Effect of Oxaliplatin on Voltage-Gated Sodium Channels in Peripheral Neuropathic Pain
Abstract
:1. Introduction
2. Effect of Oxaliplatin on Peripheral Nerve Fibers
2.1. Oxaliplatin Mostly Affects Myelinated A-Fibers, but Not Unmyelinated C-Fibers
2.2. Oxaliplatin Increases the Length of the Action Potential
3. Oxaliplatin Modifies Activities of Voltage-Gated Sodium Channels
3.1. Oxaliplatin Decreases the Peak of the Sodium Current
3.2. Oxaliplatin Shifts the Voltage–Response Relationship of the Sodium Current
3.3. Oxaliplatin Slowdown Inactivation Kinetics of Voltage-Gated Sodium Channels
4. Effect of Oxaliplatin on TTX-Sensitive or Resistant Sodium Channels
4.1. Oxaliplatin Modulates the Activity of TTX-Sensitive Sodium Channels
4.2. Effect of Oxaliplatin on Nav1.6
5. Conclusions and Perspectives
Funding
Conflicts of Interest
References
- Misset, J.L.; Bleiberg, H.; Sutherland, W.; Bekradda, M.; Cvitkovic, E. Oxaliplatin clinical activity: A review. Crit. Rev. Oncol. Hematol. 2000, 35, 75–93. [Google Scholar] [CrossRef]
- Argyriou, A.A.; Polychronopoulos, P.; Iconomou, G.; Chroni, E.; Kalofonos, H.P. A review on oxaliplatin-induced peripheral nerve damage. Cancer Treat. Rev. 2008, 34, 368–377. [Google Scholar] [CrossRef] [PubMed]
- Nativi, C.; Gualdani, R.; Dragoni, E.; Mannelli, L.D.C.; Sostegni, S.; Norcini, M.; Gabrielli, G.; La Marca, G.; Richichi, B.; Francesconi, O. A trpa1 antagonist reverts oxaliplatin-induced neuropathic pain. Sci. Rep. 2013, 3, 2005. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nassini, R.; Gees, M.; Harrison, S.; De Siena, G.; Materazzi, S.; Moretto, N.; Failli, P.; Preti, D.; Marchetti, N.; Cavazzini, A. Oxaliplatin elicits mechanical and cold allodynia in rodents via trpa1 receptor stimulation. Pain® 2011, 152, 1621–1631. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.; Isami, K.; Nakamura, S.; Shirakawa, H.; Nakagawa, T.; Kaneko, S. Acute cold hypersensitivity characteristically induced by oxaliplatin is caused by the enhanced responsiveness of trpa1 in mice. Mol. Pain 2012, 8, 55. [Google Scholar] [CrossRef] [Green Version]
- Descoeur, J.; Pereira, V.; Pizzoccaro, A.; Francois, A.; Ling, B.; Maffre, V.; Couette, B.; Busserolles, J.; Courteix, C.; Noel, J. Oxaliplatin-induced cold hypersensitivity is due to remodelling of ion channel expression in nociceptors. EMBO Mol. Med. 2011, 3, 266–278. [Google Scholar] [CrossRef]
- Kawashiri, T.; Egashira, N.; Kurobe, K.; Tsutsumi, K.; Yamashita, Y.; Ushio, S.; Yano, T.; Oishi, R. L type ca2+ channel blockers prevent oxaliplatin-induced cold hyperalgesia and trpm8 overexpression in rats. Mol. Pain 2012, 8, 7. [Google Scholar] [CrossRef] [Green Version]
- Yoon, S.-Y.; Robinson, C.R.; Zhang, H.; Dougherty, P.M. Spinal astrocyte gap junctions contribute to oxaliplatin-induced mechanical hypersensitivity. J. Pain 2013, 14, 205–214. [Google Scholar] [CrossRef] [Green Version]
- Janes, K.; Wahlman, C.; Little, J.W.; Doyle, T.; Tosh, D.K.; Jacobson, K.A.; Salvemini, D. Spinal neuroimmune activation is independent of t-cell infiltration and attenuated by a3 adenosine receptor agonists in a model of oxaliplatin-induced peripheral neuropathy. Brain Behav. Immun. 2015, 44, 91–99. [Google Scholar] [CrossRef] [Green Version]
- Xiao, W.H.; Bennett, G.J. Effects of mitochondrial poisons on the neuropathic pain produced by the chemotherapeutic agents, paclitaxel and oxaliplatin. Pain 2012, 153, 704–709. [Google Scholar] [CrossRef] [Green Version]
