Accelerated Solvent Extraction as a Green Tool for the Recovery of Polyphenols and Pigments from Wild Nettle Leaves
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Plant Material
2.3. Extraction Procedures
2.3.1. Accelerated Solvent Extraction
2.3.2. Ultrasound Assisted Extraction
2.4. HPLC Analysis
2.5. Antioxidant Capacity
2.6. Statistical Analysis
3. Results and Discussion
3.1. Influence of Accelerated Solvent Extraction on Polyphenols Recovery
3.2. Influence of Accelerated Solvent Extraction on Chlorophylls and Carotenoids Recovery
3.3. Influence of Accelerated Solvent Extraction on Antioxidant Capacity
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Otles, S.; Yalcin, B. Phenolic compounds analysis of root, stalk, and leaves of nettle. Sci. World J. 2012, 2012, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Đurović, S.; Pavlić, B.; Šorgić, S.; Popov, S.; Savić, S.; Petronijević, M.; Radojković, M.; Cvetanović, A.; Zeković, Z. Chemical composition of stinging nettle leaves obtained by different analytical approaches. J. Funct. Foods 2017, 32, 18–26. [Google Scholar] [CrossRef]
- Grauso, L.; de Falco, B.; Lanzotti, V.; Motti, R. Stinging nettle, Urtica dioica L.: Botanical, phytochemical and pharmacological overview. Phytochem. Rev. 2020. [Google Scholar] [CrossRef]
- Đurović, S.; Vujanović, M.; Radojković, M.; Filipović, J.; Filipović, V.; Gašić, U.; Tešić, Ž.; Mašković, P.; Zeković, Z. The functional food production: Application of stinging nettle leaves and its extracts in the baking of a bread. Food Chem. 2020, 312. [Google Scholar] [CrossRef] [PubMed]
- Tomczyk, M.; Zaguła, G.; Dżugan, M. A simple method of enrichment of honey powder with phytochemicals and its potential application in isotonic drink industry. Lwt 2020, 125. [Google Scholar] [CrossRef]
- Hayward, L.; Wedel, A.; McSweeney, M.B. Acceptability of beer produced with dandelion, nettle, and sage. Int. J. Gastron. Food Sci. 2019, 18. [Google Scholar] [CrossRef]
- Marchetti, N.; Bonetti, G.; Brandolini, V.; Cavazzini, A.; Maietti, A.; Meca, G.; Mañes, J. Stinging nettle (Urtica dioica L.) as a functional food additive in egg pasta: Enrichment and bioaccessibility of Lutein and β-carotene. J. Funct. Foods 2018, 47, 547–553. [Google Scholar] [CrossRef]
- Moldovan, L.; Gaspar, A.; Toma, L.I.A.N.A.; Craciunescu, O.A.N.A.; Saviuc, C.R.I.N.A. Comparison of polyphenolic content and antioxidant capacity of five Romanian traditional medicinal plants. Revista de Chimie -Buchar. 2011, 62, 299–303. [Google Scholar]
- Orčić, D.; Francišković, M.; Bekvalac, K.; Svirčev, E.; Beara, I.; Lesjak, M.; Mimica-Dukić, N. Quantitative determination of plant phenolics in Urtica dioica extracts by high-performance liquid chromatography coupled with tandem mass spectrometric detection. Food Chem. 2014, 143, 48–53. [Google Scholar] [CrossRef]
- Carvalho, A.R.; Costa, G.; Figueirinha, A.; Liberal, J.; Prior, J.A.V.; Lopes, M.C.; Cruz, M.T.; Batista, M.T. Urtica spp.: Phenolic composition, safety, antioxidant and anti-inflammatory activities. Food Res. Int. 2017, 99, 485–494. [Google Scholar] [CrossRef]
- Guil-Guerrero, J.L.; Rebolloso-Fuentes, M.M.; Torija Isasa, M.E. Fatty acids and carotenoids from Stinging Nettle (Urtica dioica L.). J. Food Compos. Anal. 2003, 16, 111–119. [Google Scholar] [CrossRef]
- Hojnik, M.; Škerget, M.; Knez, Ž. Isolation of chlorophylls from stinging nettle (Urtica dioica L.). Sep. Purif. Technol. 2007, 57, 37–46. [Google Scholar] [CrossRef]
- Ibrahim, M.; Rehman, K.; Razzaq, A.; Hussain, I.; Farooq, T.; Hussain, A.; Akash, M.S.H. Investigations of phytochemical constituents and their pharmacological properties isolated from the genus urtica: Critical review and analysis. Crit. Rev. Eukaryotic Gene Expr. 2018, 28, 25–66. [Google Scholar] [CrossRef]
- Martínez-Aledo, N.; Navas-Carrillo, D.; Orenes-Piñero, E. Medicinal plants: Active compounds, properties and antiproliferative effects in colorectal cancer. Phytochem. Rev. 2020, 19, 123–137. [Google Scholar] [CrossRef]
- Ziaei, R.; Foshati, S.; Hadi, A.; Kermani, M.A.H.; Ghavami, A.; Clark, C.C.T.; Tarrahi, M.J. The effect of nettle (Urtica dioica) supplementation on the glycemic control of patients with type 2 diabetes mellitus: A systematic review and meta-analysis. Phytother. Res. 2019, 34, 282–294. [Google Scholar] [CrossRef]
- Jacquet, A.; Girodet, P.-O.; Pariente, A.; Forest, K.; Mallet, L.; Moore, N. Phytalgic®, a food supplement, vs placebo in patients with osteoarthritis of the knee or hip: A randomised double-blind placebo-controlled clinical trial. Arthritis Res. Ther. 2009, 11. [Google Scholar] [CrossRef] [Green Version]
