Selective Determination of Dopamine in Pharmaceuticals and Human Urine Using Carbon Quantum Dots as a Fluorescent Probe
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemical Reagents
2.2. Apparatus
2.3. Preparation of Fluorescent C-Dots
2.4. Preparation of Samples
2.5. Detection of DA
3. Results
3.1. Optimization of the Preparation Conditions
3.2. Characterization of C-Dots
3.3. The Principle of the Fluorescence Probe
3.4. Mechanism of Fluorescence Quenching
3.5. Optimal Conditions for DA Detection
3.5.1. Effect of pH
3.5.2. Effect of the Amount of C-Dots
3.5.3. Effects of Reaction Temperature and Reaction Time
3.6. Method Validation
3.6.1. Calibration Range
3.6.2. Accuracy and Precision
3.6.3. Dilution Integrity
3.6.4. Selectivity of the Proposed Method
3.6.5. Robustness
3.6.6. Stability
3.7. Method Comparison
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Montague, P.R.; Hyman, S.E.; Cohen, J.D. Computational roles for dopamine in behavioural control. Nature 2004, 431, 760–767. [Google Scholar] [CrossRef] [PubMed]
- Venton, B.J.; Wightman, R.M. Psychoanalytical electrochemistry: Dopamine and behavior. Anal. Chem. 2003, 75, 414A–421A. [Google Scholar] [CrossRef] [Green Version]
- Mohseni, N.; Bahram, M. Highly selective and sensitive determination of dopamine in biological samples via tuning the particle size of label-free gold nanoparticles. Spectrochim. Acta Part A 2018, 193, 451–457. [Google Scholar] [CrossRef] [PubMed]
- da Silva, L.V.; Lopes, C.B.; da Silva, W.C.; de Paiva, Y.G.; dos Santos Silva, F.D.; Lima, P.R.; Kubota, L.T.; Goulart, M.O. Electropolymerization of ferulic acid on multi-walled carbon nanotubes modified glassy carbon electrode as a versatile platform for NADH, dopamine and epinephrine separate detection. Microchem. J. 2017, 133, 460–467. [Google Scholar] [CrossRef]
- Lei, Y.; Xu, G.; Wei, F.; Yang, J.; Hu, Q. Preparation of a stir bar coated with molecularly imprinted polymer and its application in analysis of dopamine in urine. J. Pharm. Biomed. Anal. 2014, 94, 118–124. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Wu, L.; Chow, D.S.L.; Tam, V.H.; Rios, D.R. Quantitative determination of dopamine in human plasma by a highly sensitive LC-MS/MS assay: Application in preterm neonates. J. Pharm. Biomed. Anal. 2016, 117, 227–231. [Google Scholar] [CrossRef]
- Taheri, R.A.; Eskandari, K.; Negahdary, M. An electrochemical dopamine aptasensor using the modified Au electrode with spindle-shaped gold nanostructure. Microchem. J. 2018, 143, 243–251. [Google Scholar] [CrossRef]
- Wabaidur, S.M.; Abdullah Alothman, Z.; Alam, S.M.; Lee, S.H. Flow injection-chemiluminescence determination of dopamine using potassium permanganate and formaldehyde system. Spectrochim. Acta Part A 2012, 96, 221–225. [Google Scholar] [CrossRef]
- Dong, J.X.; Wen, W.; Li, N.B.; Luo, H.Q. Determination of dopamine at the nanogram level based on the formation of Prussian blue nanoparticles by resonance Rayleigh scattering technique. Spectrochim. Acta Part A 2012, 86, 527–532. [Google Scholar] [CrossRef]
- Wen, D.; Liu, W.; Herrmann, A.K.; Haubold, D.; Holzschuh, M.; Simon, F.; Eychmüller, A. Simple and sensitive colorimetric detection of dopamine based on assembly of cyclodextrin-modified Au nanoparticles. Small 2016, 12, 2439–2442. [Google Scholar] [CrossRef] [Green Version]
