Physical and Mathematical Modelling of Mass Transfer in Ladles due to Bottom Gas Stirring: A Review
Abstract
:1. Introduction
2. Mass Transfer during the Melting Rate of Additions (Solid–Liquid and Gas–Solid–Liquid Systems)
3. Mass Transfer due to Gas Absorption (Gas–Liquid System)
4. Slag/Metal Interfacial Mass Transfer due to Bottom Gas Injection (Gas–Liquid–Liquid Systems)
4.1. Physical Modeling
- i
- At high gas flow rates mixing time and mass transfer cannot be improved simultaneously. Mass transfer is improved with central gas injection because the slag layer has better mixing conditions, however this position is the worst case for mixing liquid steel. At low gas flow rates, the rate of mass transfer is independent of the gas injection layout.
- ii
- Mass transfer shows three slopes that increase as the gas flow rate (Q) also increases. The change in slope is due to slag emulsification and occurs at about 5.3 W/ton. The nozzle diameter and slag viscosity do not have any effect at low Q but at high Q a decrease in slag viscosity and an increase in the nozzle diameter increase the mtc. When the slag viscosity increases it also increases the critical gas flow rate for slag emulsification. The authors also reported that increasing the slag thickness, at any Q, the mtc increases.
4.2. Mathematical Modelling of Mass Transfer in the Ladle
- (1)
- The film theory developed by Lewis and Whitman [95]. It is the simplest and most commonly used theory. Most of the experimental determination of the mtc is based on this theory [61,71]. It assumes that mass transfer occurs on both sides of the interface, flow is in steady state, and the equilibrium conditions are instantaneously reached at the interface. On these assumptions the following relationships are derived:
- (2)
- The penetration theory was developed by Higbie [98] and assumes that liquid packets at the interface are periodically renewed by new fresh fluids coming from the bulk, each fluid packet is in contact with the interface for a given time. The boundary layer thickness is much larger than in the film theory. For the metal phase:Szekely [99] derived an alternate form of the mtc that gives a similar result to the penetration theory. He first derived an expression for heat transfer at the slag/metal interface due to bubble stirring under transient conditions and then applied the same treatment to mass transfer. The final result is expressed in terms of the diffusion coefficients, the equilibrium partition ratio, and the time interval between the arrival of two successive bubbles (te).The time interval, te, was computed from the number of bubbles produced per unit time (Nb), the cross-sectional area of the bath (AB), and the projected area of the bubble (Ab)The specific value of the time interval depends on the phenomenon investigated, for example Bafghi et al. [100] defined its value as a function of the frequency of CO formation due to the reduction of FeO during slag foaming and the final expression for the mtc was defined in terms of the mass of slag and FeO.
- (3)
- Surface renewal theories: there is a large number of models that propose how to estimate the contact time of surface renewal. Danckwerts [101] suggested that this time is not constant and follows a normal distribution, t is replaced by a parameter s that defines the rate of replacement. Dong et al. [102] found this parameter to be the ratio between the normal fluctuating velocity Uo, at a depth lo
5. Final Remarks
Funding
Acknowledgments
Conflicts of Interest
References
- Mazumdar, D.; Guthrie, R.I.L. The Physical and Mathematical Modelling of Gas Stirred Ladle Systems. ISIJ Int. 1995, 35, 1–20. [Google Scholar] [CrossRef]
- Mazumdar, D.; Evans, J.W. Macroscopic models for gas stirred ladles. ISIJ Int. 2004, 44, 447–461. [Google Scholar] [CrossRef] [Green Version]
- Sichen, D. Modeling related to secondary steel making. Steel Res. Int. 2012, 83, 825–841. [Google Scholar] [CrossRef]
- Liu, Y.; Ersson, M.; Liu, H.; Jönsson, P.G.; Gan, Y. A Review of Physical and Numerical Approaches for the Study of Gas Stirring in Ladle Metallurgy. Metall. Mater. Trans. B Process Metall. Mater. Process. Sci. 2019, 50, 555–577. [Google Scholar] [CrossRef] [Green Version]
- Ghotli, R.A.; Abdul Aziz, A.R.; Ibrahim, S. Liquid-liquid mass transfer studies in various stirred vessel designs. Rev. Chem. Eng. 2015, 31, 329–343. [Google Scholar] [CrossRef]
- Themelis, N.J. Transport and Chemical Rate Phenomena; Gordon and Breach: London, UK, 1995. [Google Scholar]
- Veeraburus, M.; Philbrook, W.O. Observations on liquid-liquid mass transfer with bubble stirring. In Physical Chemistry of Process Metallurgy; Pierre, G.S., Ed.; Interscience: New York, NY, USA, 1959; p. 559. [Google Scholar]
