Phytotoxicity and Effect of Ionic Liquids on Antioxidant Parameters in Spring Barley Seedlings: The Impact of Exposure Time
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Experimental Design
2.3. Determination of Basic Phytotoxicity Parameters
2.4. Determination of Assimilation Pigments Content
2.5. Determination of Non-Enzymatic Markers of Oxidative Stress
2.6. Determination of Antioxidant Enzyme Activity
2.7. Data Analysis
3. Results and Discussion
3.1. Phytotoxicity Assay
3.2. Effect of ILs on Pigments Content
3.3. Effect of ILs on MDA and H2O2 Content
3.4. Effect of ILs on Free Proline Content
3.5. Effects of ILs on Antioxidant Enzymes Activities
3.6. Interactions between Tested Parameters
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Fan, H.; Jin, M.; Wang, H.; Xu, Q.; Xu, L.; Wang, C.; Du, S.; Liu, H. Effect of differently methyl-substituted ionic liquids on Scenedesmus obliquus growth, photosynthesis, respiration, and ultrastructure. Environ. Pollut. 2019, 250, 155–165. [Google Scholar] [CrossRef]
- Cvjetko Bubalo, M.; Radošević, K.; Radojčić Redovniković, I.; Halambek, J.; Srček, V.G. A brief overview of the potential environmental hazards of ionic liquids. Ecotoxicol. Environ. Saf. 2014, 99, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Egorova, K.S.; Ananikov, V.P. Fundamental importance of ionic interactions in the liquid phase: A review of recent studies of ionic liquids in biomedical and pharmaceutical applications. J. Mol. Liq. 2018, 272, 271–300. [Google Scholar] [CrossRef]
- Pernak, J.; Czerniak, K.; Niemczak, M.; Ławniczak, Ł.; Kaczmarek, D.K.; Borkowski, A.; Praczyk, T. Bioherbicidal Ionic Liquids. ACS Sustain. Chem. Eng. 2018, 6, 2741–2750. [Google Scholar] [CrossRef]
- Cvjetko Bubalo, M.; Hanousek, K.; Radošević, K.; Srček, V.G.; Jakovljević, T.; Radojčić Redovniković, I. Imidazolium based ionic liquids: Effect of different anions and alkyl chains lengths on the barley seedlings. Ecotoxicol. Environ. Saf. 2014, 101, 116–123. [Google Scholar] [CrossRef]
- Liu, T.; Zhu, L.; Xie, H.; Wang, J.; Wang, J.; Sun, F.; Wang, F. Effects of the ionic liquid 1-octyl-3-methylimidazolium hexafluorophosphate on the growth of wheat seedlings. Environ. Sci. Pollut. Res. 2014, 21, 3936–3945. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Wang, J.; Du, Z.; Li, B.; Juhasz, A.; Tan, M.; Zhu, L.; Wang, J. Toxicity Evaluation of Three Imidazolium-based ionic liquids ([C6mim]R) on Vicia faba Seedlings Using an integrated biomarker response (IBR) index. Chemosphere 2020, 240, 124919. [Google Scholar] [CrossRef] [PubMed]
- Tot, A.; Vraneša, M.; Maksimović, I.; Putnik-Delić, M.; Daničić, M.; Belić, S.; Gadžurić, S. The effect of imidazolium based ionic liquids on wheat and barley germination and growth: Influence of length and oxygen functionalization of alkyl side chain. Ecotoxicol. Environ. Saf. 2018, 147, 401–406. [Google Scholar] [CrossRef]
- Jin, M.; Wang, H.; Li, Z.; Fu, L.; Chu, L.; Wu, J.; Du, S.; Liu, H. Physiological responses of Chlorella pyrenoidosa to 1-hexyl-3-methyl chloride ionic liquids with different cations. Sci. Total Environ. 2019, 685, 315–323. [Google Scholar] [CrossRef]