- Cencic, A.; Chingwaru, W. The role of functional foods, nutraceuticals, and food supplements in intestinal health. Nutrients 2010, 2, 611–625. [Google Scholar] [CrossRef]
- Granato, D.; Barba, F.J.; Bursać Kovačević, D.; Lorenzo, J.M.; Cruz, A.G.; Putnik, P. Functional foods: Product development, technological trends, efficacy testing, and safety. Annu. Rev. Food Sci. Technol. 2020, 11, 93–118. [Google Scholar] [CrossRef] [Green Version]
- Stanojević, L.P.; Stanković, M.Z.; Cvetković, D.J.; Cakić, M.D.; Ilić, D.P.; Nikolić, V.D.; Stanojević, J.S. The effect of extraction techniques on yield, extraction kinetics, and antioxidant activity of aqueous-methanolic extracts from nettle (Urtica dioica L.) leaves. Sep. Sci. Technol. 2016, 51, 1817–1829. [Google Scholar] [CrossRef]
- Chemat, F.; Vian, M.A.; Cravotto, G. Green extraction of natural products: Concept and principles. Int. J. Mol. Sci. 2012, 13, 8615–8627. [Google Scholar] [CrossRef] [Green Version]
- Mottaleb, M.A.; Sarker, S.D. Accelerated Solvent Extraction for Natural Products Isolation. In Natural Products Isolation, 3rd ed.; Sarker, S.D., Nahar, L., Eds.; Springer: New York, NY, USA, 2012; pp. 75–88. [Google Scholar] [CrossRef]
- Putnik, P.; Barba, F.J.; Španić, I.; Zorić, Z.; Dragović-Uzelac, V.; Bursać Kovačević, D. Green extraction approach for the recovery of polyphenols from Croatian olive leaves (Olea europea). Food Bioprod. Process 2017, 106, 19–28. [Google Scholar] [CrossRef]
- Bursać Kovačević, D.; Barba, F.J.; Granato, D.; Galanakis, C.M.; Herceg, Z.; Dragović-Uzelac, V.; Putnik, P. Pressurized Hot Water Extraction (PHWE) for the green recovery of bioactive compounds and steviol glycosides from Stevia rebaudiana Bertoni Leaves. Food Chem. 2018. [Google Scholar] [CrossRef]
- Ameer, K.; Shahbaz, H.M.; Kwon, J.-H. Green extraction methods for polyphenols from plant matrices and their byproducts: A Review. Compr. Rev. Food Sci. F 2017, 16, 295–315. [Google Scholar] [CrossRef] [Green Version]
- Jentzer, J.-B.; Alignan, M.; Vaca-Garcia, C.; Rigal, L.; Vilarem, G. Response surface methodology to optimise accelerated solvent extraction of steviol glycosides from Stevia rebaudiana Bertoni leaves. Food Chem. 2015, 166, 561–567. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pena-Pereira, F.; Lavilla, I.; Bendicho, C. Miniaturized preconcentration methods based on liquid–liquid extraction and their application in inorganic ultratrace analysis and speciation: A review. Spectrochim. Acta Part B 2009, 64, 1–15. [Google Scholar] [CrossRef]
- Alexovič, M.; Dotsikas, Y.; Bober, P.; Sabo, J. Achievements in robotic automation of solvent extraction and related approaches for bioanalysis of pharmaceuticals. J. Chromatogr. B 2018, 1092, 402–421. [Google Scholar] [CrossRef] [PubMed]
- Johnson, T.A.; Sohn, J.; Inman, W.D.; Bjeldanes, L.F.; Rayburn, K. Lipophilic stinging nettle extracts possess potent anti-inflammatory activity, are not cytotoxic and may be superior to traditional tinctures for treating inflammatory disorders. Phytomedicine 2013, 20, 143–147. [Google Scholar] [CrossRef] [Green Version]
- Johnson, T.A.; Morgan, M.V.C.; Aratow, N.A.; Estee, S.A.; Sashidhara, K.V.; Loveridge, S.T.; Segraves, N.L.; Crews, P. Assessing Pressurized Liquid Extraction for the high-throughput extraction of marine-sponge-derived natural products⊥. J. Nat. Prod. 2010, 73, 359–364. [Google Scholar] [CrossRef] [Green Version]
- AOAC. Official Methods of Analysis: Changes in Official Methods of Analysis Made at the Annual Meeting, 15th ed.; Association of Official Analytical Chemists: Rockville, Maryland, 1990; Volume I, pp. 40–64. [Google Scholar]
- Dent, M.; Dragović-Uzelac, V.; Penić, M.; Brnčić, M.; Bosiljkov, T.; Levaj, B. The effect of extraction solvents, temperature and time on the composition and mass fraction of polyphenols in dalmatian wild sage (Salvia officinalis L.) extracts. Food Technol. Biotech. 2013, 51, 84–91. [Google Scholar]
- Akbay, P.; Basaran, A.A.; Undeger, U.; Basaran, N. In vitro immunomodulatory activity of flavonoid glycosides from Urtica dioica L. Phytother. Res. 2003, 17, 34–37. [Google Scholar] [CrossRef] [PubMed]
- Farag, M.A.; Weigend, M.; Luebert, F.; Brokamp, G.; Wessjohann, L.A. Phytochemical, phylogenetic, and anti-inflammatory evaluation of 43 Urtica accessions (stinging nettle) based on UPLC–Q-TOF-MS metabolomic profiles. Phytochemistry 2013, 96, 170–183. [Google Scholar] [CrossRef] [PubMed]