- Oeters, F.; Xie, H. Contribution to the theoretical description of metal-slag reaction kinetics. Steel Res. 1995, 66, 409–415. [Google Scholar] [CrossRef]
- Gabe, D.R. The rotating cylinder electrode. J. Appl. Electrochem. 1974, 4, 91–108. [Google Scholar] [CrossRef]
- Kosaka, M.; Minowa, S. Dissolution of Steel Cylinder into Liquid Fe-C Alloy. Tetsu to Hagane 1967, 53, 983–997. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.U.; Pehlke, R.D. Mass Transfer During Dissolution of a Solid Into Liquid in the Iron-Carbon System. Met. Trans 1974, 5, 2527–2532. [Google Scholar] [CrossRef]
- Shigeno, Y.; Tokuda, M.; Ohtani, M. The dissolution rate of graphite into Fe–C melt containing sulphur or phosphorus. Trans. Japan. Inst. Met. 1985, 26, 33–43. [Google Scholar] [CrossRef] [Green Version]
- Szekely, J.; Lehner, T.; Chang, C.W. Flow Phenomena Mixing and Mass Transfer in Argon-Stirred Ladles. Ironmak. Steelmak. 1979, 7, 285–293. [Google Scholar]
- Mazumdar, D.; Kajani, S.K.; Ghosh, A. Mass transfer between solid and liquid in vessels agitated by bubble plume. Steel Res. 1990, 61, 339–346. [Google Scholar] [CrossRef]
- Mazumdar, D.; Narayan, T.; Bansal, P. Mathematical modelling of mass transfer rates between solid and liquid in high-temperature gas-stirred melts. Appl. Math. Model. 1992, 16, 255–262. [Google Scholar] [CrossRef]
- Szekely, J.; Grevet, H.H.; El-Kaddah, N. Melting rates in turbulent recirculating flow systems. Int. J. Heat Mass Transf. 1984, 27, 1116–1121. [Google Scholar] [CrossRef]
- Singh, A.K.; Mazumdar, D. Mass transfer between solid and liquid in a gas-stirred vessel. Metall. Mater. Trans. B Process Metall. Mater. Process. Sci. 1997, 28, 95–102. [Google Scholar] [CrossRef]
- Taniguchi, S.; Ohmi, M.; Ishiura, S.; Yamauchi, S. Cold model study on the effect of gas injection upon the melting rate of a solid sphere in a liquid bath. Trans. Iron Steel Inst. Japan 1983, 23, 565–570. [Google Scholar] [CrossRef]
- Koria, S.C. Model investigations on liquid velocity induced by submerged gas injection in steel bath. Steel Res. 1988, 59, 484–491. [Google Scholar] [CrossRef]
- Matsushima, M.; Yadoomaru, S.; Mori, K.; Kawai, Y. A Fundamental Study on the Dissolution Rate of Solid Lime into Liquid Slag. Trans. Iron Steel Inst. Japan 1977, 17, 442–449. [Google Scholar] [CrossRef] [Green Version]
- Taira, S.; Nakashima, K.; Mori, K. Kinetic Behavior of Dissolution of Sintered Alumina Into Cao-Si02&Al203 Slags. ISIJ Int. 1993, 33, 116–123. [Google Scholar]
- Kitamura, S.; Shibata, H.; Maruoka, N. Kinetic Model of Hot Metal Dephosphorization by Liquid and Solid Coexisting Slags. Steel Res. Int. 2008, 79, 586–590. [Google Scholar] [CrossRef]
- Wright, J.K. Steel dissolution in quiescent and gas stirred Fe/C melts. Metall. Trans. B 1989, 20, 363–374. [Google Scholar] [CrossRef]
- Maruoka, N.; Lazuardi, F.; Maeyama, T.; Kim, S.-J.; Conejo, A.N.; Shibata, H.; Kitamura, S.-Y. Evaluation of bubble eye area to improve gas/liquid reaction rates at bath surfaces. ISIJ Int. 2011, 51, 236–241. [Google Scholar] [CrossRef] [Green Version]
- Kato, Y.; Fujii, T.S.; Habu, Y. Gas-liquid mass transfer of bottom and top blowing in comverters by water modeling. Testu to Hagane 1983, 69, S1011. [Google Scholar]
- Inada, S.; Watanabe, T. The Model Experiment on the Reaction between the Liquid and the Swarms of Gas Bubbles by NaOH-CO2 System. Tetsu to Hagane 1977, 63, 37–44. [Google Scholar] [CrossRef] [Green Version]
- Sakaguchi, K.; Ito, K. Measurement of the Volumetric Mass Transfer Coefficient of Gas-stirred Vessel under Reduced Pressure. ISIJ Int. 1995, 35, 1348–1353. [Google Scholar] [CrossRef] [Green Version]
- Rui, Q.; Jiang, F.; Ma, Z.; You, Z.; Cheng, G.; Zhang, J. Effect of elliptical snorkel on the decarburization rate in single snorkel refining furnace. Steel Res. Int. 2013, 84, 192–197. [Google Scholar] [CrossRef]
- Subramanian, N.; Richardson, F.D. Mass transfer across interfaces agitated by large bubbles. JISI 1968, June, 576–583. [Google Scholar]
- Richardson, F.D.; Robertson, D.G.C.; Staples, B.B. Mass Transfer Across Metal/Slag Interfaces Stirred by Bubbles. In Proceedings of the The Darken Conference on Physical Chemistry in Metallurgy, Pittsburgh, PA, USA, 23–25 August 1976; pp. 25–48. [Google Scholar]
- Li, X.; Yin, Z. Mass transfer to liquid-liquid interface. Acta Metall. Sin. 1996, 9, 151–156. [Google Scholar]
- Fruehan, R.J.; Martonik, L.K. Physical Behavior and Liquid-Phase Mass Transfer of Submerged Gas Jets in Liquids. In Proceedings of the 3rd International Iron and Steel Congres, Chicago, IL, USA, 16–20 April 1978; pp. 229–238. [Google Scholar]
- Riboud, O.V.; Olette, M. Mechanisms of some of the reactions involved in secondary refining. In Proceedings of the 7th International Conference on Vacuum Metallurgy (ICVM), Tokyo, Japan, 26–30 November 1982; pp. 879–889. [Google Scholar]