- Egorova, K.S.; Ananikov, V.A. Toxicity of ionic liquids: Eco (cyto) activity as complicated, but unavoidable parameter for task-specific optimization. ChemSusChem 2014, 7, 336–360. [Google Scholar] [CrossRef]
- Anjaneyulu, E.; Reddy, P.S.; Sunita, M.S.; Kishor, P.B.K.; Meriga, B. Salt tolerance and activity of antioxidative enzymes of transgenic finger millet overexpressing a vacuolar H+−pyrophosphatase gene (SbVPPase) from Sorghum bicolor. J. Plant Physiol. 2014, 171, 789–798. [Google Scholar] [PubMed]
- Rosalie, R.; Joas, J.; Deytieux-Belleau, C.; Vulcain, E.; Payet, B.; Dufossé, L.; Léchaudel, M. Antioxidant and enzymatic responses to oxidative stress induced by pre-harvest water supply reduction and ripening on mango (Mangifera indica L. cv. ‘Cogshall’) in relation to carotenoid content. J. Plant Physiol. 2015, 184, 68–78. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sánchez-Rodríguez, E.; Rubio-Wilhelmi, M.Ạ.M.; Cervilla, L.M.; Blasco, B.; Rios, J.J.; Rosales, M.A.; Romero, L.; Ruiz, J.M. Genotypic differences in some physiological parameters symptomatic for oxidative stress under moderate drought in tomato plants. Plant Sci. 2010, 178, 30–40. [Google Scholar]
- Gąsiorowski, H. Jęczmień. Chemia i Technologia, (Pod Red.); PWRiL: Poznań, Poland, 1997. (In Poland) [Google Scholar]
- OECD/OCDE 208. Guidelines for the Testing of Chemical; Terrestrial Plant: Seedling Test: Seedlings Emergence and Seedling Growth Test; Organisation for Economic Co-operation and Development: Paris, France, 2006. [Google Scholar]
- PN-EN ISO 11269-2. Jakość Gleby. Oznaczanie Wpływu Zanieczyszczeń na Florę Glebową. Część 2: Wpływ Zanieczyszczeń Gleby na Wschody i Wczesny Wzrost Roślin Wyższych; Polski Komitet Normalizacyjny: Warsaw, Poland, 2013. [Google Scholar]
- Wang, L.-S.; Wang, L.; Wang, L.; Wang, G.; Li, Z.-H.; Wang, J.-J. Effect of 1-butyl-3-methylimidazolium tetrafluoroborate on the wheat (Triticum aestivum L.) seedlings. Environ. Toxicol. 2009, 24, 296–303. [Google Scholar]
- Kowalska, I. The content of selected components of spinach (Spinacia oleracea L.) grown at varying levels of calcium. Rocz. Akad. Roln. Poznań 2004, CCCLX, 105–110. [Google Scholar]
- Oren, R.; Werk, K.S.; Buchmann, N.; Zimmermann, R. Chlorophyll-nutrient relationships identify nutritionally caused decline in Picea abies stands. Can. J. For. Res. 1993, 23, 1187–1195. [Google Scholar] [CrossRef]
- Bates, L.S.; Waldren, R.P.; Teare, I.D. Rapid determination of free proline for water-stress studies. Plant Soil 1973, 39, 205–207. [Google Scholar]
- Hodges, D.M.; DeLong, J.M.; Forney, C.F.; Prange, R.K. Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta 1999, 207, 604–611. [Google Scholar]
- Singh, H.P.; Batish, D.R.; Kohli, R.K.; Arora, K. Arsenic-induced root growth inhibition in mung bean (Phaseolus aureus Roxb.) is due to oxidative stress resulting from enhanced lipid peroxidation. Plant Growth Regul. 2007, 53, 65–73. [Google Scholar]
- Giannopolitis, C.N.; Ries, S.K. Superoxide dismutase. I. Occurrence in higher plants. Plant Physiol. 1977, 59, 309–314. [Google Scholar]