- Pinelli, P.; Ieri, F.; Vignolini, P.; Bacci, L.; Baronti, S.; Romani, A. Extraction and HPLC analysis of phenolic compounds in leaves, stalks, and textile fibers of Urtica dioica L. J. Agric. Food Chem. 2008, 56, 9127–9132. [Google Scholar] [CrossRef]
- Castro-Puyana, M.; Pérez-Sánchez, A.; Valdés, A.; Ibrahim, O.H.M.; Suarez-Álvarez, S.; Ferragut, J.A.; Micol, V.; Cifuentes, A.; Ibáñez, E.; García-Cañas, V. Pressurized liquid extraction of Neochloris oleoabundans for the recovery of bioactive carotenoids with anti-proliferative activity against human colon cancer cells. Food Res. Int. 2017, 99, 1048–1055. [Google Scholar] [CrossRef] [Green Version]
- Gupta, P.; Sreelakshmi, Y.; Sharma, R. A rapid and sensitive method for determination of carotenoids in plant tissues by high performance liquid chromatography. Plant. Methods 2015, 11, s13007–s13015. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sözgen Başkan, K.; Tütem, E.; Özer, N.; Apak, R. Spectrophotometric and chromatographic assessment of contributions of carotenoids and chlorophylls to the total antioxidant capacities of plant foods. J. Agric. Food Chem. 2013, 61, 11371–11381. [Google Scholar] [CrossRef] [PubMed]
- Prior, R.L.; Wu, X.L.; Schaich, K. Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J. Agric. Food Chem. 2005, 53, 4290–4302. [Google Scholar] [CrossRef]
- Bender, C.; Graziano, S.; Zimmerman, B.F.; Weidlich, H.H. Antioxidant potential of aqueous plant extracts assessed by the cellular antioxidant activity assay. Am. J. Biol. Life Sci. 2014, 2, 72–79. [Google Scholar]
- Rodríguez-Rojo, S.; Visentin, A.; Maestri, D.; Cocero, M.J. Assisted extraction of rosemary antioxidants with green solvents. J. Food Eng. 2012, 109, 98–103. [Google Scholar] [CrossRef] [Green Version]
- Carabias-Martínez, R.; Rodríguez-Gonzalo, E.; Revilla-Ruiz, P.; Hernández-Méndez, J. Pressurized liquid extraction in the analysis of food and biological samples. J. Chromatogr. A 2005, 1089, 1–17. [Google Scholar] [CrossRef]
- Vajić, U.-J.; Grujić-Milanović, J.; Živković, J.; Šavikin, K.; Gođevac, D.; Miloradović, Z.; Bugarski, B.; Mihailović-Stanojević, N. Optimization of extraction of stinging nettle leaf phenolic compounds using response surface methodology. Ind. Crops Prod. 2015, 74, 912–917. [Google Scholar] [CrossRef]
- Moreira, S.A.; Silva, S.; Costa, E.M.; Saraiva, J.A.; Pintado, M. Effect of high hydrostatic pressure extraction on biological activities of stinging nettle extracts. Food Funct. 2020, 11, 921–931. [Google Scholar] [CrossRef] [PubMed]
- Zeipiņa, S.; Alsiņa, I.; Lepse, L. Stinging nettle–the source of biologically active compounds as sustainable daily diet supplement. Res. Rural. Dev. 2014, 20, 34–38. [Google Scholar]
- Ciulu, M.; Quirantes-Piné, R.; Spano, N.; Sanna, G.; Borrás-Linares, I.; Segura-Carretero, A. Evaluation of new extraction approaches to obtain phenolic compound-rich extracts from Stevia rebaudiana Bertoni leaves. Ind. Crops Prod. 2017, 108, 106–112. [Google Scholar] [CrossRef]
- Zgórka, G. Pressurized liquid extraction versus other extraction techniques in micropreparative isolation of pharmacologically active isoflavones from Trifolium L. species. Talanta 2009, 79, 46–53. [Google Scholar] [CrossRef] [PubMed]
- Hossain, M.B.; Barry-Ryan, C.; Martin-Diana, A.B.; Brunton, N.P. Optimisation of accelerated solvent extraction of antioxidant compounds from rosemary (Rosmarinus officinalis L.), marjoram (Origanum majorana L.) and oregano (Origanum vulgare L.) using response surface methodology. Food Chem. 2011, 126, 339–346. [Google Scholar] [CrossRef] [Green Version]
- Erdoğan, S.; Erdemoğlu, S. Evaluation of polyphenol contents in differently processed apricots using accelerated solvent extraction followed by high-performance liquid chromatography–diode array detector. Int. J. Food Sci. Nutr. 2011, 62, 729–739. [Google Scholar] [CrossRef]
- Gomes, S.V.F.; Portugal, L.A.; dos Anjos, J.P.; de Jesus, O.N.; de Oliveira, E.J.; David, J.P.; David, J.M. Accelerated solvent extraction of phenolic compounds exploiting a Box-Behnken design and quantification of five flavonoids by HPLC-DAD in Passiflora species. Microchem. J. 2017, 132, 28–35. [Google Scholar] [CrossRef]
- Esclapez, M.D.; García-Pérez, J.V.; Mulet, A.; Cárcel, J.A. Ultrasound-Assisted Extraction of natural products. Food Eng. Rev. 2011, 3, 108–120. [Google Scholar] [CrossRef]