- Gaye, H.; Gatellier, C.; Riboud, P.V. Physico-Chemical Aspects of the Ladle Desulphurization of Iron and Steel. Foundry Process. 1988, 333–356. [Google Scholar]
- Nakanishi, K.; Fujii, T.; Szekely, J. Possible relationship between energy dissipation and agitation in steel-processing operations. Ironmak. Steelmak. 1975, 2, 193–197. [Google Scholar]
- Ilegbusi, O.J. Role of gas plumes in agitation and mass transfer in metallurgical systems. Steel Res. 1994, 65, 534–540. [Google Scholar] [CrossRef]
- Asai, S.; Kawachi, M.; Muchi, I. Mass transfer rate in ladle refining processes. In SCANINJECT III: Proceedings of the Refining of Iron and Steel by Powder Injection, Lulea Sweden, 15–17 June 1983; MEFOS: Lulea, Sweden, 1983; pp. 12:1–12:29. [Google Scholar]
- Lehner, T.; Carlsson, G.; Hsiao, T.C. On Fluid Flow and Metallurgical Reaction in Gas Stirred Melts. In SCANINJECT II: Proceedings of the 2nd International Conference on Injection Metallurgy, Lulea, Sweden, 12–13 June 1980; MEFOS: Lulea, Sweden, 1980; Article 22. [Google Scholar]
- Engh, T.A. Principles of Metal Refining; Oxford University Press: Oxford, UK, 1992. [Google Scholar]
- Oeters, F. Metallurgy of Steelmaking; Verlag Stahleisen mbH: Dusseldorf, Germany, 1994. [Google Scholar]
- Conejo, A.N.; Lara, F.R.; Macias-Hernández, M.; Morales, R.D. Kinetic model of steel refining in a ladle furnace. Steel Res. Int. 2007, 78, 141–150. [Google Scholar] [CrossRef]
- Mazumdar, D.; Guthrie, R.I.L. Mixing models for gas stirred metallurgical reactors. Metall. Trans. B 1986, 17, 725–733. [Google Scholar] [CrossRef]
- Nakanishi, K.; Kato, Y.; Nozaki, T.; Emi, T. Cold Model Study on the Mixing Rates of Slag and Metal Bath in Q-Bop. Tetsu-To-Hagane 1980, 66, 1307–1316. [Google Scholar] [CrossRef] [Green Version]
- Ishida, J.; Yamaguchi, K.; Sugiura, S.; Yamano, K.; Hayakawa, S.; Demukai, N. Effects of Stirring by Argon Gas Injection on Metallurgical Reactions in Secondary Steelmaking. Denki-Seiko (Electric Furn. Steel) 1981, 52, 2–8. [Google Scholar]
- Berg, B.; Carlsson, G.; Bramming, M. Ladle Metallurgy-Influence of Different Stirring Methods. Scand. J. Met. 1985, 14, 299–305. [Google Scholar]
- Umezawa, K.; Nishugi, S.; Arima, R.; Matsunaga, H. Development of De-P and De-S treatment methods for powder injection with CaO flux. Testu to Hagane 1981, 67, S182. [Google Scholar]
- Umezawa, K.; Matsunaga, H.; Arima, R.; Tonomura, S.; Furugaki, I. The Influence of Operating Condition on Dephosphorization and Desulphurization Reactions of Hot Metal with Lime-based Flux. Tetsu to Hagane 1983, 69, 1810–1817. [Google Scholar] [CrossRef] [Green Version]
- Clinton, S.D.; Perona, J.J. Mass Transfer in a Bubble-Agitated Liquid-Liquid System. Ind. Eng. Chem. Fundamen. 1982, 269–271. [Google Scholar] [CrossRef]
- Minda, A.Y.S.; Asaho, R.; Komamura, K.; Kato, Y. Study of stainless steel smelting by top blowing. Testu to Hagane 1983, 69, S1007. [Google Scholar]
- Asai, S.; Muchi, I.; Kawachi, M. Fluid Flow and Mass Transfer in Gas Stirred Ladles. Foundry Process. 1988, 261–292. [Google Scholar]
- Patel, P.; Frohberg, M.G.; Papamantellos, D. Experimental studies of mass transfer between two immiscible liquids. Trans. AIME 1969, 245, 855–859. [Google Scholar]
- Sawada, I.; Ohashi, T.; Kajioka, H. Mass transfer rate between slag and metal in a ladle due to bottom gas injection. Tetsu to Hagane 1984, 70, S161. [Google Scholar]
- Ooga, Y.; Taniguchi, S.; Kikuchi, J. Fundamental research on the behavior of liquid-liquid substances under gas stirring. Tetsu to Hagane 1985, 71, S897. [Google Scholar]
- Endo, S.; Hasegawa, M. Cold model study on effect of stirring on slag metal reaction. Tetsu to Hagane 1985, 71, S899. [Google Scholar]
- Hirasawa, M.; Mori, K.; Sano, M.; Shimatani, Y.; Okazaki, Y. Effect of gas flow rate on slag/metal mass transfer. Tetsu to Hagane 1985, 71, S898. [Google Scholar]
- Hirasawa, M.; Mori, K.; Sano, M.; Hatanaka, A.; Shimatani, Y.; Okazaki, Y. Kinetic Studies on the Rate of Reaction Between Molten Slag and Metal With Gas-Injection Stirring. Tetsu to Hagane 1987, 73, 1343–1349. [Google Scholar] [CrossRef] [Green Version]
- Hirasawa, M.; Mori, K.; Sano, M.; Hatanaka, A.; Shimatani, Y.; Okazaki, Y. The Analysis System of Metal-side Stirring in a Slag-Metal Reaction with Gas-injection. Testu to Hagane 1987, 73, 1350–1357. [Google Scholar] [CrossRef] [Green Version]
- Hirasawa, M.; Mori, K.; Sano, M.; Hatanaka, A.; Shimatani, Y.; Okazaki, Y. Rate of Mass Transfer Between Molten Slag and Metal Under Gas Injection Stirring. Trans. ISIJ 1987, 27, 277–282. [Google Scholar] [CrossRef]
- Hirasawa, M.; Mori, K.; Sano, M.; Shimatani, Y.; Okazaki, Y. Correlation Equations for Metal-Side Mass Transfer in a Slag-Metal Reaction System With Gas Injection Stirring. Trans. ISIJ 1987, 27, 283–290. [Google Scholar] [CrossRef] [Green Version]