- Kumari, B.; Kumari, R.; Das, P. Visual detection of G-quadruplex with mushroom derived highly fluorescent carbon quantum dots. J. Pharm. Biomed. Anal. 2018, 157, 137–144. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Chen, Q.; Cai, Z.; Lin, F.; Xu, W.; Wang, Y.; Chen, X. Fluorescent carbon nanodots facilely extracted from Coca Cola for temperature sensing. Methods Appl. Fluoresc. 2017, 5. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, Y.; Huang, C.; Huang, C. Development of nitrogen and sulfur-doped carbon dots for cellular imaging. J. Pharm. Anal. 2019, 9, 127–132. [Google Scholar] [CrossRef] [PubMed]
- Aghamali, A.; Khosravi, M.; Hamishehkar, H.; Modirshahla, N.; Behnajady, M.A. Synthesis and characterization of high efficient photoluminescent sunlight driven photocatalyst of N-carbon quantum dots. J. Lumin. 2018, 201, 265–274. [Google Scholar] [CrossRef]
- Amini, N.; Shamsipur, M.; Gholivand, M.B.; Barati, A. A glassy carbon electrode modified with carbon quantum dots and polyalizarin yellow R dyes for enhanced electrocatalytic oxidation and nanomolar detection of l-cysteine. Microchem. J. 2017, 131, 9–14. [Google Scholar] [CrossRef]
- Liang, G.; Zhai, H.; Huang, L.; Tan, X.; Zhou, Q.; Yu, X.; Lin, H. Synthesis of carbon quantum dots-doped dummy molecularly imprinted polymer monolithic column for selective enrichment and analysis of aflatoxin B1 in peanut. J. Pharm. Biomed. Anal. 2018, 149, 258–264. [Google Scholar] [CrossRef] [PubMed]
- Cao, M.; Xia, C.; Xia, J.; Jiang, D.; Yu, C.; Li, H. A yellow carbon dots-based phosphor with high efficiency for white light-emitting devices. J. Lumin. 2019, 206, 97–104. [Google Scholar] [CrossRef]
- Jiang, X.; Qin, D.; Mo, G.; Feng, J.; Yu, C.; Mo, W.; Deng, B. Ginkgo leaf-based synthesis of nitrogen-doped carbon quantum dots for highly sensitive detection of salazosulfapyridine in mouse plasma. J. Pharm. Biomed. Anal. 2019, 164, 514–519. [Google Scholar] [CrossRef]
- Wang, B.; Chen, Y.; Wu, Y.; Weng, B.; Liu, Y.; Li, C.M. Synthesis of nitrogen- and iron-containing carbon dots, and their application to colorimetric and fluorometric determination of dopamine. Microchim. Acta 2016, 183, 2491–2500. [Google Scholar] [CrossRef]
- Xu, H.; Yang, X.; Li, G.; Zhao, C.; Liao, X. Green synthesis of fluorescent carbon dots for selective detection of tartrazine in food samples. J. Agric. Food Chem. 2015, 63, 6707–6714. [Google Scholar] [CrossRef]
- Yang, X.; Liu, M.; Yin, Y.; Tang, F.; Xu, H.; Liao, X. Green, hydrothermal synthesis of fluorescent carbon nanodots from gardenia, enabling the detection of metronidazole in pharmaceuticals and rabbit plasma. Sensors 2018, 18, 964. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.; Xu, J.; Luo, N.; Tang, F.; Zhang, M.; Zhao, B. N,Cl co-doped fluorescent carbon dots as nanoprobe for detection of tartrazine in beverages. Food Chem. 2020, 310, 125832. [Google Scholar] [CrossRef]
- Luo, N.; Yang, Z.; Tang, F.; Wang, D.; Feng, M.; Liao, X.; Yang, X. Fe3O4/Carbon nanodot hybrid nanoparticles for the indirect colorimetric detection of glutathione. ACS Appl. Nano Mater. 2019, 2, 3951–3959. [Google Scholar] [CrossRef]
- Mehta, V.N.; Jha, S.; Basu, H.; Singhal, R.K.; Kailasa, S.K. One-step hydrothermal approach to fabricate carbon dots from apple juice for imaging of mycobacterium and fungal cells. Sens. Actuators B Chem. 2015, 213, 434–443. [Google Scholar] [CrossRef]
- Monte-Filho, S.S.; Andrade, S.I.E.; Araujo, M.C.U.; Lima, M.B. Synthesis of highly fluorescent carbon dots from lemon and onion juices for determination of riboflavin in multivitamin/mineral supplements. J. Pharm. Anal. 2019, 9, 209–216. [Google Scholar] [CrossRef]