- Zengin, G.; Cvetanović, A.; Gašić, U.; Stupar, A.; Bulut, G.; Şenkardes, I.; Dogan, A.; Ibrahime Sinan, K.; Uysal, S.; Aumeeruddy-Elalfi, Z.; et al. Modern and traditional extraction techniques affect chemical composition and bioactivity of Tanacetum parthenium (L.) Sch.Bip. Ind. Crops Prod. 2020, 146. [Google Scholar] [CrossRef]
- Barros, F.; Dykes, L.; Awika, J.M.; Rooney, L.W. Accelerated solvent extraction of phenolic compounds from sorghum brans. J. Cereal Sci. 2013, 58, 305–312. [Google Scholar] [CrossRef]
- Alkema, J.; Seager, S.L. The chemical pigments of plants. J. Chem. Educ. 1982, 59. [Google Scholar] [CrossRef]
- Ferruzzi, M.G.; Bohm, V.; Courtney, P.D.; Schwartz, S.J. Antioxidant and antimutagenic activity of dietary chlorophyll derivatives determined by radical scavenging and bacterial reverse mutagenesis assays. J. Food Sci. 2002, 67, 2589–2595. [Google Scholar] [CrossRef]
- Jaime, L.; Rodríguez-Meizoso, I.; Cifuentes, A.; Santoyo, S.; Suarez, S.; Ibáñez, E.; Señorans, F.J. Pressurized liquids as an alternative process to antioxidant carotenoids’ extraction from Haematococcus pluvialis microalgae. Lwt Food Sci. Technol. 2010, 43, 105–112. [Google Scholar] [CrossRef] [Green Version]
- Mustafa, A.; Trevino, L.M.; Turner, C. Pressurized hot ethanol extraction of carotenoids from carrot by-products. Molecules 2012, 17, 1809–1818. [Google Scholar] [CrossRef] [Green Version]
- Sovová, H.; Sajfrtová, M.; Bártlová, M.; Opletal, L. Near-critical extraction of pigments and oleoresin from stinging nettle leaves. J. Supercrit. Fluids 2004, 30, 213–224. [Google Scholar] [CrossRef]
- Saha, S.; Walia, S.; Kundu, A.; Sharma, K.; Paul, R.K. Optimal extraction and fingerprinting of carotenoids by accelerated solvent extraction and liquid chromatography with tandem mass spectrometry. Food Chem. 2015, 177, 369–375. [Google Scholar] [CrossRef]
- Cha, K.H.; Lee, H.J.; Koo, S.Y.; Song, D.-G.; Lee, D.-U.; Pan, C.-H. Optimization of Pressurized Liquid Extraction of carotenoids and chlorophylls from Chlorella vulgaris. J. Agric. Food Chem. 2010, 58, 793–797. [Google Scholar] [CrossRef]
- Kim, J.-S.; An, C.G.; Park, J.-S.; Lim, Y.P.; Kim, S. Carotenoid profiling from 27 types of paprika (Capsicum annuum L.) with different colors, shapes, and cultivation methods. Food Chem. 2016, 201, 64–71. [Google Scholar] [CrossRef]
- Rafajlovska, V.; Djarmati, Z.; Najdenova, V.; Cvetkov, L. Extraction of stinging nettle (Urtica dioica L.) with supercritical carbondioxide. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 2016, 4, 49–52. [Google Scholar]
- Plaza, M.; Santoyo, S.; Jaime, L.; Avalo, B.; Cifuentes, A.; Reglero, G.; García-Blairsy Reina, G.; Señoráns, F.J.; Ibáñez, E. Comprehensive characterization of the functional activities of pressurized liquid and ultrasound-assisted extracts from Chlorella vulgaris. Lwt-Food Sci. Technol. 2012, 46, 245–253. [Google Scholar] [CrossRef]
- Koo, S.Y.; Cha, K.H.; Song, D.-G.; Chung, D.; Pan, C.-H. Optimization of pressurized liquid extraction of zeaxanthin from Chlorella ellipsoidea. J. Appl. Phycol. 2011, 24, 725–730. [Google Scholar] [CrossRef]
- Cheng, S.H.; Khoo, H.E.; Kong, K.W.; Prasad, K.N.; Galanakis, C.M. Extraction of carotenoids and applications. In Carotenoids: Properties, Processing and Applications; Galanakis, C.M., Ed.; Academic Press: New York, NY, USA, 2020; pp. 259–288. [Google Scholar] [CrossRef]
- Skąpska, S.; Marszałek, K.; Woźniak, Ł.; Zawada, K.; Wawer, I. Aronia dietary drinks fortified with selected herbal extracts preserved by thermal pasteurization and high pressure carbon dioxide. Lwt-Food Sci. Technol. 2017, 85, 423–426. [Google Scholar] [CrossRef]
- Tian, Y.; Puganen, A.; Alakomi, H.-L.; Uusitupa, A.; Saarela, M.; Yang, B. Antioxidative and antibacterial activities of aqueous ethanol extracts of berries, leaves, and branches of berry plants. Food Res. Int. 2018, 106, 291–303. [Google Scholar] [CrossRef]
- Howard, L.; Pandjaitan, N. Pressurized Liquid Extraction of flavonoids from spinach. J. Food Sci. 2008, 73, C151–C157. [Google Scholar] [CrossRef]
- Benchikh, Y.; Louailèche, H. Effects of extraction conditions on the recovery of phenolic compounds andin vitroantioxidant activity of carob (Ceratonia siliqua L.) pulp. Acta Botanica Gallica 2014, 161, 175–181. [Google Scholar] [CrossRef]
- Ćetković, G.; Čanadanović-Brunet, J.; Djilas, S.; Tumbas, V.; Markov, S.; Cvetković, D. Antioxidant potential, lipid peroxidation inhibition and antimicrobial activities of Satureja montana L. subsp. kitaibelii extracts. Int. J. Mol. Sci. 2007, 8, 1013–1027. [Google Scholar] [CrossRef] [Green Version]