- Mukawa, S.; Mizukami, Y. Effect of Stirring Energy and Rate of Oxygen Supply on the Rate of Hot Metal Dephosphorization. ISIJ Int. 1995, 35, 1374–1380. [Google Scholar] [CrossRef]
- Kim, S.H.; Fruehan, R.J. Physical modeling of gas/liquid mass transfer in a gas stirred ladle. Metall. Trans. B 1987, 18, 673–680. [Google Scholar] [CrossRef]
- Matway, R.J.; Fruehan, R.J.; Henein, H. Physical Modeling of Gas Injection in a Steelmaking Vessel-Mixing Times and Liquid/Liquid Mass Transfer Rates. Iron Steelmak. 1989, 16, 51–58. [Google Scholar]
- Matway, R.J.; Fruehan, R.J.; Henein, H. Physical Modeling of Slag/Metal Reactions in Combined Blowing-Effect of Tuyere Location, Tuyere Size, and Gas Flowrate. Iron Steelmak. 1991, 18, 43–50. [Google Scholar]
- Singh, V.; Lenka, S.N.; Ajmani, S.K.; Bhanu, C.; Pathak, S. A novel bottom stirring scheme to improve BOF performance through mixing and mass transfer modelling. ISIJ Int. 2009, 49, 1889–1894. [Google Scholar] [CrossRef] [Green Version]
- Mietz, J.; Schneider, S.; Oeters, F. Model experiments on mass transfer in ladle metallurgy. Steel Res. 1991, 62, 1–9. [Google Scholar] [CrossRef]
- Mietz, J.; Schneider, S.; Oeters, F. Emulsification and mass transfer in ladle metallurgy. Steel Res. 1991, 62, 10–15. [Google Scholar] [CrossRef]
- Lou, W.; Zhu, M. Numerical simulation of slag-metal reactions and desulfurization efficiency in gas-stirred ladles with different thermodynamics and kinetics. ISIJ Int. 2015, 55, 961–969. [Google Scholar] [CrossRef] [Green Version]
- Koria, S.C.; George, A. Selection of bottom injection parameters in combined blown steelmaking. Ironmak. Steelmak. 1988, 15, 127–133. [Google Scholar]
- Koria, S.C.; Pal, S. Model study on mixing condition in combined blown steelmaking bath. Ironmak. Steelmak. 1990, 17, 325–332. [Google Scholar]
- Koria, S.C.; Shamsi, M. Simulation of mass transfer from metal to slag in gas stirred ladles. Ironmak. Steelmak. 1990, 17, 401–409. [Google Scholar]
- Deng, J.; Oeters, F. Mass transfer of sulfur from liquid iron into lime-saturated CaO-Al2O3-MgO-SiO2 slags. Steel Res. 1990, 61, 438–448. [Google Scholar] [CrossRef]
- Kitamura, S.Y.; Kitamura, T.; Shibata, K.; Mizukami, Y.; Mukawa, S.; Nakagawa, J. Effect of Stirring Energy, Temperature and Flux Composition on Hot Metal Dephosphorization Kinetics. ISIJ Int. 1991, 31, 1322–1328. [Google Scholar] [CrossRef]
- Koria, S.C. Studies of the bath mixing intensity in converter steelmaking processes. Can. Metall. Q. 1992, 31, 105–112. [Google Scholar] [CrossRef]
- Lachmund, H.; Xie, Y.; Harste, K. Thermodynamic and kinetic aspects of the desulphurisation reaction in secondary metallurgy. Steel Res. 2001, 72, 452–459. [Google Scholar] [CrossRef]
- Lachmund, H.; Xie, Y.; Buhles, T.; Pluschkell, W. Slag emulsification during liquid steel desulphurisation by gas injection into the ladle. Steel Res. 2003, 74, 77–85. [Google Scholar] [CrossRef]
- Sulasalmi, P.; Visuri, V.V.; Kärnä, A.; Fabritius, T. Simulation of the effect of steel flow velocity on slag droplet distribution and interfacial area between steel and slag. Steel Res. Int. 2015, 86, 212–222. [Google Scholar] [CrossRef]
- Senguttuvan, A.; Irons, G.A. Modeling of slag entrainment and interfacial mass transfer in gas stirred ladles. ISIJ Int. 2017, 57, 1962–1970. [Google Scholar] [CrossRef] [Green Version]
- Stapurewicz, T.; Themelis, N.J. Mixing and mass transfer phenomena in bottom-injected gas-liquid reactors. Can. Metall. Q. 1987, 26, 123–128. [Google Scholar] [CrossRef]
- Terrazas, M.S.C.; Conejo, A.N. Effect of nozzle diameter, nozzle radial position and a top slag layer on mixing time during bottom gas injection in metallurgical ladles. In Proceedings of the 6th International Congress on the Science and Technology of Steelmaking (ICS 2015), Beijing, China, 12–14 May 2015. [Google Scholar]
- Mori, K. Kinetics of Fundamental Reactions Pertinent To Steelmaking Process. Trans. Iron Steel Inst. Japan 1988, 28, 246–261. [Google Scholar] [CrossRef]
- Joo, S.; Guthrie, R.I.L. Modeling flows and mixing in steelmaking ladles designed for single- and dual-plug bubbling operations. Metall. Trans. B 1992, 23, 765–778. [Google Scholar] [CrossRef]
- Wei, T.; Oeters, F. Model test for emulsion in gas-stirred ladles. Steel Res. 1992, 63, 60–68. [Google Scholar] [CrossRef]
- Savolainen, J.; Fabritius, T.; Mattila, O. Effect of fluid physical properties on the emulsification. ISIJ Int. 2009, 49, 29–36. [Google Scholar] [CrossRef] [Green Version]
- Hatch, G.G.; Chipman, J. Sulphur Equilibria between Iron Blast Furnace Slags and Metal. JOM 1949, 1, 274–284. [Google Scholar] [CrossRef]
