Breakup Processes and Droplet Characteristics of Liquid Jets Injected into Low-Speed Air Crossflow
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Materials
2.2. Measurement Methods
3. Results and Discussion
3.1. Breakup Modes
3.2. Liquid Jet Primary Breakup Regimes
3.3. Droplet Sizes Characteristics
3.4. Droplet Velocity Characteristics
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Nomenclature
Ag | cross-sectional area of the square tube |
Aj | cross-sectional area of the liquid jet orifice |
dj | liquid jet orifice diameter |
Oh | Ohnesorge number |
PDA | phase-Doppler anemometry |
q | liquid–gas momentum flux ratio |
Qj | measured liquid flow rate |
Qg | measured air crossflow rate |
SMD | Sauter mean diameter |
uj | liquid jet velocity |
ug | air crossflow velocity |
Weg | gas Weber number |
Wej | liquid jet Weber number |
ρj | liquid density |
ρg | air density |
σ | surface tension |
References
- Kies, F.K.; Benadda, B.; Otterbein, M. Experimental study on mass transfer of a co–current gas–liquid contactor performing under high gas velocities. Chem. Eng. Process. Process Intensif. 2004, 43, 1389–1395. [Google Scholar] [CrossRef]
- Biard, P.F.; Couvert, A.; Renner, C. Intensification of volatile organic compound absorption in a compact wet scrubber at co–current flow. Chemosphere 2017, 173, 612–621. [Google Scholar] [CrossRef] [PubMed]
- Mi, T.; Yu, X.M. Dust removal and desulphurization in a novel venturi scrubber. Chem. Eng. Process. Process Intensif. 2012, 62, 159–167. [Google Scholar] [CrossRef]
- Shoaib, A.M.; Bhran, A.A.; Hamed, M.F. Application of Compact Mixer Technique for Khalda Gas Dehydration Plant. Int. J. Eng. Tech. Res. 2016, 4, 40–47. [Google Scholar]
- Ramkumar, S.; Grave, E.J.; Larnholm, P.R.; Thierens, D. cMIST™: Novel, Compact Dehydration System for Reducing Size and Weight. In Offshore Technology Conference; Offshore Technology Conference: Houston, TX, USA, 2017. [Google Scholar]
- Rek, Z.; Gregorc, J.; Bouaifi, M.; Daniel, C. Numerical simulation of gas jet in liquid crossflow with high mean jet to crossflow velocity ratio. Chem. Eng. Sci. 2017, 172, 667–676. [Google Scholar] [CrossRef]
- Wu, P.-K.; Kirkendall, K.A.; Fuller, R.P.; Nejad, A.S. Breakup Processes of Liquid Jets in Subsonic Crossflows. J. Propuls. Power 1997, 13, 64–73. [Google Scholar] [CrossRef]
- Fuller, R.; Wu, P.-K.; Kirkendall, K.; Nejad, A.; Fuller, R.; Wu, P.-K.; Kirkendall, K.; Nejad, A. Effects of injection angle on the breakup processes of liquid jets in subsonic crossflows. In Proceedings of the 33rd Joint Propulsion Conference and Exhibit, Seattle, WA, USA, 6–9 July 1997. [Google Scholar]
- Tambe, S. Structure of Liquid Jets in Subsonic Crossflow at Elevated Ambient Pressures. In Proceedings of the 44th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, 9–12 January 2006. [Google Scholar]
- Lee, K.; Aalburg, C.; Diez, F.J.; Faeth, G.M.; Sallam, K.A. Primary Breakup of Turbulent Round Liquid Jets in Uniform Crossflows. AIAA J. 2007, 45, 1907–1916. [Google Scholar] [CrossRef]
- Bolszo, C.D.; McDonell, V.G.; Gomez, G.A.; Samuelsen, G.S. Injection of Water–in–Oil Emulsion Jets into a Subsonic Crossflow: An Experimental Study. At. Sprays 2014, 24, 303–348. [Google Scholar] [CrossRef] [Green Version]
- Vich, G.; Ledoux, M. Investigation of a Liquid Jet in a Subsonic Cross–Flow. Int. J. Fluid Mech. Res. 1997, 24, 1–12. [Google Scholar] [CrossRef]
- Birouk, M.; Iyogun, C.O.; Popplewell, N. Role of viscosity on trajectory of liquid jets in a cross–airflow. At. Sprays 2007, 17, 267–287. [Google Scholar] [CrossRef]
- Mazallon, J.; Dai, Z.; Faeth, G.M. Primary breakup of nonturbulent round liquidjets in gas crossflows. At. Sprays 1999, 9, 291–312. [Google Scholar] [CrossRef]
- Sallam, K.A.; Aalburg, C.; Faeth, G.M. Breakup of Round Nonturbulent Liquid Jets in Gaseous Crossflow. AIAA J. 2004, 42, 2529–2540. [Google Scholar] [CrossRef] [Green Version]
- Ng, C.L.; Sankarakrishnan, R.; Sallam, K.A. Bag breakup of nonturbulent liquid jets in crossflow. Int. J. Multiph. Flow 2008, 34, 241–259. [Google Scholar] [CrossRef]
- Tambe, S.; Jeng, S.-M.; Mongia, H.; Hsiao, G. Liquid Jets in Subsonic Crossflow. In Proceedings of the 43rd AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, 10–13 January 2005. [Google Scholar]
- Song, J.; Cary Cain, C.; Guen Lee, J. Liquid Jets in Subsonic Air Crossflow at Elevated Pressure. J. Eng. Gas Turbines Power 2014, 137, 041502. [Google Scholar] [CrossRef]
