |
---|---|---|
Mixed wood | 110 | 67 |
Pinus | 18 | 11 |
Plastic-coated plywood | 24 | 14 |
Resin-coated plywood | 12 | 8 |
Total | 164 | 100 |
Biomass Type | Density (kg∙m−3) * | Moisture 1 (%) * | Ash 2 (%) (600 °C) * |
---|---|---|---|
Mixed wood | 800 ± 12 | 7.6 ± 0.1 | 1.08 ± 0.07 |
Pinus | 414 ± 21 | 7.4 ± 0.1 | 0.94 ± 0.01 |
Plastic-coated plywood | 519 ± 17 | 10.3 ± 0.1 | 2.09 ± 0.10 |
Resin-coated plywood | 521 ± 3 | 9.2 ± 0.1 | 2.11 ± 0.12 |
Weighted average 3 | 696 | 8.1 | 1.29 |
Biomass Type | Content (% by mass) * | ||||
---|---|---|---|---|---|
C | H | O | N | S | |
Mixed wood | 46.27 ± 0.55 | 6.59 ± 0.03 | 45.67 ± 0.56 | 0.16 ± 0.01 | 0.21 ± 0.02 |
Pinus | 46.29 ± 0.19 | 6.58 ± 0.03 | 46.32 ± 0.22 | 0.10 ± 0.01 | 0.11 ± 0.01 |
Plastic-coated plywood | 48.08 ± 1.03 | 6.57 ± 0.13 | 43.72 ± 1.17 | 0.24 ± 0.01 | 0.10 ± 0.01 |
Resin-coated plywood | 47.60 ± 0.50 | 6.56 ± 0.08 | 44.04 ± 0.59 | 0.21 ± 0.01 | 0.11 ± 0.01 |
Weighted average 1 | 46.63 | 6.58 | 45.34 | 0.17 | 0.18 |
Biomass Type | Content (% by mass) * | |||
---|---|---|---|---|
Volatiles * | Fixed carbon * | Ashes (900 °C) * | Moisture * | |
Mixed wood | 98.59 ± 0.19 | 0.53 ± 0.11 | 0.88 ± 0.11 | 11.35 ± 0.32 |
Pinus | 98.68 ± 0.04 | 0.50 ± 0.03 | 0.82 ± 0.06 | 13.68 ± 0.34 |
Plastic-coated plywood | 99.42 ± 0.13 | 0.41 ± 0.07 | 0.17 ± 0.03 | 11.88 ± 0.78 |
Resin-coated plywood | 99.4 ± 0.16 | 0.34 ± 0.05 | 0.26 ± 0.07 | 12.78 ± 0.22 |
Weighted average 1 | 98.78 | 0.49 | 0.72 | 11.79 |
Biomass Type | HHV * (MJ∙kg−1) | LHV * (MJ∙kg−1) |
---|---|---|
Mixed wood | 18.205 ± 97 | 17.988 ± 113 |
Pinus | 17.701 ± 153 | 17.509 ± 172 |
Plastic-coated plywood | 17.723 ± 101 | 17.487 ± 124 |
Resin-coated plywood | 17.804 ± 84 | 17.560 ± 88 |
Weighted average 1 | 18.050 | 17.831 |
Biomass Type | (% mol/mol) | LHV | ||||
---|---|---|---|---|---|---|
H2 | CO | CO2 | CH4 | N2 | (MJ∙m−3) | |
Mixed wood | 25.2 ± 0.8 | 13.1 ± 1.3 | 27.5 ± 1.2 | 11.7 ± 0.1 | 21.8 ± 1.3 | 8.07 ± 0.15 |
Pinus | 22.5 ± 2.2 | 14.1 ± 1.0 | 28.1 ± 0.9 | 13.9 ± 0.3 | 20.0 ± 1.0 | 8.99 ± 0.47 |
Plastic-coated plywood | 24.1 ± 1.5 | 11.7 ± 0.2 | 28.4 ± 0.5 | 13.3 ± 0.7 | 21.3 ± 0.3 | 8.55 ± 0.22 |
Resin-coated plywood | 22.8 ± 2.0 | 12.4 ± 0.9 | 27.2 ± 2.0 | 13.3 ± 0.9 | 23.1 ± 1.9 | 8.53 ± 0.41 |
Weighted average 1 | 24.6 ± 1.1 | 13.0 ± 0.9 | 27.6 ± 0.5 | 12.3 ± 0.8 | 21.6 ± 1.1 | 8.28 ± 0.35 |
Biomass Type | (% mol/mol) | LHV | ||||
---|---|---|---|---|---|---|
H2 | CO | CO2 | CH4 | N2 | (MJ∙m−3) | |
Mixed wood | 25.4 ± 2.4 | 14.9 ± 0.6 | 31.1 ± 2.0 | 14.8 ± 0.3 | 12.3 ± 1.0 | 9.72 ± 0.43 |