- Riva, B.; Dionisi, M.; Potenzieri, A.; Chiorazzi, A.; Cordero-Sanchez, C.; Rigolio, R.; Carozzi, V.A.; Lim, D.; Cavaletti, G.; Marmiroli, P. Oxaliplatin induces ph acidification in dorsal root ganglia neurons. Sci. Rep. 2018, 8, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krishnan, A.V.; Goldstein, D.; Friedlander, M.; Kiernan, M.C. Oxaliplatin-induced neurotoxicity and the development of neuropathy. Muscle Nerve Off. J. Am. Assoc. Electrodiagn. Med. 2005, 32, 51–60. [Google Scholar] [CrossRef] [PubMed]
- Kim, W.; Kim, M.J.; Go, D.; Min, B.-I.; Na, H.S.; Kim, S.K. Combined effects of bee venom acupuncture and morphine on oxaliplatin-induced neuropathic pain in mice. Toxins 2016, 8, 33. [Google Scholar] [CrossRef] [PubMed]
- Ling, B.; Authier, N.; Balayssac, D.; Eschalier, A.; Coudore, F. Behavioral and pharmacological description of oxaliplatin-induced painful neuropathy in rat. Pain 2007, 128, 225–234. [Google Scholar] [CrossRef]
- Kim, W.; Chung, Y.; Choi, S.; Min, B.-I.; Kim, S.K. Duloxetine protects against oxaliplatin-induced neuropathic pain and spinal neuron hyperexcitability in rodents. Int. J. Mol. Sci. 2017, 18, 2626. [Google Scholar] [CrossRef] [Green Version]
- Chae, H.K.; Kim, W.; Kim, S.K. Phytochemicals of cinnamomi cortex: Cinnamic acid, but not cinnamaldehyde, attenuates oxaliplatin-induced cold and mechanical hypersensitivity in rats. Nutrients 2019, 11, 432. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.H.; Go, D.; Kim, W.; Lee, G.; Bae, H.; Quan, F.S.; Kim, S.K. Involvement of spinal muscarinic and serotonergic receptors in the anti-allodynic effect of electroacupuncture in rats with oxaliplatin-induced neuropathic pain. Korean J. Physiol. Pharmacol. 2016, 20, 407–414. [Google Scholar] [CrossRef] [Green Version]
- Choi, S.; Chae, H.K.; Heo, H.; Hahm, D.-H.; Kim, W.; Kim, S.K. Analgesic effect of melittin on oxaliplatin-induced peripheral neuropathy in rats. Toxins 2019, 11, 396. [Google Scholar] [CrossRef] [Green Version]
- Li, D.; Kim, W.; Shin, D.; Jung, Y.; Bae, H.; Kim, S.K. Preventive effects of bee venom derived phospholipase a2 on oxaliplatin-induced neuropathic pain in mice. Toxins 2016, 8, 27. [Google Scholar] [CrossRef] [Green Version]
- Zain, M.; Bonin, R.P. Alterations in evoked and spontaneous activity of dorsal horn wide dynamic range neurons in pathological pain: A systematic review and analysis. Pain 2019, 160, 2199–2209. [Google Scholar] [CrossRef]
- Jamieson, S.; Liu, J.; Connor, B.; McKeage, M. Oxaliplatin causes selective atrophy of a subpopulation of dorsal root ganglion neurons without inducing cell loss. Cancer Chemother. Pharmacol. 2005, 56, 391–399. [Google Scholar] [CrossRef] [PubMed]
- Hains, B.C.; Saab, C.Y.; Waxman, S.G. Changes in electrophysiological properties and sodium channel nav1. 3 expression in thalamic neurons after spinal cord injury. Brain 2005, 128, 2359–2371. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Krishnan, A.; Lin, C.; Goldstein, D.; Friedlander, M.; Kiernan, M. Mechanisms underlying chemotherapy-induced neurotoxicity and the potential for neuroprotective strategies. Curr. Med. Chem. 2008, 15, 3081–3094. [Google Scholar] [CrossRef] [PubMed]
- Kagiava, A.; Tsingotjidou, A.; Emmanouilides, C.; Theophilidis, G. The effects of oxaliplatin, an anticancer drug, on potassium channels of the peripheral myelinated nerve fibres of the adult rat. Neurotoxicology 2008, 29, 1100–1106. [Google Scholar] [CrossRef] [PubMed]