- Miguel, M.G. Antioxidant activity of medicinal and aromatic plants. A review. Flavour Fragr. J. 2010, 25, 291–312. [Google Scholar] [CrossRef]
- Zenão, S.; Aires, A.; Dias, C.; Saavedra, M.J.; Fernandes, C. Antibacterial potential of Urtica dioica and Lavandula angustifolia extracts against methicillin resistant Staphylococcus aureus isolated from diabetic foot ulcers. J. Herbal Med. 2017, 10, 53–58. [Google Scholar] [CrossRef]
- Böhm, V.; Puspitasari-Nienaber, N.L.; Ferruzzi, M.G.; Schwartz, S.J. Trolox equivalent antioxidant capacity of different geometrical isomers of α-carotene, β-carotene, lycopene, and zeaxanthin. J. Agric. Food Chem. 2002, 50, 221–226. [Google Scholar] [CrossRef]
- Ben-dor, A.; Steiner, M.; Gheber, L.; Danilenko, M.; Dubi, N.; Linnewiel, K.; Zick, A.; Sharoni, Y.; Levy, J. Carotenoids activate the antioxidant response element transcriptionsystem Carotenoids activate the antioxidant response element transcriptionsystem. Mol. Cancer Ther. 2005, 4, 177–186. [Google Scholar] [PubMed]
- Dewick, P.M. Medicinal Natural Products: A Biosynthetic Approach; John Wiley & Sons Ltd.: Chichester, UK, 2009. [Google Scholar]
- Yunbo, L. Carotenoids. In Antioxidants in Biology and Medicine: Essentials, Advances, and Clinical Applications; Tsisana Shartava, M.D., Tbilisi, G., Eds.; Nova Science Publishers Inc.: New York, NY, USA, 2011. [Google Scholar]
Temperature (°C) | Static Time (min) | Cycle Number | ChA | p-CA | FA | CA | Q-3-G | K-3-R | LTL | ORAC |
---|---|---|---|---|---|---|---|---|---|---|
20 | 5 | 1 | 6.69 ± 0.05 | 1.33 ± 0.02 | nd | nd | nd | nd | nd | 2.66 ± 0.01 |
2 | 8.63 ± 0.31 | 1.73 ± 0.04 | nd | nd | nd | nd | nd | 3.08 ± 0.03 | ||
3 | 9.03 ± 0.34 | 1.51 ± 0.20 | nd | nd | nd | nd | nd | 2.42 ± 0.04 | ||
4 | 10.53 ± 0.17 | 1.76 ± 0.08 | nd | nd | nd | nd | nd | 2.96 ± 0.14 | ||
10 | 1 | 10.14 ± 6.63 | 1.75 ± 1.10 | nd | nd | 5.41 ± 0.04 | nd | nd | 5.37 ± 0.07 | |
2 | 19.74 ± 0.80 | 2.82 ± 0.57 | nd | nd | 7.32 ± 0.52 | nd | nd | 7.54 ± 0.06 | ||
3 | 24.09 ± 1.01 | 3.61 ± 0.33 | nd | nd | 8.27 ± 0.67 | nd | nd | 10.22 ± 0.02 | ||
4 | 27.65 ± 1.00 | 3.95 ± 0.12 | nd | nd | 8.32 ± 0.42 | nd | nd | 9.91 ± 0.05 | ||
50 | 5 | 1 | 10.08 ± 0.25 | 1.82 ± 0.23 | nd | nd | 6.57 ± 0.27 | nd | nd | 4.61 ± 0.02 |
2 | 13.00 ± 0.24 | 1.63 ± 0.22 | nd | nd | 3.84 ± 0.16 | nd | nd | 4.77 ± 0.04 | ||
3 | 13.70 ± 0.72 | 1.55 ± 0.32 | nd | nd | 4.69 ± 0.40 | nd | nd | 3.53 ± 0.04 | ||
4 | 15.56 ± 0.53 | 1.55 ± 0.37 | nd | nd | 4.80 ± 0.20 | nd | nd | 3.43 ± 0.06 | ||
10 | 1 | 23.36 ± 0.94 | 4.01 ± 0.73 | nd | nd | 5.63 ± 0.55 | nd | nd | 7.50 ± 0.04 | |
2 | 31.13 ± 1.47 | 4.89 ± 0.79 | nd | nd | 7.17 ± 0.98 | nd | nd | 10.08 ± 0.01 | ||
3 | 37.35 ± 1.70 | 6.14 ± 1.01 | nd | nd | 8.67 ± 1.16 | nd | nd | 10.74 ± 0.06 | ||
4 | 51.01 ± 0.54 | 7.14 ± 0.87 | nd | nd | 11.71 ± 1.93 | 2.62 ± 3.70 | nd | 12.53 ± 0.05 | ||
80 | 5 | 1 | 74.73 ± 2.56 | 45.79 ± 1.78 | nd | nd | 29.48 ± 4.99 | 10.13 ± 1.05 | 1.61 ± 0.36 | 14.13 ± 0.03 |
2 | 72.28 ± 1.76 | 26.68 ± 10.49 | nd | nd | 39.24 ± 10.96 | 10.66 ± 1.11 | 2.06 ± 0.72 | 13.43 ± 0.02 | ||
3 | 150.77 ± 41.24 | 30.19 ± 7.08 | 1.81 ± 0.00 | nd | 30.93 ± 9.27 | 9.14 ± 0.80 | 1.28 ± 0.39 | 13.24 ± 0.07 | ||
4 | 109.74 ± 31.04 | 17.70 ± 2.30 | 1.55 ± 0.03 | nd | 34.49 ± 10.31 | 9.57 ± 0.85 | 1.37 ± 0.34 | 13.67 ± 0.03 | ||
10 | 1 | 154.35 ± 19.17 | 54.71 ± 20.50 | 2.07 ± 0.05 | nd | 50.73 ± 11.06 | 13.02 ± 0.21 | 1.86 ± 0.21 | 14.26 ± 0.06 | |
2 | 188.32 ± 6.66 | 104.22 ± 3.84 | 2.60 ± 0.09 | nd | 73.60 ± 10.53 | 17.88 ± 1.05 | 2.75 ± 0.21 | 21.11 ± 0.03 | ||
3 | 231.86 ± 37.64 | 68.26 ± 16.06 | 2.49 ± 0.04 | nd | 68.51 ± 8.61 | 17.12 ± 0.70 | 2.45 ± 0.22 | 22.07 ± 0.03 | ||
4 | 173.65 ± 7.56 | 47.85 ± 8.91 | 3.18 ± 0.02 | nd | 64.14 ± 9.80 | 15.82 ± 0.87 | 2.21 ± 0.18 | 21.71 ± 0.02 | ||
110 | 5 | 1 | 83.78 ± 13.87 | 29.49 ± 6.89 | 1.31 ± 0.10 | nd | 31.04 ± 3.17 | 9.81 ± 0.40 | 0.89 ± 0.05 | 14.51 ± 0.05 |
2 | 134.55 ± 23.01 | 39.40 ± 9.57 | 1.89 ± 0.06 | nd | 40.48 ± 10.86 | 12.76 ± 0.27 | 1.31 ± 0.06 | 14.52 ± 0.02 | ||
3 | 163.61 ± 23.95 | 52.84 ± 3.21 | 2.41 ± 0.05 | nd | 48.66 ± 7.59 | 14.86 ± 0.19 | 1.14 ± 0.05 | 14.05 ± 0.02 | ||
4 | 143.13 ± 6.73 | 52.59 ± 1.18 | 2.35 ± 0.10 | nd | 51.42 ± 8.06 | 14.85 ± 0.50 | 1.84 ± 0.70 | 14.52 ± 0.02 | ||
10 | 1 | 174.46 ± 2.09 | 57.49 ± 22.23 | 1.94 ± 0.00 | nd | 55.63 ± 13.15 | 16.81 ± 0.75 | 1.14 ± 0.24 | 14.34 ± 0.03 | |