- Kar, M.; Mishra, D. Catalase, peroxidase, and polyphenoloxidase activities during rice leaf senescence. Plant Physiol. 1976, 57, 315–319. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abassi, N.A.; Kushad, M.M.; Endress, A.G. Active oxygen-scavenging enzymes activities in developing apple flowers and fruits. Sci. Hortic. 1998, 74, 183–194. [Google Scholar] [CrossRef]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Biczak, R.; Pawłowska, B.; Feder-Kubis, J. The effect of ionic liquids with (−)-menthol derivative containing a chloride anion to weed. Ecol. Chem. Eng. S 2017, 24, 637–651. [Google Scholar] [CrossRef] [Green Version]
- Pawłowska, B.; Feder-Kubis, J.; Telesiński, A.; Biczak, R. Biochemical Responses of Wheat Seedlings on the Introduction of Selected Chiral Ionic Liquids to the Soils. J. Agric. Food Chem. 2019, 67, 3086–3095. [Google Scholar] [CrossRef] [PubMed]
- Tot, A.; Vraneš, M.; Maksimović, I.; Putnik-Delić, M.; Daničić, M.; Gadžurić, S. Evaluation of the impact of different alkyl length and type of substituent in imidazolium ionic liquids on cucumber germination, growth and oxidative stress. Environ. Sci. Pollut. Res. 2018, 25, 35594–35601. [Google Scholar] [CrossRef]
- Biczak, R.; Śnioszek, M.; Telesiński, A.; Pawłowska, B. Growth inhibition and efficiency of the antioxidant system in spring barley and common radish grown on soil polluted ionic liquids with iodide anions. Ecotoxicol. Environ. Saf. 2017, 139, 463–471. [Google Scholar] [CrossRef]
- Stepnowski, P.; Mrozik, W.; Nichthauser, J. Adsorption of alkylimidazolium and alkylpyridinium ionic liquids onto natural soils. Environ. Sci. Technol. 2007, 41, 511–516. [Google Scholar] [CrossRef]
- Studzińska, S.; Kowalkowski, T.; Buszewski, B. Study of ionic liquid cations transport in soil. J. Hazard. Mater. 2009, 168, 1542–1547. [Google Scholar] [CrossRef]
- Biczak, R.; Bachowska, B.; Bałczewski, P. Study of phytotoxicity of ionic liquid 1-(methylthiomethylene)-3-butylimidazolium chloride. Proc. ECOpole 2010, 4, 105–114. (In Poland) [Google Scholar]
- Liu, H.; Zhang, S.; Zhang, X.; Chen, C. Growth inhibition and effect on photosystem by three imidazolium ionic liquids in rice seedlings. J. Hazard. Mater. 2015, 286, 440–448. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Li, X.; Chen, D.; Wang, J. Effects of 1-octyl-3-methylimidazolium bromide on the antioxidant system of Lemna minor. Protoplasma 2013, 250, 103–110. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Yang, M.; Liu, L.; Zhang, R.; Cui, Y.; Dang, P.; Ge, X.; Chen, X. Effects of 1-butyl-3-methylimidazolium chloride on the photosynthetic system and metabolism of maize (Zea mays L.) seedlings. Ecotoxicol. Environ. Saf. 2018, 161, 648–654. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, S.; Hu, X.; Chen, C. Phytotoxicity and oxidative stress effect of 1-octyl-3-methylimidazolium chloride ionic liquid on rice seedlings. Environ. Pollut. 2013, 181, 242–249. [Google Scholar] [CrossRef]
- Wang, X.; Dinler, B.S.; Vignjevic, M.; Jacobsen, S.; Wollenweber, B. Physiological and proteome studies of responses to heat stress during grain filling in contrasting wheat cultivars. Plant Sci. 2015, 230, 33–50. [Google Scholar] [CrossRef] [PubMed]
