Microwave Radiation Influence on Dairy Waste Anaerobic Digestion in a Multi-Section Hybrid Anaerobic Reactor (M-SHAR)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Materials
2.3. Experimental Set-Up
2.3.1. M-SHAR Design
2.3.2. M-SHAR Functioning Principles
2.3.3. Heating System
2.3.4. Reactor Filling
2.4. Analytical and Statistical Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Garg, S.; Rumjit, N.P.; Thomas, P.; Sikander; Lai, C.W.; George, P.J. Green Technologies for the Treatment and Utilisation of Dairy Product Wastes. In Sustainable Green Chemical Processes and Their Allied Applications; Nanotechnology in the Life Sciences; Inamuddin, I., Asiri, A., Eds.; Springer: Cham, Switzerland, 2020. [Google Scholar] [CrossRef]
- Kazimierowicz, J.; Bartkowska, I.; Walery, M. Effect of Low-Temperature Conditioning of Excess Dairy Sewage Sludge with the Use of Solidified Carbon Dioxide on the Efficiency of Methane Fermentation. Energies 2021, 14, 150. [Google Scholar] [CrossRef]
- Wang, Y.; Serventi, L. Sustainability of dairy and soy processing: A review on wastewater recycling. J. Clean. Prod. 2019, 237. [Google Scholar] [CrossRef]
- Karolinczak, B.; Dąbrowski, W.; Żyłka, R. Evaluation of Dairy Wastewater Treatment Systems Using Carbon Footprint Analysis. Energies 2021, 14, 5366. [Google Scholar] [CrossRef]
- Żyłka, R.; Karolinczak, B.; Dąbrowski, W. Structure and indicators of electric energy consumption in dairy wastewater treatment plant. Sci. Total Environ. 2021, 782, 146599. [Google Scholar] [CrossRef] [PubMed]
- Yonar, T.; Sivrioğlu, Ö.; Nihan, Ö. Physico-Chemical Treatment of Dairy Industry Wastewaters: A Review. In Technological Approaches for Novel Applications in Dairy Processing; IntechOpen: London, UK, 2018. [Google Scholar]
- Marazzi, F.; Bellucci, M.; Fantasia, T.; Ficara, E.; Mezzanotte, V. Interactions between Microalgae and Bacteria in the Treatment of Wastewater from Milk Whey Processing. Water 2020, 12, 297. [Google Scholar] [CrossRef] [Green Version]
- Dębowski, M.; Korzeniewska, E.; Kazimierowicz, J.; Zieliński, M. Efficiency of sweet whey fermentation with psychrophilic methanogens. Environ. Sci. Pollut. Res. 2021, 28, 49314–49323. [Google Scholar] [CrossRef]
- Rocha, J.M.; Guerra, A. On the valorization of lactose and its derivatives from cheese whey as a dairy industry by-product: An overview. Eur. Food Res. Technol. 2020, 246, 2161–2174. [Google Scholar] [CrossRef]
- Guo, M.; Wang, G. Future Development of Whey Protein Production. In Whey Protein Production, Chemistry, Func- Tionality, and Applications; Guo, M., Ed.; Wiley: Hoboken, NJ, USA, 2019; pp. 251–260. [Google Scholar]
- Ramírez-Rodríguez, L.C.; Díaz Barrera, L.E.; Quintanilla-Carvajal, M.X.; Mendoza-Castillo, D.I.; Bonilla-Petriciolet, A.; Jiménez-Junca, C. Preparation of a Hybrid Membrane from Whey Protein Fibrils and Activated Carbon to Remove Mercury and Chromium from Water. Membranes 2020, 10, 386. [Google Scholar] [CrossRef]
- Smykov, I.T. Nanotechnology in the Dairy Industry. Benefits and Risks. In The ELSI Handbook of Nanotechnology: Risk, Safety, ELSI and Commercialization; Hussain, C.M., Ed.; Scrivener Publishing LLC: Beverly, MA, USA, 2020; pp. 223–276. [Google Scholar] [CrossRef]