- Cummins, T.R.; Sheets, P.L.; Waxman, S.G. The roles of sodium channels in nociception: Implications for mechanisms of pain. Pain 2007, 131, 243–257. [Google Scholar] [CrossRef] [Green Version]
- Rogers, M.; Tang, L.; Madge, D.J.; Stevens, E.B. The role of sodium channels in neuropathic pain. In Seminars in Cell & Developmental Biology; Elsevier: Amsterdam, The Netherlands, 2006; pp. 571–581. [Google Scholar]
- Eckel, F.; Schmelz, R.; Adelsberger, H.; Erdmann, J.; Quasthoff, S.; Lersch, C. Prevention of oxaliplatin-induced neuropathy by carbamazepine. A pilot study. Deutsche Medizinische Wochenschrift 1946 2002, 127, 78–82. [Google Scholar] [CrossRef]
- Gamelin, E.; Gamelin, L.; Bossi, L.; Quasthoff, S. Clinical aspects and molecular basis of oxaliplatin neurotoxicity: Current management and development of preventive measures. Semin. Oncol. 2002, 29 (Suppl. 15), 21–33. [Google Scholar] [CrossRef]
- Webster, R.G.; Brain, K.L.; Wilson, R.H.; Grem, J.L.; Vincent, A. Oxaliplatin induces hyperexcitability at motor and autonomic neuromuscular junctions through effects on voltage-gated sodium channels. Br. J. Pharmacol. 2005, 146, 1027–1039. [Google Scholar] [CrossRef]
- Li, L.; Shao, J.; Wang, J.; Liu, Y.; Zhang, Y.; Zhang, M.; Zhang, J.; Ren, X.; Su, S.; Li, Y. Mir-30b-5p attenuates oxaliplatin-induced peripheral neuropathic pain through the voltage-gated sodium channel nav1. 6 in rats. Neuropharmacology 2019, 153, 111–120. [Google Scholar] [CrossRef]
- Adelsberger, H.; Quasthoff, S.; Grosskreutz, J.; Lepier, A.; Eckel, F.; Lersch, C. The chemotherapeutic oxaliplatin alters voltage-gated na+ channel kinetics on rat sensory neurons. Eur. J. Pharmacol. 2000, 406, 25–32. [Google Scholar] [CrossRef]
- Sittl, R.; Lampert, A.; Huth, T.; Schuy, E.T.; Link, A.S.; Fleckenstein, J.; Alzheimer, C.; Grafe, P.; Carr, R.W. Anticancer drug oxaliplatin induces acute cooling-aggravated neuropathy via sodium channel subtype nav1. 6-resurgent and persistent current. Proc. Natl. Acad. Sci. USA 2012, 109, 6704–6709. [Google Scholar] [CrossRef] [Green Version]
- Grolleau, F.; Gamelin, L.; Boisdron-Celle, M.; Lapied, B.; Pelhate, M.; Gamelin, E. A possible explanation for a neurotoxic effect of the anticancer agent oxaliplatin on neuronal voltage-gated sodium channels. J. Neurophysiol. 2001, 85, 2293–2297. [Google Scholar] [CrossRef] [PubMed]
- Benoit, E.; Brienza, S.; Dubois, J. Oxaliplatin, an anticancer agent that affects both Na+ and K+ channels in frog peripheral myelinated axons. Gen. Physiol. Biophys. 2006, 25, 263. [Google Scholar] [PubMed]
- Alberti, P.; Canta, A.; Chiorazzi, A.; Fumagalli, G.; Meregalli, C.; Monza, L.; Pozzi, E.; Ballarini, E.; Rodriguez-Menendez, V.; Oggioni, N. Topiramate prevents oxaliplatin-related axonal hyperexcitability and oxaliplatin induced peripheral neurotoxicity. Neuropharmacology 2020, 164, 107905. [Google Scholar] [CrossRef] [PubMed]
- Mauldin, S.K.; Gibbons, G.; Wyrick, S.D.; Chaney, S.G. Intracellular biotransformation of platinum compounds with the 1, 2-diaminocyclohexane carrier ligand in the l1210 cell line. Cancer Res. 1988, 48, 5136–5144. [Google Scholar] [PubMed]
- Rush, A.M.; Cummins, T.R.; Waxman, S.G. Multiple sodium channels and their roles in electrogenesis within dorsal root ganglion neurons. J. Physiol. 2007, 579, 1–14. [Google Scholar] [CrossRef]
- Caldwell, J.H.; Schaller, K.L.; Lasher, R.S.; Peles, E.; Levinson, S.R. Sodium channel nav1. 6 is localized at nodes of ranvier, dendrites, and synapses. Proc. Natl. Acad. Sci. USA 2000, 97, 5616–5620. [Google Scholar] [CrossRef] [Green Version]