- Simeonov, S.; Ivanchev, I.; Hainadjiev, A. Sulphur equilibrium distribution between CaO-CaF2-Si02-Al203 slags and carbon-saturated iron. ISIJ Int. 1991, 31, 1396–1399. [Google Scholar] [CrossRef] [Green Version]
- Andersson, M.; Hallberg, M.; Jonsson, L.; Jönsson, P. Slag-metal reactions during ladle treatment with focus on desulphurisation. Ironmak. Steelmak. 2002, 29, 224–232. [Google Scholar] [CrossRef]
- Sardar, M.K.; Mukhopadhyay, S.; Majumder, S.; Mallick, S.; Singh, R.K. Effect of plug location on desulfurization characteristics of slag during ladle furnace operation. Can. Metall. Q. 2006, 45, 175–180. [Google Scholar] [CrossRef]
- Lehrer, L.H. Gas agitation of liquids. Ind. Eng. Chem. Process Des. Dev. 1968, 7, 226–239. [Google Scholar] [CrossRef]
- Jiang, F.; Song, Y.X.; Cheng, G.G. Effect of orifice configuration on the volumetric mass transfer coefficient during ladle purging. Rev. Metall. 2011, 108, 465–472. [Google Scholar] [CrossRef]
- Robison, J.W.; Pehlke, R.D. Kinetics of Chromium Oxide Reduction From a Basic Steelmaking Slag By Silicon Dissolved in Liquid Iron. Met. Trans 1974, 5, 1041–1051. [Google Scholar] [CrossRef]
- Kang, Y.B.; Kim, M.S.; Lee, S.W.; Cho, J.W.; Park, M.S.; Lee, H.G. A reaction between high Mn-High Al Steel and CaO-SiO2-Type molten mold flux: Part II. reaction mechanism, interface morphology, and Al 2O3 accumulation in molten mold flux. Metall. Mater. Trans. B Process Metall. Mater. Process. Sci. 2013, 44, 309–316. [Google Scholar] [CrossRef]
- Conejo, A.N.; Kitamura, S.; Maruoka, N.; Kim, S.-J. Effects of top layer, nozzle arrangement, and gas flow rate on mixing time in agitated ladles by bottom gas injection. Metall. Mater. Trans. B Process Metall. Mater. Process. Sci. 2013, 44, 914–923. [Google Scholar] [CrossRef]
- Zhang, Y.; Ren, Y.; Zhang, L. Kinetic study on compositional variations of inclusions, steel and slag during refining process. Metall. Res. Technol. 2018, 115, 415. [Google Scholar] [CrossRef]
- Van Ende, M.A.; Jung, I.H. A Kinetic Ladle Furnace Process Simulation Model: Effective Equilibrium Reaction Zone Model Using FactSage Macro Processing. Metall. Mater. Trans. B Process Metall. Mater. Process. Sci. 2017, 48, 28–36. [Google Scholar] [CrossRef]
- Lewis, W.K.; Whitman, W.G. Principles of Gas Absorption. Ind. Eng. Chem. 1924, 16, 1215–1220. [Google Scholar] [CrossRef]
- Kang, J.G.; Shin, J.H.; Chung, Y.; Park, J.H. Effect of Slag Chemistry on the Desulfurization Kinetics in Secondary Refining Processes. Metall. Mater. Trans. B Process Metall. Mater. Process. Sci. 2017, 48, 2123–2135. [Google Scholar] [CrossRef]
- Deo, B.; Boom, R. Fundamentals of Steelmaking Metallurgy, 1st ed.; Prentice-Hall: New York, NY, USA, 1993. [Google Scholar]
- Higbie, R. The rate of absorption of a pure gas into a still liquid. Trans. Am. Inst. Chem. Eng. 1935, 35, 36–60. [Google Scholar]
- Szekely, J. Mathematical model for heat or mass transfer at the bubble-stirred interface of two immiscible liquids. Int. J. Heat Mass Transf. 1963, 6, 417–422. [Google Scholar] [CrossRef]
- Bafghi, M.S.; Kurimoto, H.; Sano, M. Effect of Slag Foaming on the Reduction of Iron Oxide in Molten Slag by Graphite. ISIJ Int. 1992, 32, 1084–1090. [Google Scholar] [CrossRef] [Green Version]
- Danckwerts, P.V. Significance of liquid-film coefficients in gas absorption. Eng. Process Dev. 1951, 43, 1460–1467. [Google Scholar] [CrossRef]
- Dong, L.; Johansen, S.T.; Engh, T.A. Mass transfer at gas-liquid interfaces in stirred vessels. Can. Metall. Q. 1992, 31, 299–307. [Google Scholar] [CrossRef]
- Fortescue, G.E.; Pearson, J.R.A. Gas absorption into a turbulent liquid. Chem. Eng. Sci. 1967, 22, 1163–1176. [Google Scholar] [CrossRef]
- Kolmogorov, A.N. The local structure of turbulence in incompressible viscous fluid for very large Reynolds number. Dokl. Akad. Nauk SSSR 1941, 30, 538–540. [Google Scholar]
- Banerjee, S.; Rhodes, E.; Scott, D.S. Mass transfer to falling wavy liquid films in turbulent flow. Eng. Chem. Fundam. 1968, 7, 22–27. [Google Scholar] [CrossRef]
- Lamont, J.C.; Scott, D.S. An eddy cell model of mass transfer into the surface of a turbulent liquid. AIChE J. 1970, 16, 513–519. [Google Scholar] [CrossRef]
- Miyauchi, T.; Kataoka, H. Liquid film coefficient of mass transfer on free liquid surface. J. Chem. Eng. Japan 1970, 3, 257–258. [Google Scholar] [CrossRef] [Green Version]
- Ruckenstein, E. Physical Models for Mass or Heat Transfer Processes. Int Chem. Eng. 1967, 7, 490. [Google Scholar]
- Banerjee, S.; Lakehal, D.; Fulgosi, M. Surface divergence models for scalar exchange between turbulent streams. Int. J. Multiph. Flow 2004, 30, 963–977. [Google Scholar] [CrossRef]
- Theofanous, T.G.; Houze, R.N.; Brumfield, L.K. Turbulent mass transfer at free, gas-liquid interfaces, with applications to open-channel, bubble and jet flows. Int. J. Heat Mass Transf. 1976, 19, 613–624. [Google Scholar] [CrossRef]