- Zhang, R.; Chen, W. Nitrogen-doped carbon quantum dots: Facile synthesis and application as a “turn-off” fluorescent probe for detection of Hg2+ ions. Biosens. Bioelectron. 2014, 55, 83–90. [Google Scholar] [CrossRef]
- Prasannan, A.; Imae, T. One-pot synthesis of fluorescent carbon dots from orange waste peels. Ind. Eng. Chem. Res. 2013, 52, 15673–15678. [Google Scholar] [CrossRef]
- Żamojć, K.; Wiczk, W.; Chmurzyński, L. The influence of the type of substituents and the solvent on the interactions between different coumarins and selected TEMPO analogues—Fluorescence quenching studies. Chem. Phys. 2018, 513, 188–194. [Google Scholar] [CrossRef]
- Karali, K.K.; Sygellou, L.; Stalikas, C.D. Highly fluorescent N-doped carbon nanodots as an effective multi-probe quenching system for the determination of nitrite, nitrate and ferric ions in food matrices. Talanta 2018, 189, 480–488. [Google Scholar] [CrossRef]
- Medintz, I.L.; Stewart, M.H.; Trammell, S.A.; Susumu, K.; Delehanty, J.B.; Mei, B.C.; Melinger, J.S.; Blanco-Canosa, J.B.; Dawson, P.E.; Mattoussi, H. Quantum-dot/dopamine bioconjugates function as redox coupled assemblies for in vitro and intracellular pH sensing. Nat. Mater. 2010, 9, 676–684. [Google Scholar] [CrossRef]
- Liu, H.; Ye, T.; Mao, C. Fluorescent carbon nanoparticles derived from candle soot. Angew. Chem. Int. 2007, 46, 6473–6475. [Google Scholar] [CrossRef]
- Palanisamy, S.; Thirumalraj, B.; Chen, S.-M.; Ali, M.A.; Al-Hemaid, F.M.A. Palladium nanoparticles decorated on activated fullerene modified screen printed carbon electrode for enhanced electrochemical sensing of dopamine. J. Colloid Interface Sci. 2015, 448, 251–256. [Google Scholar] [CrossRef]
- Li, Q.; Li, J.; Yang, Z. Study of the sensitization of tetradecyl benzyl dimethyl ammonium chloride for spectrophotometric determination of dopamine hydrochloride using sodium 1,2-naphthoquinone-4-sulfonate as the chemical derivative chromogenic reagent. Anal. Chim. Acta 2007, 583, 147–152. [Google Scholar] [CrossRef]
- Qi, S.; Zhao, B.; Tang, H.; Jiang, X. Determination of ascorbic acid, dopamine, and uric acid by a novel electrochemical sensor based on pristine graphene. Electrochim. Acta 2015, 161, 395–402. [Google Scholar] [CrossRef]
- Feng, J.J.; Guo, H.; Li, Y.F.; Wang, Y.H.; Chen, W.Y.; Wang, A.J. Single molecular functionalized gold nanoparticles for hydrogen-bonding recognition and colorimetric detection of dopamine with high sensitivity and selectivity. ACS Appl. Mater. Inter. 2013, 5, 1226–1231. [Google Scholar] [CrossRef]
- Liu, J.M.; Wang, X.X.; Cui, M.L.; Lin, L.P.; Jiang, S.L.; Jiao, L.; Zhang, L.H. Promising non-aggregation colorimetric sensor of AuNRs–Ag⁺ for determination of dopamine. Sens. Actuators B Chem. 2013, 176, 97–102. [Google Scholar] [CrossRef]
- Liu, X.; Fu, Y.; Sheng, Q.; Zheng, J. Au nanoparticles attached Ag@C core-shell nanocomposites for highly selective electrochemical detection of dopamine. Microchem. J. 2019. [Google Scholar] [CrossRef]
- Zhou, Z.; Wang, Z.; Tang, Y.; Gao, J.; Zhang, C.C.; Wang, Q. Multi-modal tracking dopamine using a hybrid inorganic-organic silver nanoparticle and its cellular imaging performance. J. Lumin. 2018, 204, 394–400. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, S.F. Simultaneous determination of dopamine and ascorbic acid at a triazole self-assembled monolayer-modified gold electrode. Microchim. Acta 2006, 154, 115–121. [Google Scholar] [CrossRef]