2 | 278.14 ± 55.96 | 76.83 ± 19.23 | 4.26 ± 0.05 | 4.34 ± 0.03 | 71.22 ± 16.81 | 21.87 ± 0.81 | 3.20 ± 2.30 | 16.71 ± 0.04 | ||
3 | 251.58 ± 38.79 | 104.56 ± 16.76 | 5.91 ± 0.00 | 6.07 ± 0.04 | 94.67 ± 0.87 | 24.22 ± 0.98 | 6.76 ± 4.89 | 17.78 ± 0.04 | ||
4 | 248.49 ± 38.24 | 105.96 ± 3.42 | 8.22 ± 0.03 | 8.47 ± 0.08 | 87.14 ± 4.84 | 23.34 ± 0.90 | 6.25 ± 4.63 | 17.50 ± 0.05 |
Source of Variation | THCA | TF | TP | TCH | TCAR | TPG | ORAC |
---|---|---|---|---|---|---|---|
Temperature (°C) | p < 0.01 * | p < 0.01 * | p < 0.01 * | p < 0.01 * | p < 0.01 * | p < 0.01 * | p < 0.01 * |
20 | 16.87 ± 3.72a | 3.67 ± 1.70a | 20.54 ± 4.23a | 464.37 ± 2.25a | 31.48 ± 0.01a | 495.85 ± 2.25a | 5.52 ± 0.01a |
50 | 27.99 ± 3.72a | 6.96 ± 1.70a | 34.95 ± 4.23a | 678.60 ± 2.25b | 44.07 ± 0.01b | 722.67 ± 2.25b | 7.15 ± 0.01b |
80 | 195.60 ± 3.72b | 63.76 ± 1.70b | 259.35 ± 4.23b | 1070.63 ± 2.25c | 64.74 ± 0.01c | 1135.38 ± 2.25c | 16.70 ± 0.01d |
110 | 255.51 ± 3.72c | 80.16 ± 1.70c | 335.67 ± 4.23c | 1075.25 ± 2.25c | 65.81 ± 0.01d | 1141.06 ± 2.25c | 15.49 ± 0.01c |
Static time (min) | p < 0.01 * | p < 0.01 * | p < 0.01 * | p < 0.01 * | p < 0.01 * | p < 0.01 * | p < 0.01 * |
5 | 83.67 ± 2.63a | 26.81 ± 1.21a | 110.48 ± 2.99a | 709.20 ± 1.59a | 45.52 ± 0.00a | 754.71 ± 1.59a | 8.72 ± 0.01a |
10 | 164.31 ± 2.63b | 50.47 ± 1.21b | 214.78 ± 2.99b | 935.23 ± 1.59b | 57.54 ± 0.00b | 992.77 ± 1.59b | 13.71 ± 0.01b |
Cycle number | p < 0.01 * | p < 0.01 * | p < 0.01 * | p < 0.01 * | p < 0.01 * | p < 0.01 * | p < 0.01 * |
1 | 92.41 ± 3.72a | 29.97 ± 1.70a | 122.38 ± 4.23a | 746.06 ± 2.25a | 47.31 ± 0.01a | 793.37 ± 2.25a | 9.67 ± 0.01a |
2 | 127.13 ± 3.72b | 39.42 ± 1.70b | 166.55 ± 4.23b | 829.68 ± 2.25b | 52.60 ± 0.01c | 882.28 ± 2.25b | 11.41 ± 0.01b |
3 | 146.17 ± 3.72c | 42.67 ± 1.70b | 188.84 ± 4.23c | 838.54 ± 2.25c | 51.94 ± 0.01b | 890.48 ± 2.25b | 11.76 ± 0.01c |
4 | 130.25 ± 3.72b | 42.49 ± 1.70b | 172.74 ± 4.23b | 874.57 ± 2.25d | 54.26 ± 0.01d | 928.82 ± 2.25c | 12.03 ± 0.01d |
Grand mean | 123.99 | 38.64 | 162.63 | 822.21 | 51.53 | 873.74 | 11.22 |
Compounds | Concentration | |
---|---|---|
Polyphenols | ChA | 76.84 ± 3.32 |
p-CA | 53.23 ± 1.07 | |
Q-3-G | 19.02 ± 2.77 | |
K-3-R | 5.18 ± 0.45 | |
Chlorophylls | CHL b der 1 | 8.42 ± 0.06 |
CHL a der 1 | 36.65 ± 2.10 | |
CHL a der 2 | 38.62 ± 2.44 | |
CHL b | 230.46 ± 15.17 | |
CHL a | 589.04 ± 22.36 | |
CHL a der 5 | 5.07 ± 0.02 | |
Carotenoids | VIOLAX der | 1.17 ± 0.10 |
NEOX | 2.38 ± 0.15 | |
VIOLAX | 1.10 ± 0.08 | |
13′-cis-LUT | 2.38 ± 0.06 | |
LUT 5,6-ep | 1.10 ± 0.09 | |
NEOX der | 0.67 ± 0.02 | |
LUT | 21.25 ± 1.04 | |
ZEAX der | 1.02 ± 0.03 | |
9′-cis-LUT | 1.78 ± 0.11 | |
α-CAR | 6.12 ± 0.41 | |
β-CAR | 14.14 ± 1.03 | |
LYC der 10 | 0.32 ± 0.01 | |
Antioxidant capacity | ||
ORAC | 13.26 ± 0.05 |
Temperature (°C) | Static Time (min) | Cycle Number | CHL b der 1 | CHL a der 1 | CHL a der 2 | CHL b | CHL a der 3 | CHL a der 4 | CHL a | CHL a der 5 |
---|---|---|---|---|---|---|---|---|---|---|
20 | 5 | 1 | nd | nd | nd | 50.13 ± 3.21 | 2.32 ± 0.14 | nd | 167.41 ± 10.10 | nd |
2 | nd | nd | nd | 52.20 ± 1.96 | 2.80 ± 0.09 | nd | 201.34 ± 1.36 | nd | ||
3 | nd | nd | nd | 64.08 ± 5.47 | 2.98 ± 0.25 | 1.81 ± 0.11 | 218.83 ± 19.03 | nd | ||
4 | nd | nd | nd | 76.86 ± 4.49 | 4.06 ± 0.31 | 2.53 ± 0.14 | 266.62 ± 22.25 | nd | ||
10 | 1 | nd | nd | nd | 149.34 ± 11.54 | 5.77 ± 0.11 | 6.27 ± 0.02 | 486.82 ± 30.11 | 9.71 ± 0.66 | |
2 | nd | nd | nd | 124.02 ± 9.65 | 4.23 ± 0.32 | 4.75 ± 0.33 | 420.08 ± 3.56 | 5.63 ± 0.41 | ||
3 | nd | nd | nd | 144.32 ± 3.63 | 5.42 ± 0.25 | 5.31 ± 0.25 | 493.82 ± 14.79 | 7.12 ± 0.22 | ||
4 | nd | nd | nd | 164.12 ± 12.09 | 6.08 ± 0.04 | 5.97 ± 0.19 | 546.09 ± 21.45 | 6.14 ± 0.31 | ||
50 | 5 | 1 | nd | nd | nd | 128.14 ± 2.55 | 5.28 ± 0.06 | 2.79 ± 0.08 | 410.82 ± 9.96 | 2.15 ± 0.06 |
2 | nd | nd | nd | 118.76 ± 4.58 | 5.96 ± 0.14 | 3.81 ± 0.20 | 405.97 ± 37.05 | 1.84 ± 0.25 | ||
3 | nd | nd | nd | 118.89 ± 8.85 | 5.29 ± 0.24 | 3.79 ± 0.27 | 399.27 ± 16.16 | 2.15 ± 1.04 | ||
4 | nd | nd | nd | 127.24 ± 4.30 | 7.26 ± 0.57 | 5.12 ± 0.15 | 444.73 ± 7.86 | 1.86 ± 0.77 | ||
10 | 1 | nd | nd | nd | 149.14 ± 6.98 | 6.13 ± 0.48 | 5.75 ± 0.43 | 480.65 ± 25.52 | 4.90 ± 0.13 | |
2 | nd | 2.07 ± 0.03 | 1.86 ± 0.07 | 186.43 ± 14.74 | 9.64 ± 0.08 | 6.35 ± 0.23 | 576.32 ± 5.93 | 6.71 ± 0.52 | ||
3 | nd | 1.90 ± 0.16 | 2.34 ± 0.11 | 199.60 ± 8.55 | 10.89 ± 0.87 | 7.97 ± 0.50 | 618.59 ± 50.38 | 8.20 ± 0.74 | ||