- De Oliveira Campos, L.D. Mass Transfer Coefficients across Dynamic Liquid Steel/Slag Interface; L’Université de Bordeaux: Bordeaux, France, 2017. [Google Scholar]
- Duan, H.; Zhang, L.; Thomas, B.G.; Conejo, A.N. Fluid Flow, Dissolution, and Mixing Phenomena in Argon-Stirred Steel Ladles. Metall. Mater. Trans. B Process Metall. Mater. Process. Sci. 2018, 49, 2722–2743. [Google Scholar] [CrossRef]
- Cloete, S.W.P.; Eksteen, J.J.; Bradshaw, S.M. A mathematical modelling study of fluid flow and mixing in full-scale gas-stirred ladles. Prog. Comput. Fluid Dyna mics 2009, 9, 345–356. [Google Scholar] [CrossRef]
- Costa, L.T.; Tavares, R.P. Multiphase Mass Mass Transfer in Iron and Steel Refining Processes. In Mass Transfer—Advancement in Process Modelling; Solecki, M., Ed.; InTech Open: London, UK, 2015; pp. 149–187. ISBN 9789535121923. [Google Scholar]
- Seyed Ahmadi, M.; Argyropoulos, S.A.; Bussmann, M.; Doutre, D. Comparative Studies of Silicon Dissolution in Molten Aluminum Under Different Flow Conditions, Part I: Single-Phase Flow. Metall. Mater. Trans. B Process Metall. Mater. Process. Sci. 2015, 46, 1275–1289. [Google Scholar] [CrossRef]
- Seyed Ahmadi, M.; Argyropoulos, S.A.; Bussmann, M.; Doutre, D. Comparative Studies of Silicon Dissolution in Molten Aluminum Under Different Flow Conditions Part II: Two-Phase Flow. Metall. Mater. Trans. B 2015, 46, 1290–1301. [Google Scholar] [CrossRef]
- Seyed Ahmadi, M.; Bussmann, M.; Argyropoulos, S.A. Mass transfer correlations for dissolution of cylindrical additions in liquid metals with gas agitation. Int. J. Heat Mass Transf. 2016, 97, 767–778. [Google Scholar] [CrossRef]
- Churchill, S.W.; Bernstein, M. A correlating equation for forced convection from gases and liquids to a circular cylinder in crossflow. J. Heat Transfer 1977, 99, 300–306. [Google Scholar] [CrossRef]
- Taniguchi, S.; Kawaguchi, S.; Kikuchi, A. Fluid flow and gas-liquid mass transfer in gas-injected vessels. Appl. Math. Model. 2002, 26, 249–262. [Google Scholar] [CrossRef]
- Lou, W.; Zhu, M. Numerical Simulation of Desulfurization Behavior in Gas-Stirred Systems Based on Computation Fluid Dynamics–Simultaneous Reaction Model (CFD–SRM) Coupled Model. Metall. Mater. Trans. B Process Metall. Mater. Process. Sci. 2014, 45, 1706–1722. [Google Scholar] [CrossRef]
- Cao, Q.; Nastac, L.; Pitts-Baggett, A.; Yu, Q. Numerical Investigation of Desulfurization Kinetics in Gas-Stirred Ladles by a Quick Modeling Analysis Approach. Metall. Mater. Trans. B Process Metall. Mater. Process. Sci. 2018, 49, 988–1002. [Google Scholar] [CrossRef]
- Hoang, Q.N.; Ramírez-Argáez, M.A.; Conejo, A.N.; Blanpain, B.; Dutta, A. Numerical Modeling of Liquid–Liquid Mass Transfer and the Influence of Mixing in Gas-Stirred Ladles. JOM 2018, 70, 2109–2118. [Google Scholar] [CrossRef]
- Karouni, F.; Wynne, B.P.; Talamantes-Silva, J.; Phillips, S. Hydrogen Degassing in a Vacuum Arc Degasser Using a Three-Phase Eulerian Method and Discrete Population Balance Model. Steel Res. Int. 2018, 89, 1–11. [Google Scholar] [CrossRef]
- Xie, H.; Oeters, F. Kinetics of mass transfer of manganese and silicon between liquid iron and slags. Steel Res. 1995, 66, 501–508. [Google Scholar] [CrossRef]
- Jun, Z.; Shi, F.; Mukai, K.; Tsukamoto, H. Numerical analysis of nitrogen absorption rate accompanied with Marangoni convection in the molten iron under non-inductive stirring condition. ISIJ Int. 1999, 39, 409–418. [Google Scholar] [CrossRef] [Green Version]
- Ying, Q. Mass Transfer Coefficients in Metallurgical Reactors. J. Univ. Sci. Technol. 10 2010, 2, 1–9. [Google Scholar]
- Mendes, M.A. Surfactant Effects on Mass Transfer in Liquid-Liquid Systems. Fluid Mech. Surfactant Polym. Solut. 2004, 39–56. [Google Scholar]
- Pirker, S.; Gittler, P.; Pirker, H.; Lehner, J. CFD, a design tool for a new hot metal desulfurization technology. Appl. Math. Model. 2002, 26, 337–350. [Google Scholar] [CrossRef]
- Mietz, J.; Bruhl, M. Model calculations for mass transfer with mixing in ladle metallurgy. Steel Res. 1990, 61, 105–112. [Google Scholar] [CrossRef]
- Terrazas, M.S.C.; Conejo, A.N. Effect of Nozzle Diameter on Mixing Time During Bottom-Gas Injection in Metallurgical Ladles. Metall. Mater. Trans. B Process Metall. Mater. Process. Sci. 2015, 46, 711–718. [Google Scholar] [CrossRef]
- Nuñez, D.A.; Ramirez-Argaez, M.A.; Conejo, A.N. Mathematical modeling of bottom gas injection in industrial metallurgical ladles in the presence of a top layer of slag. In Proceedings of the 8th Pacific Rim International Congress on Advanced Materials and Processing 2013 (PRICM 8), Waikoloa, HI, USA, 4–9 August 2013; Volume 4. [Google Scholar]
- Likhachou, P.; Conejo, A. Mass Transfer in Ladles Due to Bottom Gas Injection. Research in progress, Beijing, China. 2020.
