Sulfur, Phosphorus and Metals in the Stoichiometric Estimation of Biomethane and Biohydrogen Yields
Abstract
:1. Introduction
2. Results and Discussion
- Sulfur is fully converted into hydrogen sulfide .
- Phosphorus is completely converted into ortho-phosphoric acid .
- Nitrogen is fully transformed into ammonia .
- Any possible metal is converted into its hydroxide form.
2.1. Derivation of the Equation for Methanogenic Digestion
2.2. Derivation of Equation for Hydrogen Fermentation
2.3. Yield Estimation
- : molar volume of gas
- : molar mass of substrate, calculated on formula
12.011 | 1.008 | 15.999 |
14.007 | 32.060 | 30.974 |
- The microbial decomposers have representatives of all metabolic pathways with the needed enzymatic systems.
- Reactions do not include ‘substrate losses’ due to the growth of cells and their consumption of material to increase biomass production (no biomass formation from the substrate).
- No toxicity effect takes place (i.e. ammonia toxicity for the methanogenic consortia).
- The exact species of a reaction product (molecular, ionized, dissociated) is not considered.
- No interaction occurs between reaction products; for example, the binding of ammonia with hydrogen sulfide or ortho-phosphoric acid.
2.4. Correction for the Species of Reaction Product
3. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Rajesh Banu, J.; Kavitha, S.; Yukesh Kannah, R.; Bhosale, R.R.; Kumar, G. Industrial wastewater to biohydrogen: Possibilities towards successful biorefinery route. Bioresour. Technol. 2020, 298, 122378. [Google Scholar] [CrossRef]
- Preethi; Usman, T.M.M.; Rajesh Banu, J.; Gunasekaran, M.; Kumar, G. Biohydrogen production from industrial wastewater: An overview. Bioresour. Technol. Rep. 2019, 7, 100287. [Google Scholar]
- Ardolino, F.; Parrillo, F.; Arena, U. Biowaste-to-biomethane or biowaste-to-energy? An LCA study on anaerobic digestion of organic waste. J. Clean. Prod. 2018, 174, 462–476. [Google Scholar] [CrossRef]
- Mona, S.; Kumar, S.S.; Kumar, V.; Parveen, K.; Saini, N.; Deepak, B.; Pugazhendhi, A. Green technology for sustainable biohydrogen production (waste to energy): A review. Sci. Total Environ. 2020, 728, 138481. [Google Scholar] [CrossRef] [PubMed]
- Kamaraj, M.; Ramachandran, K.K.; Aravind, J. Biohydrogen production from waste materials: Benefits and challenges. Int. J. Environ. Sci. Technol. 2020, 17, 559–576. [Google Scholar] [CrossRef]
- Li, H.; Mehmood, D.; Thorin, E.; Yu, Z. Biomethane Production Via Anaerobic Digestion and Biomass Gasification. Energy Procedia 2017, 105, 1172–1177. [Google Scholar] [CrossRef]
- Korberg, A.D.; Skov, I.R.; Mathiesen, B.V. The role of biogas and biogas-derived fuels in a 100% renewable energy system in Denmark. Energy 2020, 199, 117426. [Google Scholar] [CrossRef]
- Khan, M.A.; Ngo, H.H.; Guo, W.; Liu, Y.; Zhang, X.; Guo, J.; Chang, S.W.; Nguyen, D.D.; Wang, J. Biohydrogen production from anaerobic digestion and its potential as renewable energy. Renew. Energy 2018, 129, 754–768. [Google Scholar] [CrossRef]
- Sialve, B.; Bernet, N.; Bernard, O. Anaerobic digestion of microalgae as a necessary step to make microalgal biodiesel sustainable. Biotechnol. Adv. 2009, 27, 409–416. [Google Scholar] [CrossRef] [Green Version]
- Ward, A.J.; Lewis, D.M.; Green, F.B. Anaerobic digestion of algae biomass: A review. Algal Res. 2014, 5, 204–214. [Google Scholar] [CrossRef]
- Speece, R.E. Anaerobic biotechnology for industrial wastewater treatment. Environ. Sci. Technol. 1983, 17, 416A–427A. [Google Scholar] [CrossRef] [PubMed]
- Sommers, L.E.; Tabatabai, M.A.; Nelson, D.W. Forms of Sulfur in Sewage Sludge. J. Environ. Qual. 1977, 6, 42–46. [Google Scholar] [CrossRef]