- Deuis, J.R.; Zimmermann, K.; Romanovsky, A.A.; Possani, L.D.; Cabot, P.J.; Lewis, R.J.; Vetter, I. An animal model of oxaliplatin-induced cold allodynia reveals a crucial role for nav1. 6 in peripheral pain pathways. Pain® 2013, 154, 1749–1757. [Google Scholar] [CrossRef] [Green Version]
- Wilson, M.J.; Yoshikami, D.; Azam, L.; Gajewiak, J.; Olivera, B.M.; Bulaj, G.; Zhang, M.-M. Μ-conotoxins that differentially block sodium channels nav1. 1 through 1.8 identify those responsible for action potentials in sciatic nerve. Proc. Natl. Acad. Sci. USA 2011, 108, 10302–10307. [Google Scholar] [CrossRef] [Green Version]
- Zedan, A.H.; Hansen, T.F.; Svenningsen, Å.F.; Vilholm, O.J. Oxaliplatin-induced neuropathy in colorectal cancer: Many questions with few answers. Clin. Colorectal Cancer 2014, 13, 73–80. [Google Scholar] [CrossRef] [PubMed]
- Heide, R.; Bostock, H.; Ventzel, L.; Grafe, P.; Bergmans, J.; Fuglsang-Frederiksen, A.; Finnerup, N.B.; Tankisi, H. Axonal excitability changes and acute symptoms of oxaliplatin treatment: In vivo evidence for slowed sodium channel inactivation. Clin. Neurophysiol. 2018, 129, 694–706. [Google Scholar] [CrossRef]
- Horowitz, S.H. The diagnostic workup of patients with neuropathic pain. Anesthesiol. Clin. 2007, 25, 699–708. [Google Scholar] [CrossRef] [PubMed]
- Forstenpointner, J.; Oberlojer, V.C.; Naleschinski, D.; Höper, J.; Helfert, S.M.; Binder, A.; Gierthmühlen, J.; Baron, R. A-fibers mediate cold hyperalgesia in patients with oxaliplatin-induced neuropathy. Pain Pract. 2018, 18, 758–767. [Google Scholar] [CrossRef] [PubMed]
- Krishnan, A.V.; Goldstein, D.; Friedlander, M.; Kiernan, M.C. Oxaliplatin and axonal na+ channel function in vivo. Clin. Cancer Res. 2006, 12, 4481–4484. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hille, B. Charges and potentials at the nerve surface: Divalent ions and ph. J. Gen. Physiol. 1968, 51, 221–236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmitt, L.-I.; Leo, M.; Kleinschnitz, C.; Hagenacker, T. Oxaliplatin modulates the characteristics of voltage-gated calcium channels and action potentials in small dorsal root ganglion neurons of rats. Mol. Neurobiol. 2018, 55, 8842–8855. [Google Scholar] [CrossRef]
- Yamamoto, K.; Tsuboi, M.; Kambe, T.; Abe, K.; Nakatani, Y.; Kawakami, K.; Utsunomiya, I.; Taguchi, K. Oxaliplatin administration increases expression of the voltage-dependent calcium channel α2δ-1 subunit in the rat spinal cord. J. Pharmacol. Sci. 2016, 130, 117–122. [Google Scholar] [CrossRef] [Green Version]
- Gamelin, L.; Boisdron-Celle, M.; Delva, R.; Guérin-Meyer, V.; Ifrah, N.; Morel, A.; Gamelin, E. Prevention of oxaliplatin-related neurotoxicity by calcium and magnesium infusions: A retrospective study of 161 patients receiving oxaliplatin combined with 5-fluorouracil and leucovorin for advanced colorectal cancer. Clin. Cancer Res. 2004, 10, 4055–4061. [Google Scholar] [CrossRef] [Green Version]
- Grothey, A.; Nikcevich, D.A.; Sloan, J.A.; Kugler, J.W.; Silberstein, P.T.; Dentchev, T.; Wender, D.B.; Novotny, P.J.; Chitaley, U.; Alberts, S.R. Intravenous calcium and magnesium for oxaliplatin-induced sensory neurotoxicity in adjuvant colon cancer: Ncctg n04c7. J. Clin. Oncol. 2011, 29, 421. [Google Scholar] [CrossRef]
- Bennett, D.L.; Clark, A.J.; Huang, J.; Waxman, S.G.; Dib-Hajj, S.D. The role of voltage-gated sodium channels in pain signaling. Physiol. Rev. 2019, 99, 1079–1151. [Google Scholar] [CrossRef]