- Moieni-Korbekandi, Z.; Karimzadeh, G.; Sharifi, M. Cold-induced Changes of Proline, Malondialdehyde and Chlorophyll in Spring Canola Cultivars. J. Plant Physiol. Breed. 2014, 4, 1–11. [Google Scholar]
- Rombel-Bryzek, A.; Pisarek, I. Wpływ kwasów huminowych na aktywność metaboliczną buraka cukrowego w warunkach suszy. Proc. ECOpole 2017, 11, 279–286. (In Poland) [Google Scholar]
- Biczak, R.; Pawłowska, B.; Telesiński, A.; Kapuśniak, J. Role of cation structure in the phytotoxicity of ionic liquids: Growth inhibition and oxidative stress in spring barley and common radish. Environ. Sci. Pollut. Res. 2017, 24, 18444–18457. [Google Scholar] [CrossRef]
- Liu, T.; Wang, J.; Wang, J.; Zhu, L. Assessing the influence of 1-dodecyl-3-methyl-imidazolium chloride on soil characteristics and Vicia faba seedlings. Ecotoxicol. Environ. Saf. 2018, 152, 114–120. [Google Scholar] [CrossRef]
- Liu, D.; Liu, H.; Wang, S.; Chen, J.; Xia, Y. The toxicity of ionic liquid 1-decylpyridinium bromide to the algae Scenedesmus obliquus: Growth inhibition, phototoxicity, and oxidative stress. Sci. Total Environ. 2018, 622–623, 1572–1580. [Google Scholar] [CrossRef]
- Chen, Z.; Zhou, Q.; Guan, W.; Wang, J.; Li, Y.; Yu, N.; Wei, J. Effects of imidazolium-based ionic liquids with different anions on wheat seedlings. Chemosphere 2018, 194, 20–27. [Google Scholar] [CrossRef] [PubMed]
- Herman, B.; Biczak, R.; Gurgul, E. Effect of 1,10-phenanthroline on peroxidase and catalase activity and chlorophyll, sugar, and ascorbic acid contents. Biol. Plant. 1998, 41, 607–611. [Google Scholar] [CrossRef]
Parameter | Day 7 | Day 14 | Day 21 |
---|---|---|---|
[BMIM][Br] | |||
Inhibition for fresh weight | 189.3 ± 11.2 (37.36–959.2) | 258.8 ± 3.4 (150.5–444.9) | 270.1 ± 1.9 (154.5–472.5) |
Inhibition for root length | 214.1 ± 1.8 (172.90–266.1) | 257.8 ± 3.3 (193.1–344.2) | 218.7 ± 3.6 (160.1–298.8) |
Inhibition for shoot length | 263.5 ± 6.8 (93.15–745.4) | 427.4 ± 17.9 (71.38–2559) | 882.0 ± 36.0 (476.5–1446) |
[TBA][Br] | |||
Inhibition for fresh weight | 295.0 ± 31.5 (7.712–11,200) | 470.0 ± 34.8 (14.83–14,898) | 766.0 ± 8,4 (375.5–1563) |
Inhibition for root length | 265.2 ± 12.5 (81.03–868.1) | 434.8 ± 39.5 (223.3–2847) | 341.7 ± 19.4 (78.58–1486) |
Inhibition for shoot length | 1319 ± 107 (13.62–127,783) | 1632 ± 184 (14.03–528,100) | 1748 ± 166 (6.68–457,200) |
[TBP][Br] | |||
Inhibition for fresh weight | 78.72 ± 4.49 (38.69–159.3) | 301.6 ± 22.6 (22.76–3997) | 482.0 ± 48.2 (8.760–26,527) |
Inhibition for root length | 82.45 ± 8.28 (2.770–245.4) | 78.70 ± 4.38 (14.70–422.3) | 92.81 ± 3.49 (69.43–124.1) |
Inhibition for shoot length | 145.6 ± 6.9 (44.94–472.0) | 382.0 ± 14.9 (76.96–1896) | 617.3 ± 44.1 (23.72–16,062) |
Doses of ILs (mg kg−1 of Soil DM) | [TBA][Br] | [BMIM][Br] | [TBP][Br] |
---|---|---|---|
Day 7 | |||
0 1 10 100 400 700 1000 | 39.004 ± 1.989 bcd 38.587 ± 0.318 cd 41.328 ± 1.272 b 45.752 ± 0.413 a 37.890 ± 0.827 d 38.530 ± 0.223 cd 37.905 ± 0.694 d | 32.558 ± 0.358 de 27.925 ± 0.269 g 27.000 ± 0.247 gh 27.103 ± 0.534 gh 32.039 ± 0.314 ef 33.846 ± 0.294 c 34.125 ± 0.158 c | 25.520 ± 0.204 i 22.868 ± 0.066 j 22.884 ± 0.235 j 33.648 ± 0.716 e 34.842 ± 0.656 d 40.260 ± 0.065 b 47.831 ± 0.297 a |