- Xie, L.-Q.; Zhang, Y.-H.; Gao, F.; Wu, Q.-A.; Xu, P.-Y.; Wang, S.-S.; Gao, N.-N.; Wang, Q.-X. A highly sensitive dopamine sensor based on a polyaniline/reduced graphene oxide/Nafion nanocomposite. Chin. Chem. Lett. 2017, 28, 41–48. [Google Scholar] [CrossRef]
- An, J.H.; Choi, D.K.; Lee, K.J.; Choi, J.W. Surface-enhanced Raman spectroscopy detection of dopamine by DNA Targeting amplification assay in Parkisons’s model. Biosens. Bioelectron. 2014, 67, 739–746. [Google Scholar] [CrossRef] [PubMed]
- Jie, Y.; Wang, N.; Cao, X.; Xu, Y.; Li, T.; Zhang, X.; Wang, Z.L. Self-powered triboelectric nanosensor with poly(tetrafluoroethylene) nanoparticle arrays for dopamine detection. ACS Nano 2015, 9, 8376–8383. [Google Scholar] [CrossRef] [PubMed]
- Rezaei, B.; Boroujeni, M.K.; Ensafi, A.A. Fabrication of DNA, o-phenylenediamine, and gold nanoparticle bioimprinted polymer electrochemical sensor for the determination of dopamine. Biosens. Bioelectron. 2015, 66, 490–496. [Google Scholar] [CrossRef] [PubMed]
- Guo, M.X.; Li, Y.F. Cu (II)-based metal-organic xerogels as a novel nanozyme for colorimetric detection of dopamine. Spectrochim. Acta Part A 2019, 207, 236–241. [Google Scholar] [CrossRef] [PubMed]
- Feng, Q.-M.; Cai, M.; Shi, C.-G.; Bao, N.; Gu, H.-Y. Integrated paper-based electroanalytical devices for determination of dopamine extracted from striatum of rat. Sens. Actuators B 2015, 209, 870–876. [Google Scholar] [CrossRef]
- Rezaei, B.; Havakeshian, E.; Ensafi, A.A. Decoration of nanoporous stainless steel with nanostructured gold via galvanic replacement reaction and its application for electrochemical determination of dopamine. Sens. Actuators B 2015, 213, 484–492. [Google Scholar] [CrossRef]
- Stewart, A.J.; Hendry, J.; Dennany, L. Whole blood electrochemiluminescent detection of dopamine. Anal. Chem. 2015, 87, 11847–11853. [Google Scholar] [CrossRef]
- Xu, H.; Xu, Y.; Xie, G.; Luo, X. Aptamer biosensor for highly sensitive and selective detection of dopamine using ubiquitous personal glucose meters. Sens. Actuators B 2015, 209, 596–601. [Google Scholar] [CrossRef]
- Ates, M.; Castillo, J.; Sarac, A.S.; Schuhmann, W. Carbon fiber microelectrodes electrocoated with polycarbazole and poly(carbazole-co-p-tolylsulfonyl pyrrole) films for the detection of dopamine in presence of ascorbic acid. Microchim. Acta 2008, 160, 247–251. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, X.; Kai, S.; Wang, H.-Y.; Yang, J.; Wu, F.-G.; Yang, J.; Chen, Z. Highly sensitive and selective detection of dopamine using one-pot synthesized highly photoluminescent silicon nanoparticles. Anal. Chem. 2015, 87, 3360–3365. [Google Scholar] [CrossRef]
- Kulchat, S.; Boonta, W.; Todee, A.; Sianglam, P.; Ngeontae, W. A fluorescent sensor based on thioglycolic acid capped cadmium sulfide quantum dots for the determination of dopamine. Spectrochim. Acta Part A 2018, 196, 7–15. [Google Scholar] [CrossRef] [PubMed]
Samples | Detected DA (μM) | Spiked (μM) | Within-Run a | Between-Run a | ||
---|---|---|---|---|---|---|
Recovery (%) | RSD (%) | Recovery (%) | RSD (%) | |||
Dopamine injection | 4.99 ± 0.10 | 0.80 | 95.0 | 1.08 | 96.0 | 1.51 |
4.00 | 104.2 | 1.70 | 96.7 | 2.34 | ||
20.00 | 96.8 | 2.03 | 105.9 | 1.58 | ||
70.00 (1/10)dil. | 96.5 | 0.68 | 96.0 | 0.92 | ||
Urine | 56.50 ± 0.84 | 0.80 | 105.0 | 1.44 | 98.9 | 2.68 |
4.00 | 101.2 | 1.83 | 95.7 | 2.24 | ||
20.00 | 97.6 | 1.30 | 95.8 | 1.47 | ||
50.00 (1/10)dil. | 97.1 | 2.30 | 101.7 | 1.34 |