- Singh, U.; Anapagaddi, R.; Mangal, S.; Padmanabhan, K.A.; Singh, A.K. Multiphase Modeling of Bottom-Stirred Ladle for Prediction of Slag–Steel Interface and Estimation of Desulfurization Behavior. Metall. Mater. Trans. B Process Metall. Mater. Process. Sci. 2016, 47, 1804–1816. [Google Scholar] [CrossRef]
- Choi, J.Y.; Kim, D.J.; Lee, H.G. Reaction kinetics of desulfurization of molten pig iron using CaO-SiO2-Al2O3-Na2O slag systems. ISIJ Int. 2001, 41, 216–224. [Google Scholar] [CrossRef]
- Harada, A.; Maruoka, N.; Shibata, H.; Kitamura, S.Y. A kinetic model to predict the compositions of metal, slag and inclusions during ladle refining: Part1. Basic Concept and Application. ISIJ Int. 2013, 53, 2110–2117. [Google Scholar] [CrossRef] [Green Version]
- Roy, D.; Pistorius, P.C.; Fruehan, R.J. Effect of silicon on the desulfurization of Al-killed steels: Part II. Experimental results and plant trials. Metall. Mater. Trans. B Process Metall. Mater. Process. Sci. 2013, 44, 1095–1104. [Google Scholar] [CrossRef] [Green Version]
- Wei, J.H.; Zhu, S.J.; Yu, N.W. Kinetic model of desulphurization by powder injection and blowing in RH refining of molten steel. Ironmak. Steelmak. 2000, 27, 129–137. [Google Scholar] [CrossRef]
- Sulasalmi, P.; Visuri, V.V.; Kärnä, A.; Järvinen, M.; Ollila, S.; Fabritius, T. A Mathematical Model for the Reduction Stage of the CAS-OB Process. Metall. Mater. Trans. B Process Metall. Mater. Process. Sci. 2016, 47, 3544–3556. [Google Scholar] [CrossRef]
- Huang, F.; Zhang, L.; Zhang, Y.; Ren, Y. Kinetic Modeling for the Dissolution of MgO Lining Refractory in Al-Killed Steels. Metall. Mater. Trans. B Process Metall. Mater. Process. Sci. 2017, 48, 2195–2206. [Google Scholar] [CrossRef]
- Chen, Y.N.C.; Bao, Y.P.; Wang, M.; Zhao, L.H.; Peng, Z. A mathematical model for the dynamic desulfurization process of ultra-low-sulfur steel in the LF refining process. Metall. Res. Technol. 2014, 111, 37–43. [Google Scholar] [CrossRef]
- Deo, B.; Grieveson, P. Kinetics of desulphurisation of molten pig iron. Steel Res. 1986, 57, 514–519. [Google Scholar] [CrossRef]
- Wilson, G.T.; MacLeod, N. A critical appraisal of empirical equations and models for the prediction of the coefficient of reaeration of deoxygenated water. Water Res. 1974, 8, 341–366. [Google Scholar] [CrossRef]
- Reiter, G.; Schwerdtfeger, K. Characteristics of Entrainment at Liquid/Liquid Interfaces due to Rising Bubbles. ISIJ Int. 1992, 32, 57–65. [Google Scholar] [CrossRef] [Green Version]
Year | Authors | Solid Bar | r/R | Mass Transfer Correlations | |
---|---|---|---|---|---|
1 | 1955 | Eisenberg et al. | (C₆H₅CO₂H)(s) | - | |
2 | 1967 | Kosaka and Minowa | Steel bar | - | |
3 | 1974 | Kim and Pehlke | Iron bar | - | |
4 | 1985 | Shigeno et al. | Steel bar | - | |
5 | 1979 | Szekely et al. | Graphite bar | 0 | |
6 | 1989 | Wright | Steel bar * | - | |
7 | 1990 | Mazumdar et al. | (C₆H₅CO₂H)(s) | 0 | |
8 | 1992 | Mazumdar et al. | Steel rod | 0 | k = 7.8 × 10−3 Q0.19 |
9 | 2008 | Kitamura et al. | Solid lime | - |
Year | Authors | Process | System | Tracer | Gas | Correlation | ||
---|---|---|---|---|---|---|---|---|
1 | 1968 | Subramanian and Richardson | L-L column | In (Hg)–Fe2+(H2O) | Indium | Air | ||
2 | 1969 | Patel et al. | L-L column | Water–hexane | Iodine | N2 | 0.08 < Q <0.4 | |
3 | 1974 | Richardson et al. | L-L column | Molten salt–lead | Pb2+ | - | - | |
4 | 1980 | Lehner et al. | 60 ton ladle | Steel–slag | Cu | Ar | 8.3 < Q <83.3 | |
5 | 1980 | Nakanishi et al. | (Q-BOP) | Water–paraffin | Naphtol | Air | 30 < Q <80 | |
80 < Q<200 | ||||||||
6 | 1981 | Ishida et al. | 2.5 ton (LMF) | Steel–slag | Sulphur | Ar | < 60 | |
> 60 | ||||||||
7 | 1981 | Umezawa et al. | Mech and gas | Steel–slag | P | Ar | 40 < < 280 | |
8 | 1982 | Clinton et al. | Contactors | Water–mercury | Quinone | N2 | 0.06 < Q < 0.4 | |
9 | 1982 | Riboud- Olette | Ladle | Steel–slag | S | Ar | - | |
10 | 1983 | Minda et al. | Ladle | Steel–slag | Cr2O3 | Ar | > 5000 | |
11 | 1983 | Umezawa et al. | Mech. stirring | Steel–slag | P | - | 300 < < 2800 | |