- Dansette, P.M.; Sassi, A.; Deschamps, C.; Mansuy, D. Sulfur containing compounds as antioxidants. In Antioxidants in Therapy and Preventive Medicine; Springer: Boston, MA, USA, 1990; pp. 209–215. [Google Scholar]
- Atmaca, G. Antioxidant Effects of Sulfur-Containing Amino Acids. Yonsei Med. J. 2004, 45, 776. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Higgins, M.J.; Chen, Y.-C.; Yarosz, D.P.; Murthy, S.N.; Maas, N.A.; Glindemann, D.; Novak, J.T. Cycling of Volatile Organic Sulfur Compounds in Anaerobically Digested Biosolids and its Implications for Odors. Water Environ. Res. 2006, 78, 243–252. [Google Scholar] [CrossRef]
- Angelidaki, I.; Sanders, W. Assessment of the anaerobic biodegradability of macropollutants. Rev. Environ. Sci. Bio/Technol. 2004, 3, 117–129. [Google Scholar] [CrossRef]
- McDonald, H.B.; Parkin, G.F. Effect of Sulfide Inhibition and Organic Shock Loading on Anaerobic Biofilm Reactors Treating a Low-Temperature, High-Sulfate Wastewater. Water Environ. Res. 2009, 81, 265–288. [Google Scholar] [CrossRef] [Green Version]
- Krüger, M.; Meyerdierks, A.; Glöckner, F.O.; Amann, R.; Widdel, F.; Kube, M.; Reinhardt, R.; Kahnt, J.; Böcher, R.; Thauer, R.K.; et al. A conspicuous nickel protein in microbial mats that oxidize methane anaerobically. Nature 2003, 426, 878–881. [Google Scholar] [CrossRef]
- Blank, L.M. The cell and P: From cellular function to biotechnological application. Curr. Opin. Biotechnol. 2012, 23, 846–851. [Google Scholar] [CrossRef]
- Singh, D.; Nedbal, L.; Ebenhöh, O. Modelling phosphorus uptake in microalgae. Biochem. Soc. Trans. 2018, 46, 483–490. [Google Scholar] [CrossRef]
- Zheng, W.; Li, X.; Wang, D.; Yang, Q.; Luo, K.; Jing, Y.; Zeng, G. Remove and recover phosphorus during anaerobic digestion of excess sludge by adding waste iron scrap. J. Serbian Chem. Soc. 2013, 78, 303–312. [Google Scholar] [CrossRef]
- Campos, J.L.; Crutchik, D.; Franchi, Ó.; Pavissich, J.P.; Belmonte, M.; Pedrouso, A.; Mosquera-Corral, A.; Val del Río, Á. Nitrogen and Phosphorus Recovery From Anaerobically Pretreated Agro-Food Wastes: A Review. Front. Sustain. Food Syst. 2019, 2, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Böhnke, B. Anaerobtechnik: Handbuch der Anaeroben Behandlung von Abwasser und Schlamm; Böhnke, B., Bischofsberger, W., Seyfried, C.F., Eds.; Springer: Berlin/Heidelberg, Germany, 1993; ISBN 978-3-662-05692-9. [Google Scholar]
- Deublein, D.; Steinhauser, A. Biogas from Waste and Renewable Resources; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2008; ISBN 9783527621705. [Google Scholar]
- Symons, G.E.; Buswell, A.M. The Methane Fermentation of Carbohydrates 1,2. J. Am. Chem. Soc. 1933, 55, 2028–2036. [Google Scholar] [CrossRef]
- Criddle, C.S.; Alvarez, L.M.; McCarty, P.L. Microbial Processes in Porous Media. In Transport Processes in Porous Media; Springer: Dordrecht, The Netherlands, 1991; pp. 639–691. [Google Scholar]
- Grcar, J.F. How ordinary elimination became Gaussian elimination. Hist. Math. 2011, 38, 163–218. [Google Scholar] [CrossRef] [Green Version]
- McNaught, A.D.; Wilkinston, A. IUPAC Compendium of Chemical Terminology, 2nd ed. (the “Gold Book”); Blackwell Scientific Publications: Oxford, UK, 1997; ISBN 0-9678550-9-8. [Google Scholar]
- Fermentation of Organic Materials—Characterisation of the Substrate, Sampling, Collection of Material Data, Fermentation Tests; VDI 4630:2006-04; Verein Deutcher Ingenieure: Düsseldorf, Germany, 2006; p. 92. Available online: https://www.beuth.de/en/technical-rule/vdi-4630/244849582 (accessed on 25 April 2020).