Interference | Con. (μM) | Signal Change (%) | RSD (%) | Interference | Con. (μM) | Signal Change (%) | RSD (%) |
---|---|---|---|---|---|---|---|
Gly | 2500 | 0.27 | 2.42 | MnSO4 | 1250 | −4.12 | 3.00 |
Ser | 2500 | 2.10 | 2.65 | KCl | 1250 | 0.36 | 1.56 |
Hcy | 2500 | 4.04 | 2.45 | MgSO4 | 1250 | 0.98 | 0.27 |
Cys | 1250 | −1.27 | 1.27 | Na2CO3 | 1250 | 1.06 | 2.01 |
His | 1250 | −1.08 | 1.78 | NaNO3 | 1250 | 2.00 | 2.48 |
Try | 1250 | −2.72 | 2.16 | Ascorbic acid | 250 | 3.72 | 3.67 |
Lys | 1250 | 1.36 | 2.67 | ZnCl2 | 250 | 2.08 | 3.05 |
Oxalate | 1250 | −1.14 | 1.32 | CaCl2 | 250 | −1.01 | 3.12 |
Glucose | 1250 | 0.76 | 2.19 | 5-HT | 125 | −4.53 | 3.80 |
Lactose | 1250 | 0.50 | 2.98 | FeCl2 | 25 | 4.64 | 2.40 |
Urea | 1250 | −3.14 | 2.31 | CuCl2 | 25 | 4.20 | 2.92 |
Method | Linear Range (μM) | LOD (nM) | Refs. |
---|---|---|---|
UV-visible absorption spectroscopy | 0.84–210.90 | 632.8 | [33] |
Pristine graphene electrochemical sensor | 5.0–710 | 2000 | [34] |
Hydrogen-bonding recognition and colorimetric detection | 0.2–1.10 | 70 | [35] |
Non-aggregation colorimetric sensor (based on AuNRs-Ag+ system) | 0.0–10 | 200 | [36] |
Electrochemical sensor (Ag@C/Au nanocomposites) | 0.5–4278 | 210 | [37] |
Dual-modal (optical and electrochemical) probe | 1–10 | 410 | [38] |
Electrochemical detection (monolayer-modified gold electrode) | 1.5–100 | 500 | [39] |
Differential pulse voltammetry (DPV) | 0.01–1 | 24 | [40] |
Surface-enhanced Raman spectroscopy | 0.0000001–0.001 | - | [41] |
Triboelectric nanosensor (based on poly(tetrafluoroethylene) layer, nanoparticle arrays and aluminum film) | 10–1000 | 500 | [42] |
Electrochemical sensor (ds-DNA with molecularly imprinted polymer) | 0.02–7 | 6 | [43] |
Colorimetric method (Cu (II)-based metal-organic xerogels nanozyme) | 0.5–20 | 85.8 | [44] |
Electrochemical detection (multiwalled carbon nanotube (MWCNTs)/Nafion-modified carbon tape electrode) | 0.01–1 | 10 | [45] |
Electrochemical biosensors (Au/nanoporous stainless steel electrode) | 8.0–2000 | 70 | [46] |
Electrochemiluminescence (GC electrode modified with CdSeTe/ZnS core−shell QDs) | 3.7–450 | 100 | [47] |
Aptamer biosensor (aptamer complementary strand-invertase-AuNPs probe) | 0.08–100 | 30 | [48] |
Cyclic voltammetry (carbon fiber microelectrodes) | 0–130 | 270 | [49] |
Fluorescence probe (silicon nanoparticles) | 0.005–10.0 | 0.3 | [50] |
Fluorescence quenching (CdS quantum dots) | 1.0–17.5 | 680 | [51] |
Fluorescence probe (C-dots) | 0.5–100 | 93 | This work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, X.; Tian, F.; Wen, S.; Xu, H.; Zhang, L.; Zeng, J. Selective Determination of Dopamine in Pharmaceuticals and Human Urine Using Carbon Quantum Dots as a Fluorescent Probe. Processes 2021, 9, 170. https://doi.org/10.3390/pr9010170
Yang X, Tian F, Wen S, Xu H, Zhang L, Zeng J. Selective Determination of Dopamine in Pharmaceuticals and Human Urine Using Carbon Quantum Dots as a Fluorescent Probe. Processes. 2021; 9(1):170. https://doi.org/10.3390/pr9010170
Chicago/Turabian StyleYang, Xiupei, Fangming Tian, Shaohua Wen, Hua Xu, Lin Zhang, and Jie Zeng. 2021. "Selective Determination of Dopamine in Pharmaceuticals and Human Urine Using Carbon Quantum Dots as a Fluorescent Probe" Processes 9, no. 1: 170. https://doi.org/10.3390/pr9010170
APA StyleYang, X., Tian, F., Wen, S., Xu, H., Zhang, L., & Zeng, J. (2021). Selective Determination of Dopamine in Pharmaceuticals and Human Urine Using Carbon Quantum Dots as a Fluorescent Probe. Processes, 9(1), 170. https://doi.org/10.3390/pr9010170