4 | nd | 2.61 ± 0.23 | 3.70 ± 0.18 | 220.30 ± 18.18 | 11.09 ± 0.66 | 6.55 ± 0.42 | 691.27 ± 7.45 | 6.74 ± 0.30 | ||
80 | 5 | 1 | nd | 4.60 ± 0.33 | 1.06 ± 0.05 | 223.73 ± 15.02 | 8.95 ± 0.73 | 3.06 ± 0.27 | 672.71 ± 49.12 | 8.13 ± 0.18 |
2 | nd | 4.97 ± 0.12 | 3.59 ± 0.09 | 250.17 ± 21.37 | 8.70 ± 0.55 | 2.96 ± 0.02 | 722.10 ± 60.17 | 12.55 ± 1.09 | ||
3 | nd | 4.52 ± 0.06 | 2.87 ± 0.14 | 253.59 ± 7.58 | 9.23 ± 0.32 | 2.84 ± 0.03 | 721.07 ± 58.77 | 21.77 ± 1.11 | ||
4 | nd | 5.03 ± 0.11 | nd | 253.75 ± 8.64 | 11.06 ± 0.86 | 3.11 ± 0.18 | 736.72 ± 8.72 | 21.21 ± 2.04 | ||
10 | 1 | nd | 5.03 ± 0.07 | nd | 253.75 ± 10.54 | 11.06 ± 0.74 | 3.11 ± 0.08 | 736.72 ± 3.66 | 21.21 ± 1.45 | |
2 | nd | 7.47 ± 0.37 | nd | 301.80 ± 26.44 | 10.89 ± 0.71 | 2.94 ± 0.22 | 871.33 ± 52.30 | 13.63 ± 0.99 | ||
3 | nd | 7.60 ± 0.22 | nd | 280.77 ± 14.73 | 8.81 ± 0.42 | 3.20 ± 0.17 | 850.56 ± 30.47 | 15.20 ± 0.56 | ||
4 | 11.91 ± 0.42 | 8.92 ± 0.44 | nd | 239.99 ± 20.19 | 13.05 ± 0.24 | 4.39 ± 0.36 | 860.70 ± 13.96 | 10.98 ± 0.87 | ||
110 | 5 | 1 | nd | 4.23 ± 0.06 | nd | 217.77 ± 5.66 | 7.33 ± 0.09 | 2.55 ± 0.14 | 660.54 ± 28.87 | 7.48 ± 0.63 |
2 | nd | 4.82 ± 0.01 | nd | 259.70 ± 17.05 | 9.86 ± 0.05 | 3.40 ± 0.11 | 739.60 ± 15.47 | 11.11 ± 1.04 | ||
3 | nd | 4.70 ± 0.10 | nd | 280.66 ± 23.56 | 11.64 ± 0.60 | 4.13 ± 0.35 | 714.51 ± 41.41 | 22.89 ± 1.52 | ||
4 | 7.20 ± 0.15 | 4.36 ± 0.08 | nd | 271.95 ± 3.72 | 12.57 ± 1.03 | 4.43 ± 0.40 | 768.41 ± 1.22 | 22.19 ± 2.07 | ||
10 | 1 | 7.45 ± 0.02 | 4.16 ± 0.28 | nd | 233.27 ± 5.27 | 10.29 ± 0.08 | 3.89 ± 0.23 | 756.26 ± 31.28 | 26.66 ± 1.95 | |
2 | nd | 2.42 ± 0.02 | nd | 308.74 ± 19.54 | 11.05 ± 1.07 | 4.89 ± 0.13 | 775.16 ± 26.55 | 152.85 ± 12.12 | ||
3 | nd | 5.05 ± 0.09 | nd | 255.42 ± 7.46 | 8.36 ± 0.54 | 3.06 ± 0.21 | 821.35 ± 3.33 | 35.94 ± 3.02 | ||
4 | nd | 4.68 ± 0.15 | nd | 271.74 ± 22.47 | 8.31 ± 0.11 | 2.97 ± 0.05 | 793.09 ± 54.06 | 36.89 ± 0.98 |
Temperature (°C) | Static Time (min) | Cycle Number | VIOLAX der | NEOX | VIOLAX | 13′-cis-LUT | LUT 5,6-ep | NEOX der | LUT | ZEAX | 9′-cis-LUT | α-CAR | β-CAR | LYC der 10 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
20 | 5 | 1 | 0.60 ± 0.02 | 0.70 ± 0.05 | 2.14 ± 0.14 | nd | nd | 0.30 ± 0.01 | 5.52 ± 0.21 | nd | 0.54 ± 0.03 | 1.45 ± 0.07 | 4.23 ± 0.22 | nd |
2 | 0.63 ± 0.01 | 0.83 ± 0.01 | 2.48 ± 0.21 | nd | 0.33 ± 0.01 | 0.35 ± 0.00 | 6.39 ± 0.45 | 0.28 ± 0.00 | 0.57 ± 0.00 | 1.80 ± 0.11 | 5.11 ± 0.01 | nd | ||
3 | 0.65 ± 0.02 | 0.90 ± 0.03 | 2.65 ± 0.23 | 0.21 ± 0.01 | 0.35 ± 0.01 | 0.35 ± 0.01 | 6.91 ± 0.44 | 0.30 ± 0.02 | 0.58 ± 0.01 | 2.01 ± 0.16 | 5.66 ± 0.51 | nd | ||
4 | 0.81 ± 0.05 | 1.06 ± 0.05 | 3.11 ± 0.17 | 0.30 ± 0.01 | 0.41 ± 0.02 | 0.44 ± 0.03 | 8.28 ± 0.66 | 0.37 ± 0.01 | 0.74 ± 0.02 | 2.28 ± 0.03 | 6.75 ± 0.55 | nd | ||
10 | 1 | 1.01 ± 0.07 | 1.90 ± 0.12 | 3.65 ± 0.30 | 1.55 ± 0.10 | 0.30 ± 0.00 | 0.52 ± 0.01 | 15.71 ± 1.02 | 0.54 ± 0.03 | 1.72 ± 0.01 | 3.71 ± 0.25 | 12.40 ± 1.02 | nd | |
2 | 0.84 ± 0.06 | 1.76 ± 0.12 | 3.45 ± 0.32 | 1.02 ± 0.03 | 0.10 ± 0.00 | 1.06 ± 0.01 | 13.16 ± 1.10 | 0.45 ± 0.03 | 1.52 ± 0.05 | 3.18 ± 0.24 | 10.82 ± 0.87 | nd | ||
3 | 1.11 ± 0.10 | 1.92 ± 0.01 | 3.24 ± 0.26 | 1.54 ± 0.06 | 0.00 ± 0.00 | 0.66 ± 0.04 | 15.27 ± 0.96 | 0.53 ± 0.01 | 1.98 ± 0.07 | 3.61 ± 0.16 | 12.59 ± 0.99 | nd | ||
4 | 1.16 ± 0.08 | 2.29 ± 0.17 | 4.81 ± 0.41 | 1.30 ± 0.09 | 0.13 ± 0.00 | 1.53 ± 0.09 | 17.51 ± 1.20 | 0.67 ± 0.04 | 1.12 ± 0.06 | 5.29 ± 0.41 | 13.87 ± 1.05 | nd | ||
50 | 5 | 1 | 1.09 ± 0.08 | 1.89 ± 0.10 | 4.40 ± 0.39 | 0.58 ± 0.01 | 0.62 ± 0.02 | 0.51 ± 0.01 | 12.71 ± 1.05 | 0.59 ± 0.01 | 0.91 ± 0.02 | 3.82 ± 0.12 | 9.22 ± 0.04 | nd |
2 | 0.92 ± 0.03 | 2.01 ± 0.15 | 4.66 ± 0.44 | 0.45 ± 0.01 | 0.63 ± 0.03 | 0.42 ± 0.03 | 12.95 ± 0.96 | 0.19 ± 0.00 | 0.79 ± 0.03 | 3.87 ± 0.12 | 9.38 ± 0.23 | nd | ||
3 | 0.95 ± 0.07 | 1.85 ± 0.12 | 4.18 ± 0.32 | 0.60 ± 0.03 | 0.60 ± 0.02 | 0.43 ± 0.02 | 12.49 ± 0.87 | 0.20 ± 0.01 | 0.80 ± 0.03 | 3.88 ± 0.05 | 9.38 ± 0.00 | nd | ||
4 | 1.14 ± 0.05 | 2.17 ± 0.20 | 5.00 ± 0.47 | 0.60 ± 0.05 | 0.70 ± 0.05 | 0.52 ± 0.02 | 14.30 ± 0.56 | 0.65 ± 0.05 | 1.02 ± 0.08 | 4.34 ± 0.33 | 10.44 ± 0.21 | nd | ||
10 | 1 | 1.05 ± 0.06 | 1.89 ± 0.13 | 3.29 ± 0.15 | 1.34 ± 0.11 | 0.65 ± 0.05 | 0.40 ± 0.01 | 14.76 ± 1.11 | 0.26 ± 0.01 | 1.03 ± 0.07 | 4.76 ± 0.45 | 11.83 ± 0.66 | nd | |
2 | 1.23 ± 0.01 | 2.20 ± 0.17 | 3.73 ± 0-29 | 1.67 ± 0.10 | 0.77 ± 0.04 | 0.46 ± 0.02 | 17.67 ± 0.85 | 0.84 ± 0.06 | 1.24 ± 0.09 | 5.74 ± 0.55 | 14.10 ± 0.36 | nd | ||