- Wang, W.-Q.; Wa, Y.-C.; Zhang, X.-F.; Gu, R.-X.; Lu, M.-L. Whey protein membrane processing methods and membrane fouling mechanism analysis. Food Chem. 2019, 15, 468–481. [Google Scholar] [CrossRef]
- Ahmad, T.; Aadil, R.M.; Ahmed, H.; Rahman, U.; Soares, B.C.V.; Souza, S.L.Q.; Pimentel, T.C.; Scudino, H.; Guimarães, J.T.; Esmerino, E.A.; et al. Treatment and utilization of dairy industrial waste: A review. Trends Food Sci. Technol. 2019, 88, 361–372. [Google Scholar] [CrossRef]
- Tanzi, G.; Tonsia, M.; Grilli, C.; Malpei, F. Dairy by-products valorisation with biomethane and biohydrogen production through lactose fermentation in Anmbr. Chem. Eng. Trans. 2017, 57, 1819–1824. [Google Scholar] [CrossRef]
- De Jesus, C.S.A.; Ruth, V.G.E.; Daniel, S.F.R.; Sharma, A. Biotechnological alternatives for the utilization of dairy industry waste products. Adv. Biosci. Biotechnol. 2015, 6, 223–235. [Google Scholar] [CrossRef] [Green Version]
- Roufou, S.; Griffin, S.; Katsini, L.; Polańska, M.; Van Impe, J.F.M.; Valdramidis, V.P. The (potential) impact of seasonality and climate change on the physicochemical and microbial properties of dairy waste and its management. Trends Food Sci. Technol. 2021, 116, 1–10. [Google Scholar] [CrossRef]
- de Almeida Pires, T.; Cardoso, V.L.; Batista, F.R.X. Feasibility of Chlorella vulgaris to waste products removal from cheese whey. Int. J. Environ. Sci. Technol. 2021, 1–10. [Google Scholar] [CrossRef]
- Shi, W.; Healy, M.G.; Ashekuzzaman, S.M.; Daly, K.; Leahy, J.J.; Fenton, O. Dairy processing sludge and co-products: A review of present and future re-use pathways in agriculture. J. Clean. Prod. 2021, 314, 128035. [Google Scholar] [CrossRef]
- Dąbrowski, W.; Żyłka, R.; Malinowski, P. Evaluation of energy consumption during aerobic sewage sludge treatment in dairy wastewater treatment plant. Environ. Res. 2017, 153, 135–139. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Li, L.; Qiu, G. Energy consumption and economic cost of typical wastewater treatment systems in Shenzhen, China. J. Clean. Prod. 2017, 163, 374–378. [Google Scholar] [CrossRef]
- Escalante, H.; Castro, L.; Amaya, M.P.; Jaimes, L.; Jaimes-Estévez, J. Anaerobic digestion of cheese whey: Energetic and nutritional potential for the dairy sector in developing countries. Waste Manag. 2018, 71, 711–718. [Google Scholar] [CrossRef]
- Coelho, M.M.H.; Morais, N.W.S.; Pereira, E.L.; Leitão, R.C.; dos Santos, A.B. Potential assessment and kinetic modeling of carboxylic acids production using dairy wastewater as substrate. Biochem. Eng. J. 2020, 156. [Google Scholar] [CrossRef]
- McAteer, P.G.; Christine Trego, A.; Thorn, C.; Mahony, T.; Abram, F.; O’Flaherty, V. Reactor configuration influences microbial community structure during high-rate, low-temperature anaerobic treatment of dairy wastewater. Bioresour. Technol. 2020, 307, 123221. [Google Scholar] [CrossRef]