- Linstrom, P.J. NIST Chemistry WebBook, NIST Standard Reference Database 69. Available online: http://webbook.nist.gov/chemistry/ (accessed on 25 April 2020).
- Du, W.; Parker, W. Modeling volatile organic sulfur compounds in mesophilic and thermophilic anaerobic digestion of methionine. Water Res. 2012, 46, 539–546. [Google Scholar] [CrossRef]
- Li, X.; Chen, S.; Dong, B.; Dai, X. New insight into the effect of thermal hydrolysis on high solid sludge anaerobic digestion: Conversion pathway of volatile sulphur compounds. Chemosphere 2020, 244, 125466. [Google Scholar] [CrossRef]
- National Center for Biotechnology Information. PubChem Database Casein, CID=73995022. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/73995022 (accessed on 21 March 2020).
- Salama, E.-S.; Kurade, M.B.; Abou-Shanab, R.A.I.; El-Dalatony, M.M.; Yang, I.-S.; Min, B.; Jeon, B.-H. Recent progress in microalgal biomass production coupled with wastewater treatment for biofuel generation. Renew. Sustain. Energy Rev. 2017, 79, 1189–1211. [Google Scholar] [CrossRef]
- Hayes, J.M. Fractionation of Carbon and Hydrogen Isotopes in Biosynthetic Processes. Rev. Mineral. Geochem. 2001, 43, 225–277. [Google Scholar] [CrossRef]
- Popovic, M. Thermodynamic properties of microorganisms: Determination and analysis of enthalpy, entropy, and Gibbs free energy of biomass, cells and colonies of 32 microorganism species. Heliyon 2019, 5, e01950. [Google Scholar] [CrossRef] [Green Version]
- National Center for Biotechnology Information. PubChem Database Cystine, CID=595. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Cystine (accessed on 25 April 2020).
- Gregor, L.; Monteiro, P.M.S. Seasonal cycle of N:P:TA stoichiometry as a modulator of CO2 buffering in eastern boundary upwelling systems. Geophys. Res. Lett. 2013, 40, 5429–5434. [Google Scholar] [CrossRef] [Green Version]
- Allen, H. Metal Contaminated Aquatic Sediments; Allen, H.E., Ed.; CRC Press: Boca Raton, FL, USA, 2018; ISBN 9780203747643. [Google Scholar]
- Haynes, W.M.; Lide, D.R.; Bruno, T.J. CRC Handbook of Chemistry and Physics, 97th ed.; Hanesy, W.M., Ed.; CRC Press: Boca Raton, FL, USA, 2016; ISBN 978-1-4987-5429-3. [Google Scholar]
- Saruhashi, K. On the Equilibrium Concentration Ratio of Carbonic Acid Substances Dissolved in Natural Water. Pap. Meteorol. Geophys. 1955, 6, 38–55. [Google Scholar] [CrossRef]
- Millero, F.J.; Roy, R.N. A Chemical Equilibrium Model for the Carbonate Systems in Natural Waters. Croat. Chem. Acta 1997, 70, 1–38. [Google Scholar]
- Roy, R.N.; Roy, L.N.; Vogel, K.M.; Porter-Moore, C.; Pearson, T.; Good, C.E.; Millero, F.J.; Campbell, D.M. The dissociation constants of carbonic acid in seawater at salinities 5 to 45 and temperatures 0 to 45 °C. Mar. Chem. 1993, 44, 249–267. [Google Scholar] [CrossRef]
- Yongsiri, C.; Vollertsen, J.; Hvitved-Jacobsen, T. Effect of Temperature on Air-Water Transfer of Hydrogen Sulfide. J. Environ. Eng. 2004, 130, 104–109. [Google Scholar] [CrossRef]
- Gujer, W.; Zehnder, A.J.B. Conversion processes in anaerobic digestion. Water Sci. Technol. 1983, 15, 127–167. [Google Scholar] [CrossRef]
- Appels, L.; Baeyens, J.; Degreve, J.; Dewil, R. Principles and potential of the anaerobic digestion of waste-activated sludge. Prog. Energy Combust. Sci. 2008, 34, 755–781. [Google Scholar] [CrossRef]