12 | 1983 | Asai et al. | Water–tetraline | Benzoic acid | Air | Q < 150 | ||
150 < Q < 650 | ||||||||
13 | 1984 | Sawada et al. | Ladle | Water–paraffin | Naphtol | Air | 1 < < 20 | |
14 | 1985 | Berg et al. | 6 ton ladle | Steel–slag | Sulphur | Ar | < 60 | |
> 60 | ||||||||
15 | 1985 | Schlarb-Frohberg | BOP | Water–white oil | Caprylic acid | Air | Q < 700 | |
16 | 1985 | Ooga et al. | ladle | Water– benzene | Benzoic acid | N2 | Q < 0.6 | |
0.6 < Q < 3 | ||||||||
17 | 1985 | Endo et al. | VOD | Water– benzene | Cu2+ | < 4 | ||
4 < < 20 | ||||||||
18 | 1987 | Hirasawa et al. | ladle | Cu (Si)–slag | Si | Ar | Q < 1 | |
19 | 1987 | Kim and Fruehan | Ladle | Water(paraffin/cotton seed oils) | Thymol | Air | Q < 5 | |
5 < Q < 12 | ||||||||
20 | 1988 | Koria and George | BOP | Water–paraffin | Benzoic acid | Air | 1.4 < Q < 5 | |
21 | 1989 | Matway et al. | BOP | Water–paraffin | Naphtol | Air | 10 < Q < 100 | |
22 | 1989 | Wright | Ladle | Steel–slag | Carbon | N2 | Q0.21 | Q < 6 |
23 | 1990 | Koria and Pal | BOP | Water–paraffin | Benzoic acid | Air | 1.1 < Q < 6.2 | |
24 | 1990 | Dang and Oeters | Ind. furnace | Steel–slag | Sulphur | Ar | 0.2 < < 35 | |
25 | 1991 | Kitamura et al. | Ind. furnace | Steel–slag | P | Ar | > 60 | |
26 | 1992 | Koria | QBOP | Water–paraffin | Benzoic acid | Air | 1 < Q < 15 | |
27 | 1995 | Mukawa et al. | BOP | Steel–slag | P, Si | Ar | 6 < Q < 1 × | |
28 | 1995 | Xie and Oeters | ladle | Steel–slag | P, Si | Ar | 0.4 < < 27 | |
29 | 1996 | Li and Yin | Glass | Hg–ZnFe2+(H2O) | Fe2+ | Air | ||
30 | 2003 | Lachmund et al. | ladle | Steel–slag | S | Ar | 5 < < 300 |
Gas flow rate or stirring energy | Q or ε | k increases with gas flow rate (or stirring energy). Change in k at critical Q for slag emulsification. |
Nozzle’s radial position | r/R | k increases with central gas injection and decreases if the nozzle is off center |
Bubble diameter | dB | k increases with large bubbles (9–20 mm) and decreases with small bubbles (1–3 mm) |
Nozzle diameter | dn | Mixed results; it has no effect, k increases by increasing dn at high Q, k decreases by increasing dn |
Superficial velocity | Us | k increases with the superficial velocity of the liquid |
Slag volume | Ws | k increases with the volume of slag |
Reactor’s diameter | dc | k increases with the reactor diameter |
Slag viscosity | μs | k increases by decreasing the slag viscosity, at high Q |
Liquid’s height | hm | k increases by increasing the height of the liquid metal up to a critical value |
Type of nozzle | - | k in one report was higher for porous plugs in comparison with nozzles for the case of gas–liquid mass transfer |
Number of nozzles | N | k increases with number of porous plugs, from one to two |
Method | References |
---|---|
Correlation | Singh et al. [133], Zhang et al. [93], Van Ende and Jung [94] |
Experimental work | Choi et al. [134], Harada et al. [135], Kang et al. [91], Roy et al. [136] |
Correlations from D. Analysis | Wei et al. [137], Sulasalmi et al. [138], Huang et al. [139] |
Boundary layer theory | Xie and Oeters [124], Chen et al. [140] |
Higbie’s penetration theory | Taniguchi et al. [119] |
Large Eddy Model (LEM) | De Oliveira et al. [111], Deo and Grieveson [141], |
Small Eddy Model (SEM) | Taniguchi et al. [119], Lou and Zhu [120], Cao et al. [121], Hoang et al. [122] and Karouni et al. [123] |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Conejo, A.N. Physical and Mathematical Modelling of Mass Transfer in Ladles due to Bottom Gas Stirring: A Review. Processes 2020, 8, 750. https://doi.org/10.3390/pr8070750
Conejo AN. Physical and Mathematical Modelling of Mass Transfer in Ladles due to Bottom Gas Stirring: A Review. Processes. 2020; 8(7):750. https://doi.org/10.3390/pr8070750
Chicago/Turabian StyleConejo, Alberto N. 2020. "Physical and Mathematical Modelling of Mass Transfer in Ladles due to Bottom Gas Stirring: A Review" Processes 8, no. 7: 750. https://doi.org/10.3390/pr8070750
APA StyleConejo, A. N. (2020). Physical and Mathematical Modelling of Mass Transfer in Ladles due to Bottom Gas Stirring: A Review. Processes, 8(7), 750. https://doi.org/10.3390/pr8070750