Day 14 | |||
0 1 10 100 400 700 1000 | 17.431 ± 1.072 ij 15.666 ± 0.146 jk 15.607 ± 0.146 jk 25.745 ± 0.819 g 34.082 ± 1.483 ef 35.296 ± 0.517 e 40.608 ± 1.034 bc | 19.162 ± 0.973 k 17.834 ± 0.134 mn 18.978 ± 0.173 lm 24.088 ± 0.414 j 27.143 ± 0.781 gh 33.568 ± 0.563 cd 37.715 ± 0.257 a | 22.557 ± 0.277 j 23.307 ± 0.118 j 24.589 ± 0.068 i 30.477 ± 0.134 g 33.124 ± 0.268 ef 36.743 ± 0.316 c 39.834 ± 0.139 b |
Day 21 | |||
0 1 10 100 400 700 1000 | 13.847 ± 0.223 k 18.717 ± 0.234 i 16.981 ± 0.064 ij 22.666 ± 0.478 h 26.751 ± 0.338 g 27.334 ± 0.319 g 32.073 ± 0.113 f | 19.215 ± 0.150 kl 17.595 ± 0.147 n 19.169 ± 0.117 kl 25.006 ± 0.236 ij 26.149 ± 0.512 hi 30.965 ± 0.284 f 35.576 ± 0.066 b | 18.361 ± 0.118 k 16.930 ± 0.136 l 17.257 ± 0.199 l 27.708 ± 0.499 h 32.570 ± 0.547 f 34.729 ± 0.181 d 35.024 ± 0.401 d |
Doses of ILs (mg kg−1 of Soil DM) | [TBA][Br] | [BMIM][Br] | [TBP][Br] |
---|---|---|---|
Day 7 | |||
0 1 10 100 400 700 1000 | 12.392 ± 0.582 mn 11.606 ± 0.607 n 13.558 ± 0.392 lm 18.295 ± 0.516 i 20.246 ± 0.335 gh 24.902 ± 0.857 e 29.110 ± 0.453 c | 10.321 ± 0.557 jk 11.181 ± 0.785 ijk 10.137 ± 0.114 k 16.010 ± 0.696 f 16.051 ± 0.577 f 24.465 ± 0.624 d 28.375 ± 0.604 c | 11.334 ± 0.352 m 11.014 ± 0.549 m 11.872 ± 0.554 lm 17.530 ± 0.468 h 21.867 ± 0.985 f 23.309 ± 0.309 e 25.576 ± 0.446 c |
Day 14 | |||
0 1 10 100 400 700 1000 | 13.956 ± 0.180 kl 13.694 ± 0.432 klm 14.237 ± 0.334 jkl 19.330 ± 0.372 hi 21.634 ± 0.602 fg 26.743 ± 0.458 d 31.143 ± 0.588 b | 12.326 ± 0.375 hi 12.093 ± 0.295 hij 12.141 ± 0.122 hij 17.826 ± 0.650 e 17.982 ± 0.343 e 25.217 ± 0.492 d 30.992 ± 0.693 b | 13.255 ± 0.513 kl 14.040 ± 0.441 k 14.624 ± 0.401 jk 19.264 ± 0.288 g 24.125 ± 0.297 de 25.402 ± 0.375 cd 28.888 ± 0.202 b |
Day 21 | |||
0 1 10 100 400 700 1000 | 15.730 ± 0.454 j 15.136 ± 0.692 j 15.753 ± 0.476 j 21.051 ± 0.491 g 23.118 ± 0.435 f 28.831 ± 0.365 c 34.872 ± 0.339 a | 14.224 ± 0.456 g 13.674 ± 0.063 g 13.952 ± 0.611 g 18.791 ± 0.356 e 19.226 ± 0.380 e 28.774 ± 0.634 c 35.538 ± 0.609 a | 15.823 ± 0.422 ij 16.536 ± 0.447 hi 17.022 ± 0.313 hi 21.831 ± 0.361 f 26.222 ± 0.359 c 30.074 ± 0.502 b 32.156 ± 0.293 a |
Parameter | Term (A) | Dose of ILs (B) | A × B | Error |
---|---|---|---|---|
[TBA][Br] | ||||
POD | 27.391 | 56.641 | 15.173 | 0.796 |
CAT | 16.809 | 28.407 | 50.308 | 4.476 |
SOD | 37.809 | 17.043 | 30.705 | 14.443 |
MDA | 79.658 | 10.416 | 8.608 | 1.318 |
H2O2 | 54.828 | 24.647 | 20.176 | 0.349 |
Proline | 4.574 | 94.573 | 0.486 | 0.366 |
Chl a | 6.603 | 88.618 | 4.011 | 0.768 |
Chl b | 6.931 | 87.203 | 4.868 | 0.997 |
Chl a + Chl b | 6.296 | 88.804 | 4.269 | 0.632 |
Chl a/Chl b | 15.817 | 18.550 | 41.609 | 24.024 |
Car | 1.509 | 93.767 | 4.068 | 0.656 |
(Chl a + Chl b)/Car | 46.411 | 14.335 | 26.983 | 12.241 |
Dry weight | 0.554 | 94.551 | 3.531 | 1.364 |
Yield | 23.219 | 72.536 | 3.665 | 0.579 |
[BMIM][Br] | ||||
POD | 25.888 | 67.404 | 4.293 | 2.414 |
CAT | 51.902 | 27.154 | 15.204 | 5.739 |
SOD | 82.565 | 3.686 | 4.493* | 9.256 |