- Lersch, C.; Schmelz, R.; Eckel, F.; Erdmann, J.; Mayr, M.; Schulte-Frohlinde, E.; Quasthoff, S.; Grosskreutz, J.; Adelsberger, H. Prevention of oxaliplatin-induced peripheral sensory neuropathy by carbamazepine in patients with advanced colorectal cancer. Clin. Colorectal Cancer 2002, 2, 54–58. [Google Scholar] [CrossRef]
- Hoffman, K. Potential prevention and treatment of oxaliplatin associated peripheral neuropathy. J. Clin. Oncol. 2004, 22, 8093. [Google Scholar] [CrossRef]
- Hershman, D.L.; Lacchetti, C.; Dworkin, R.H.; Smith, E.M.L.; Bleeker, J.; Cavaletti, G.; Chauhan, C.; Gavin, P.; Lavino, A.; Lustberg, M.B.; et al. Prevention and management of chemotherapy-induced peripheral neuropathy in survivors of adult cancers: American society of clinical oncology clinical practice guideline. J. Clin. Oncol. 2014, 32, 1941–1967. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, E.M.L.; Pang, H.; Cirrincione, C.; Fleishman, S.; Paskett, E.D.; Ahles, T.; Bressler, L.R.; Fadul, C.E.; Knox, C.; Le-Lindqwister, N. Effect of duloxetine on pain, function, and quality of life among patients with chemotherapy-induced painful peripheral neuropathy: A randomized clinical trial. Jama 2013, 309, 1359–1367. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.-Y.; Calderon, J.; Wang, G.K. Block of neuronal na+ channels by antidepressant duloxetine in a state-dependent manner. Anesthesiol. J. Am. Soc. Anesthesiol. 2010, 113, 655–665. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rolland, J.-F.; Madge, D.; Ford, J.; Rogers, M. Biophysical characterization of duloxetine activity on voltage-gated sodium channels involved in pain transmission. Biophys. J. 2009, 96, 252a. [Google Scholar] [CrossRef] [Green Version]
Published Year | Author | Models | Investigated Nerve | Oxaliplatin Doses | Discoveries |
---|---|---|---|---|---|
2000 | Helmuth Adelsberger et al. [31] | Rat |
| 250 μM |
|
2001 | Francoise Grolleau et al. [33] | Cockroach (Periplaneta americana) | DUM neurons | 100 And 500 μM |
|
2005 | Richard G. Webster et al. [29] | Mouse (C57/BL6 and Balb/c) |
| 500 μM |
|
2006 | Evelyne Benoit et al. [34] | Frog (Rana esculenta) | Sciatic nerve (Nodes of Ranvier of single sensory or motor myelinated axon) | 1, 10 And 100 μM |
|
2012 | Ruth Sittl et al. [32] | Human (Five male patients 57 ± 9 years of age) and Scn8amed Mice |
| 10 And 100 μM |
|
2013 | Jennifer R. Deuis et al. [39] | Mouse (C57BL/6J) Nav1.3–/– Nav1.8–/– And Nav1.9–/– | Behavioral measurement on the left hind paw | 2.5 mM; 40 μg/paw |
|
2019 | Paola Alberti et al. [35] | Rat (Wistar) | Caudal Nerve | 5 mg/kg (i.v.) |
|
2019 | Lei Li et al. [30] | Rat (Sprague-Dawley) | DRG (L4-6) | 2.4, 3.2, 4.0 mg/kg (i.p.) And 0.1 μM |
|
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, W. Effect of Oxaliplatin on Voltage-Gated Sodium Channels in Peripheral Neuropathic Pain. Processes 2020, 8, 680. https://doi.org/10.3390/pr8060680
Kim W. Effect of Oxaliplatin on Voltage-Gated Sodium Channels in Peripheral Neuropathic Pain. Processes. 2020; 8(6):680. https://doi.org/10.3390/pr8060680
Chicago/Turabian StyleKim, Woojin. 2020. "Effect of Oxaliplatin on Voltage-Gated Sodium Channels in Peripheral Neuropathic Pain" Processes 8, no. 6: 680. https://doi.org/10.3390/pr8060680
APA StyleKim, W. (2020). Effect of Oxaliplatin on Voltage-Gated Sodium Channels in Peripheral Neuropathic Pain. Processes, 8(6), 680. https://doi.org/10.3390/pr8060680