- Suryawanshi, P.C.; Chaudhari, A.B.; Kothari, R.M. Thermophilic anaerobic digestion: The best option for waste treatment. Crit. Rev. Biotechnol. 2010, 30, 31–40. [Google Scholar] [CrossRef] [PubMed]
- Fetzer, S.; Conrad, R. Effect of redox potential on methanogenesis by Methanosarcina barkeri. Arch. Microbiol. 1993, 160, 108–113. [Google Scholar] [CrossRef]
- Hirano, S.; Matsumoto, N.; Morita, M.; Sasaki, K.; Ohmura, N. Electrochemical control of redox potential affects methanogenesis of the hydrogenotrophic methanogen Methanothermobacter thermautotrophicus. Lett. Appl. Microbiol. 2013, 56, 315–321. [Google Scholar] [CrossRef]
- Valero, D.; Rico, C.; Canto-Canché, B.; Domínguez-Maldonado, J.A.; Tapia-Tussell, R.; Cortes-Velazquez, A.; Alzate-Gaviria, L. Enhancing biochemical methane potential and enrichment of specific electroactive communities from nixtamalization wastewater using granular activated carbon as a conductive material. Energies 2018, 11, 2101. [Google Scholar] [CrossRef] [Green Version]
- Novaes, R.F. V Microbiology of anaerobic digestion. Water Sci. Technol. 1986, 18, 1–14. [Google Scholar] [CrossRef]
- Ranalli, P. Improvement of Crop Plants for Industrial End Uses; Ranalli, P., Ed.; Springer: Dordrecht, The Netherlands, 2007; ISBN 978-1-4020-5485-3. [Google Scholar]
- Fang, H.H.P.; Zhang, T. Anaerobic Biotechnology: Environmental Protection and Resource Recovery; Imperial College Press: London, UK, 2015; ISBN 978-1-78326-790-3. [Google Scholar]
- Speece, R.E. Anaerobic Biotechnology for Industrial Wastewaters; Archae Press: Nashville, TN, USA, 1996; ISBN 0965022609. [Google Scholar]
- Chen, S.; Zhang, J.; Wang, X. Effects of alkalinity sources on the stability of anaerobic digestion from food waste. Waste Manag. Res. 2015, 33, 1033–1040. [Google Scholar] [CrossRef] [PubMed]
Reagents Side | Element | Products Side |
---|---|---|
Reagents Side | Element | Products Side |
---|---|---|
Substrate. | Molecular Formula | Biomethane Yield, | Biohydrogen Yield, | Reference for Formula |
---|---|---|---|---|
Casein | 426.798 | 1707.193 | [33] | |
Microalgae biomass | 338.755 | 1355.021 | [34,35] | |
Chlorella biomass | 548.226 | 2192.905 | [36] | |
Methionine | 418.578 | 1674.310 | [31,32] | |
Cysteine | 234.319 | 937.276 | [31,32] | |
Cystine | 212.656 | 850.626 | [37] | |
Marine phytoplankton | 563.806 | 2255.223 | [35,38] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pererva, Y.; Miler, C.D.; Sims, R.C. Sulfur, Phosphorus and Metals in the Stoichiometric Estimation of Biomethane and Biohydrogen Yields. Processes 2020, 8, 714. https://doi.org/10.3390/pr8060714
Pererva Y, Miler CD, Sims RC. Sulfur, Phosphorus and Metals in the Stoichiometric Estimation of Biomethane and Biohydrogen Yields. Processes. 2020; 8(6):714. https://doi.org/10.3390/pr8060714
Chicago/Turabian StylePererva, Yehor, Charles D. Miler, and Ronald C. Sims. 2020. "Sulfur, Phosphorus and Metals in the Stoichiometric Estimation of Biomethane and Biohydrogen Yields" Processes 8, no. 6: 714. https://doi.org/10.3390/pr8060714
APA StylePererva, Y., Miler, C. D., & Sims, R. C. (2020). Sulfur, Phosphorus and Metals in the Stoichiometric Estimation of Biomethane and Biohydrogen Yields. Processes, 8(6), 714. https://doi.org/10.3390/pr8060714