MDA | 71.395 | 20.018 | 6.939 | 1.648 |
H2O2 | 17.090 | 68.209 | 14.437 | 0.263 |
Proline | 4.820 | 94.019 | 0.837 | 0.324 |
Chl a | 3.557 | 89.629 | 6.664 | 0.150 |
Chl b | 0.652 | 92.854 | 6,222 | 0,272 |
Chl a + Chl b | 2,602 | 90,933 | 6.288 | 0.178 |
Chl a/Chl b | 17.628 | 30.442 | 39.883 | 12.047 |
Car | 3.751 | 92.367 | 3.759 | 0.124 |
(Chl a + Chl b)/Car | 7.291 | 24.571 | 21.511 * | 46.627 |
Dry weight | 0.035 * | 98.502 | 0.680 | 0.783 |
Yield | 39.772 | 55.747 | 3.953 | 0.528 |
[TBP][Br] | ||||
POD | 33.124 | 55.730 | 10.089 | 1.056 |
CAT | 0.082 * | 66.465 | 25.675 | 7.796 |
SOD | 47.434 | 28.123 | 11.401 | 13.042 |
MDA | 60.049 | 29.547 | 9.577 | 0.826 |
H2O2 | 10.571 | 85.526 | 3.809 | 0.094 |
Proline | 11.037 | 87.964 | 0.493 | 0.506 |
Chl a | 6.161 | 83.761 | 9.930 | 0.148 |
Chl b | 3.727 | 83.285 | 12.795 | 0.194 |
Chl a + Chl b | 5.577 | 83.798 | 10.472 | 0.153 |
Chl a/Chl b | 9.158 | 37.116 | 51.695 | 2.031 |
Car | 2.547 | 92.400 | 4.912 | 0.140 |
(Chl a + Chl b)/Car | 25.412 | 22.529 | 51.815 | 0.244 |
Dry weight | 1.661 | 93.352 | 4.599 | 0.388 |
Yield | 23.198 | 71.51 | 4.862 | 0.379 |
Traits | CAT | SOD | MDA | H2O2 | Pro | Chla | Chlb | Car | DW | Yield |
---|---|---|---|---|---|---|---|---|---|---|
POD | 0.639 ** | 0.012 | −0.164 * | 0.293 ** | 0.807 ** | −0.801 ** | −0.784 ** | −0.735 ** | 0.793 ** | −0.361 ** |
CAT | – | 0.224 ** | 0.194 * | 0.466 ** | 0.527 ** | −0.604 ** | −0.596 ** | −0.588 ** | 0.679 ** | −0.613 ** |
SOD | – | 0.193 * | 0.189 * | −0.086 | 0.055 | 0.049 | 0.025 | 0.020 | −0.135 | |
MDA | – | 0.636 ** | 0.056 | −0.093 | −0.130 | −0.203 * | 0.262 ** | −0.636 ** | ||
H2O2 | – | 0.556 ** | −0.531 ** | −0.534 ** | −0.626 ** | 0.656 ** | −0.802 ** | |||
Pro | – | −0.908 ** | −0.891 ** | −0.909 ** | 0.907 ** | −0.588 ** | ||||
Chla | – | 0.987 ** | 0.975 ** | −0.920 ** | 0.671 ** | |||||
Chlb | – | 0.955 ** | −0.913 ** | 0.699 ** | ||||||
Car | – | −0.945 ** | 0.731 ** | |||||||
DW | – | −0.746 ** |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Biczak, R.; Pawłowska, B.; Pilis, W.; Szczegielniak, J.; Wróbel, J.; Telesiński, A. Phytotoxicity and Effect of Ionic Liquids on Antioxidant Parameters in Spring Barley Seedlings: The Impact of Exposure Time. Processes 2020, 8, 1175. https://doi.org/10.3390/pr8091175
Biczak R, Pawłowska B, Pilis W, Szczegielniak J, Wróbel J, Telesiński A. Phytotoxicity and Effect of Ionic Liquids on Antioxidant Parameters in Spring Barley Seedlings: The Impact of Exposure Time. Processes. 2020; 8(9):1175. https://doi.org/10.3390/pr8091175
Chicago/Turabian StyleBiczak, Robert, Barbara Pawłowska, Wiesław Pilis, Jan Szczegielniak, Jacek Wróbel, and Arkadiusz Telesiński. 2020. "Phytotoxicity and Effect of Ionic Liquids on Antioxidant Parameters in Spring Barley Seedlings: The Impact of Exposure Time" Processes 8, no. 9: 1175. https://doi.org/10.3390/pr8091175
APA StyleBiczak, R., Pawłowska, B., Pilis, W., Szczegielniak, J., Wróbel, J., & Telesiński, A. (2020). Phytotoxicity and Effect of Ionic Liquids on Antioxidant Parameters in Spring Barley Seedlings: The Impact of Exposure Time. Processes, 8(9), 1175. https://doi.org/10.3390/pr8091175