3 | 1.36 ± 0.10 | 2.21 ± 0.07 | 3.76 ± 0.21 | 1.93 ± 0.15 | 0.89 ± 0.01 | 0.69 ± 0.04 | 18.49 ± 0.84 | 0.89 ± 0.07 | 1.59 ± 0.10 | 5.88 ± 0.21 | 14.56 ± 0.74 | nd | ||
4 | 1.80 ± 0.13 | 2.67 ± 0.09 | 5.38 ± 0.11 | 1.87 ± 0.06 | 1.13 ± 0.09 | 0.92 ± 0.08 | 21.88 ± 1.57 | 1.05 ± 0.09 | 1.76 ± 0.09 | 6.30 ± 0.11 | 15.84 ± 0.77 | nd | ||
80 | 5 | 1 | 2.07 ± 0.14 | 2.39 ± 0.13 | 6.10 ± 0.50 | 1.48 ± 0.03 | 1.08 ± 0.08 | 1.20 ± 0.10 | 20.38 ± 1.66 | 0.72 ± 0.05 | 1.99 ± 0.11 | 5.13 ± 0.26 | 14.83 ± 0.91 | nd |
2 | 1.99 ± 0.15 | 2.71 ± 0.22 | 5.82 ± 0.33 | 2.00 ± 0.17 | 1.13 ± 0.09 | 1.13 ± 0.08 | 21.93 ± 2.00 | 0.82 ± 0.04 | 3.99 ± 0.12 | 5.62 ± 0.09 | 15.54 ± 1.21 | 0.36 ± 0.01 | ||
3 | 2.01 ± 0.16 | 2.78 ± 0.26 | 5.57 ± 0.45 | 1.93 ± 0.18 | 0.14 ± 0.01 | 1.03 ± 0.07 | 21.25 ± 1.52 | 0.29 ± 0.01 | 3.93 ± 0.06 | 5.42 ± 0.49 | 15.64 ± 1.20 | 0.34 ± 0.00 | ||
4 | 1.70 ± 0.09 | 3.12 ± 0.24 | 5.11 ± 0.28 | 2.25 ± 0.08 | 1.08 ± 0.08 | 0.85 ± 0.07 | 22.29 ± 0.98 | 0.82 ± 0.05 | 3.82 ± 0.14 | 5.90 ± 0.27 | 15.35 ± 0.59 | 0.35 ± 0.01 | ||
10 | 1 | 1.70 ± 0.09 | 3.12 ± 0.12 | 5.11 ± 0.24 | 2.25 ± 0.10 | 1.08 ± 0.07 | 0.85 ± 0.06 | 22.29 ± 0.58 | 0.82 ± 0.05 | 3.82 ± 0.20 | 5.90 ± 0.35 | 15.35 ± 0.85 | 0.35 ± 0.02 | |
2 | 2.19 ± 0.011 | 3.47 ± 0.21 | 6.67 ± 0.52 | 2.38 ± 0.07 | 1.32 ± 0.07 | 1.17 ± 0.11 | 25.40 ± 2.21 | 0.88 ± 0.06 | 4.50 ± 0.23 | 6.59 ± 0.24 | 17.55 ± 0.08 | 0.41 ± 0.01 | ||
3 | 2.12 ± 0.18 | 3.28 ± 0.25 | 5.86 ± 0.23 | 2.49 ± 0.22 | 1.24 ± 0.10 | 1.10 ± 0.05 | 24.30 ± 0.33 | 0.87 ± 0.04 | 4.57 ± 0.17 | 6.37 ± 0.24 | 17.00 ± 1.05 | 0.44 ± 0.02 | ||
4 | 2.45 ± 0.21 | 3.09 ± 0.11 | 6.03 ± 0.36 | 2.17 ± 0.14 | 1.26 ± 0.12 | 1.13 ± 0.09 | 24.40 ± 2.08 | 0.82 ± 0.03 | 4.48 ± 0.31 | 6.35 ± 0.52 | 16.56 ± 0.74 | nd | ||
110 | 5 | 1 | 1.69 ± 0.012 | 2.87 ± 0.06 | 5.91 ± 0.35 | 1.79 ± 0.17 | 1.00 ± 0.05 | 0.67 ± 0.02 | 20.89 ± 0.78 | 0.65 ± 0.03 | 2.90 ± 0.18 | 5.51 ± 0.31 | 14.72 ± 0.47 | nd |
2 | 1.72 ± 0.14 | 3.50 ± 0.014 | 6.16 ± 0.41 | 2.18 ± 0.20 | 1.18 ± 0.09 | 0.82 ± 0.02 | 23.52 ± 0.32 | 0.92 ± 0.07 | 3.25 ± 0.22 | 6.21 ± 0.20 | 16.00 ± 1.25 | 0.32 ± 0.00 | ||
3 | 1.77 ± 0.13 | 3.62 ± 0.22 | 5.94 ± 0.35 | 2.44 ± 0.19 | 0.98 ± 0.07 | 0.81 ± 0.05 | 24.20 ± 1.47 | 0.87 ± 0.06 | 3.57 ± 0.09 | 6.12 ± 0.54 | 16.41 ± 1.26 | 0.34 ± 0.01 | ||
4 | 1.74 ± 0.14 | 3.43 ± 0.30 | 5.26 ± 0.47 | 2.50 ± 0.23 | 1.09 ± 0.06 | 0.74 ± 0.03 | 23.23 ± 0.88 | 0.76 ± 0.06 | 3.63 ± 0.16 | 5.77 ± 0.20 | 15.71 ± 0.93 | 0.36 ± 0.01 | ||
10 | 1 | 1.93 ± 0.15 | 3.40 ± 0.24 | 4.68 ± 0.43 | 2.65 ± 0.24 | 1.08 ± 0.06 | 0.73 ± 0.04 | 22.98 ± 1.26 | 0.81 ± 0.02 | 3.70 ± 0.08 | 5.83 ± 0.17 | 15.53 ± 0.88 | 0.43 ± 0.03 | |
2 | 2.04 ± 0.11 | 4.33 ± 0.36 | 2.50 ± 0.21 | 4.35 ± 0.37 | 0.95 ± 0.07 | 0.59 ± 0.03 | 30.16 ± 2.11 | 1.07 ± 0.01 | 4.54 ± 0.25 | 7.03 ± 0.66 | 19.02 ± 1.52 | 0.85 ± 0.04 | ||
3 | 1.97 ± 0.05 | 3.45 ± 0.15 | 4.71 ± 0.12 | 3.00 ± 0.28 | 1.13 ± 0.03 | 0.80 ± 0.07 | 24.18 ± 1.45 | 0.90 ± 0.07 | 3.72 ± 0.15 | 6.19 ± 0.62 | 16.29 ± 0.04 | 0.55 ± 0.03 | ||
4 | 1.77 ± 0.07 | 3.17 ± 0.27 | 3.93 ± 0.33 | 2.72 ± 018 | 0.97 ± 0.02 | 0.71 ± 0.06 | 23.07 ± 0.63 | 0.74 ± 0.06 | 3.74 ± 0.10 | 5.59 ± 0.47 | 15.80 ± 0.14 | 0.58 ± 0.04 |
Parameter | ORAC |
---|---|
THCA | 0.86 * |
TF | 0.87 * |
TP | 0.87 * |
TCH | 0.94 * |
TCAR | 0.92 * |
TPG | 0.92 * |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Repajić, M.; Cegledi, E.; Kruk, V.; Pedisić, S.; Çınar, F.; Bursać Kovačević, D.; Žutić, I.; Dragović-Uzelac, V. Accelerated Solvent Extraction as a Green Tool for the Recovery of Polyphenols and Pigments from Wild Nettle Leaves. Processes 2020, 8, 803. https://doi.org/10.3390/pr8070803
Repajić M, Cegledi E, Kruk V, Pedisić S, Çınar F, Bursać Kovačević D, Žutić I, Dragović-Uzelac V. Accelerated Solvent Extraction as a Green Tool for the Recovery of Polyphenols and Pigments from Wild Nettle Leaves. Processes. 2020; 8(7):803. https://doi.org/10.3390/pr8070803
Chicago/Turabian StyleRepajić, Maja, Ena Cegledi, Valentina Kruk, Sandra Pedisić, Fırat Çınar, Danijela Bursać Kovačević, Ivanka Žutić, and Verica Dragović-Uzelac. 2020. "Accelerated Solvent Extraction as a Green Tool for the Recovery of Polyphenols and Pigments from Wild Nettle Leaves" Processes 8, no. 7: 803. https://doi.org/10.3390/pr8070803
APA StyleRepajić, M., Cegledi, E., Kruk, V., Pedisić, S., Çınar, F., Bursać Kovačević, D., Žutić, I., & Dragović-Uzelac, V. (2020). Accelerated Solvent Extraction as a Green Tool for the Recovery of Polyphenols and Pigments from Wild Nettle Leaves. Processes, 8(7), 803. https://doi.org/10.3390/pr8070803