Pinus | 21.8 ± 1.7 | 15.9 ± 0.3 | 31.9 ± 2.4 | 16.8 ± 1.6 | 12.0 ± 0.8 | 10.18 ± 0.68 |
Plastic-coated plywood | 31.5 ± 0.4 | 13.4 ± 0.5 | 25.8 ± 2.4 | 16.1 ± 0.3 | 11.4 ± 0.9 | 10.70 ± 0.11 |
Resin-coated plywood | 30.2 ± 2.3 | 14.5 ± 1.3 | 24.1 ± 2.4 | 15.5 ± 0.3 | 14.3 ± 0.8 | 10.28 ± 0.40 |
Weighted average 1 | 26.2 ± 3.9 | 14.7 ± 0.9 | 29.9 ± 3.3 | 15.3 ± 0.7 | 12.3 ± 1.1 | 9.95 ± 0.39 |
Biomass Type | (% mol/mol) | LHV | ||||
---|---|---|---|---|---|---|
H2 | CO | CO2 | CH4 | N2 | (MJ∙m−3) | |
Mixed wood | 19.7 ± 1.9 | 20.4 ± 1.4 | 18.9 ± 1.0 | 17.0 ± 0.2 | 23.5 ± 1.3 | 9.97 ± 0.21 |
Pinus | 19.1 ± 1.8 | 21.4 ± 1.3 | 20.4 ± 1.6 | 17.0 ± 1.4 | 21.0 ± 1.8 | 10.31 ± 0.68 |
Plastic-coated plywood | 24.8 ± 1.9 | 23.3 ± 1.7 | 20.7 ± 1.2 | 14.4 ± 1.0 | 14.7 ± 1.3 | 10.74 ± 0.29 |
Resin-coated plywood | 24.6 ± 2.1 | 21.8 ± 1.6 | 19.0 ± 0.8 | 13.1 ± 0.6 | 19.2 ± 1.9 | 10.28 ± 0.26 |
Weighted average 1 | 20.7 ± 2.7 | 21.0 ± 1.1 | 19.3 ± 0.8 | 16.3 ± 1.7 | 21.6 ± 2.2 | 10.14 ± 0.31 |
Biomass | Temperature (°C) | Yields (Nm3∙kg−1) | LHV (MJ∙m−3) | TEA * (MJ∙kg−1) | Reference |
---|---|---|---|---|---|
C&D waste | n.a. | 0.916 | 8.62 | 7.90 | [10] |
Sugarcane bagasse | 900 | 0.55 | 12.25 | 6.74 | [14,15] |
Sugarcane bagasse | 1000 | 0.65 | 12.84 | 8.35 | [14,15] |
Wood chips | n.a. | 1.44 | 5.06 | 7.29 | [20] |
Sawdust | 900 | 1.99 | 6.32 | 12.58 | [20] |
Wood waste | 1050 | 1.62 | 6.34 | 10.27 | [20] |
Hazelnut shells | 1025 | 1.97 | 4.55 | 8.96 | [20] |
Solid recovered fuel (SRF) | 800 | 2.34 | 5.16 | 12.07 | [46] |
Solid recovered fuel (SRF) | 898 | 2.56 | 4.91 | 12.57 | [46] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peres, S.; Loureiro, E.; Santos, H.; Vanderley e Silva, F.; Gusmao, A. The Production of Gaseous Biofuels Using Biomass Waste from Construction Sites in Recife, Brazil. Processes 2020, 8, 457. https://doi.org/10.3390/pr8040457
Peres S, Loureiro E, Santos H, Vanderley e Silva F, Gusmao A. The Production of Gaseous Biofuels Using Biomass Waste from Construction Sites in Recife, Brazil. Processes. 2020; 8(4):457. https://doi.org/10.3390/pr8040457
Chicago/Turabian StylePeres, Sergio, Eduardo Loureiro, Humberto Santos, Fabio Vanderley e Silva, and Alexandre Gusmao. 2020. "The Production of Gaseous Biofuels Using Biomass Waste from Construction Sites in Recife, Brazil" Processes 8, no. 4: 457. https://doi.org/10.3390/pr8040457
APA StylePeres, S., Loureiro, E., Santos, H., Vanderley e Silva, F., & Gusmao, A. (2020). The Production of Gaseous Biofuels Using Biomass Waste from Construction Sites in Recife, Brazil. Processes, 8(4), 457. https://doi.org/10.3390/pr8040457