- Eslamian, M.; Amighi, A.; Ashgriz, N. Atomization of Liquid Jet in High–Pressure and High–Temperature Subsonic Crossflow. AIAA J. 2014, 52, 1374–1385. [Google Scholar] [CrossRef]
- No, S.-Y. Empirical Correlations for Breakup Length of Liquid Jet in Uniform Cross Flow–A Review. J. Ilass–Korea 2013, 18, 35–43. [Google Scholar] [CrossRef] [Green Version]
- No, S.-Y. A review on empirical correlations for jet/spray trajectory of liquid jet in uniform cross flow. Int. J. Spray Combust. Dyn. 2015, 7, 283–314. [Google Scholar] [CrossRef] [Green Version]
- Hautman, D.; Rosfjord, T. Transverse liquid injection studies. In Proceedings of the 26th Joint Propulsion Conference, Orlando, FL, USA, 16–18 July 1990. [Google Scholar]
- Reichel, J.; Gopala, Y.; Bibik, O.; Lubarsky, E.; Zinn, B. Liquid Fuel Jet in Crossflow—Comparison between Sharp Edged and Smooth Injection Orifice. In Proceedings of the 43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference Exhibit, Cincinnati, OH, USA, 8–11 July 2007. [Google Scholar]
- Miller, B.; Sallam, K.A.; Bingabr, M.G.; Lin, K.-C.; Carter, C. Breakup of Aerated Liquid Jets in Subsonic Crossflow. J. Propuls. Power 2008, 24, 253–258. [Google Scholar] [CrossRef]
- Lubarsky, E.; Reichel, J.R.; Zinn, B.T.; McAmis, R. Spray in Crossflow: Dependence on Weber Number. J. Eng. Gas Turbines Power 2009, 132, 021501. [Google Scholar] [CrossRef]
- Broumand, M.; Birouk, M. Liquid jet in a subsonic gaseous crossflow: Recent progress and remaining challenges. Prog. Energy Combust. Sci. 2016, 57, 1–29. [Google Scholar] [CrossRef]
- Xia, Y.; Khezzar, L.; Alshehhi, M.; Hardalupas, Y. Droplet size and velocity characteristics of water–air impinging jet atomizer. Int. J. Multiph. Flow 2017, 94, 31–43. [Google Scholar] [CrossRef]
- Birouk, M.; Stäbler, T.; Azzopardi, B. An Experimental Study of Liquid Jets Interacting with Cross Airflows. Part. Part. Syst. Charact. 2003, 20, 39–46. [Google Scholar] [CrossRef]
- Yang, W.; Jia, M.; Che, Z.; Sun, K.; Wang, T. Transitions of deformation to bag breakup and bag to bag–stamen breakup for droplets subjected to a continuous gas flow. Int. J. Heat Mass Transf. 2017, 111, 884–894. [Google Scholar] [CrossRef]
- Yoo, Y.-L.; Han, D.-H.; Hong, J.-S.; Sung, H.-G. A large eddy simulation of the breakup and atomization of a liquid jet into a cross turbulent flow at various spray conditions. Int. J. Heat Mass Transf. 2017, 112, 97–112. [Google Scholar] [CrossRef]
- Wang, B.; Badawy, T.; Jiang, Y.; Xu, H.; Ghafourian, A.; Zhang, X. Investigation of deposit effect on multi–hole injector spray characteristics and air/fuel mixing process. Fuel 2017, 191, 10–24. [Google Scholar] [CrossRef]
Experiment Parameter | Number |
---|---|
Liquid jet velocity uj/m·s−1 | 0–10 |
Liquid density | 997 |
Air crossflow velocity | 5–30 |
Air density | 1.17 |
Surface tension | 0.0709 |
Liquid–gas momentum flux ratio | 2–400 |
Liquid Weber number | 20–1000 |
Gas Weber number | 0–20 |
Channel 1 | Channel 2 | |
---|---|---|
Beam System | ||
Wavelength (nm) | 514.5 | 488 |
Focal length (mm) | 500 | 500 |
Beam spacing (mm) | 2.2 | 2.2 |
Beam expander radio | 1.98 | 1.98 |
Expended beam spacing (mm) | 39.12 | 39.12 |
Frequency shift (HZ) | 40 | 40 |
PDA Receiver | ||
Receiver type | Fiber PDA | |
Scattering angle (deg) | 35 | |
Receiver focal length (mm) | 500 | |
Receiver expander radio | 1 | |
Aperture mask | Mask C | |
Particle Properties | ||
Particle name | Water | |
Particle refractive index | 1.334 | |
Particle specific gravity | 1.0 | |
Particle kinematic viscosity (m2/s) | 0.001 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kong, L.; Lan, T.; Chen, J.; Wang, K.; Sun, H. Breakup Processes and Droplet Characteristics of Liquid Jets Injected into Low-Speed Air Crossflow. Processes 2020, 8, 676. https://doi.org/10.3390/pr8060676
Kong L, Lan T, Chen J, Wang K, Sun H. Breakup Processes and Droplet Characteristics of Liquid Jets Injected into Low-Speed Air Crossflow. Processes. 2020; 8(6):676. https://doi.org/10.3390/pr8060676
Chicago/Turabian StyleKong, Lingzhen, Tian Lan, Jiaqing Chen, Kuisheng Wang, and Huan Sun. 2020. "Breakup Processes and Droplet Characteristics of Liquid Jets Injected into Low-Speed Air Crossflow" Processes 8, no. 6: 676. https://doi.org/10.3390/pr8060676
APA StyleKong, L., Lan, T., Chen, J., Wang, K., & Sun, H. (2020). Breakup Processes and Droplet Characteristics of Liquid Jets Injected into Low-Speed Air Crossflow. Processes, 8(6), 676. https://doi.org/10.3390/pr8060676