- Salama, E.-S.; Saha, S.; Kurade, M.B.; Dev, S.; Chang, S.W.; Jeon, B.-H. Recent trends in anaerobic co-digestion: Fat, oil, and grease (FOG) for enhanced biomethanation. Prog. Energy Combust. Sci. 2019, 70, 22–42. [Google Scholar] [CrossRef]
- Elsamadony, M.; Mostafa, A.; Fujii, M.; Tawfik, A.; Pant, D. Advances towards understanding long chain fatty acids-induced inhibition and overcoming strategies for efficient anaerobic digestion process. Water Res. 2021, 190, 116732. [Google Scholar] [CrossRef]
- Vialkova, E.I.; Sidorenko, O.V.; Glushchenko, E.S. Qualitative composition and local pretreatment of dairy wastewaters. In IOP Conference Series: Materials Science and Engineering; IOP Publishing Ltd.: Bristol, UK, 2019; Volume 687, pp. 1–9. [Google Scholar] [CrossRef]
- Goli, A.; Shamiri, A.; Khosroyar, S.; Talaiekhozani, A.; Sanaye, R.; Azizi, K. A Review on Different Aerobic and Anaerobic Treatment Methods in Dairy Industry Wastewater. J. Environ. Treat. Tech. 2019, 6, 113–141. [Google Scholar]
- Romero-Zúñiga, G.Y.; González-Morones, P.; Sánchez-Valdés, S.; Yáñez-Macías, R.; Sifuentes-Nieves, I.; García-Hernández, Z.; Hernández-Hernández, E. Microwave Radiation as Alternative to Modify Natural Fibers: Recent Trends and Opportunities—A Review. J. Nat. Fibers 2021, 1–17. [Google Scholar] [CrossRef]
- Wang, Y.; Gu, Z.; Yang, S.; Zhang, A. Performance of a microwave radiation induced persulfate-hydrogen peroxide binary-oxidant process in treating dinitrodiazophenol wastewater. Sep. Purif. Technol. 2020, 236, 116253. [Google Scholar] [CrossRef]
- Kazimierowicz, J.; Zieliński, M.; Dębowski, M. Influence of the Heating Method on the Efficiency of Biomethane Production from Expired Food Products. Fermentation 2021, 7, 12. [Google Scholar] [CrossRef]
- Kou, X.; Li, R.; Hou, L.; Zhang, L.; Wang, S. Identifying possible non-thermal effects of radio frequency energy on inactivating food microorganisms. Int. J. Food Microbiol. 2018, 269, 89–97. [Google Scholar] [CrossRef] [PubMed]
- Munir, M.; Nadeem, M.; Qureshi, T.M.; Leong, T.S.; Gamlath, C.J.; Martin, G.J.; AshokKumar, M. Effects of High Pressure, Microwave and Ultrasound Processing on Proteins and Enzyme Activity in Dairy Systems—A Review. Innov. Food Sci. Emerg. Technol. 2019, 57, 102192. [Google Scholar] [CrossRef]
- Li, H.; Zhao, Z.; Xiouras, C.; Stefanidis, G.D.; Li, X.; Gao, X. Fundamentals and applications of microwave heating to chemicals separation processes. Renew. Sustain. Energy Rev. 2019, 114, 109316. [Google Scholar] [CrossRef]
- Dębowski, M.; Zieliński, M.; Kisielewska, M.; Kazimierowicz, J. Evaluation of Anaerobic Digestion of Dairy Wastewater in an Innovative Multi-Section Horizontal Flow Reactor. Energies 2020, 13, 2392. [Google Scholar] [CrossRef]
- Zaidi, A.A.; Feng, R.; Malik, A.; Khan, S.Z.; Shi, Y.; Bhutta, A.J.; Shah, A.H. Combining Microwave Pretreatment with iron oxide nanoparticles enhanced biogas and hydrogen yield from green algae. Processes 2019, 7, 24. [Google Scholar] [CrossRef] [Green Version]
- Zieliński, M.; Kisielewska, M.; Dudek, M.; Rusanowska, P.; Nowicka, A.; Krzemieniewski, M.; Kazimierowicz, J.; Dębowski, M. Comparison of microwave thermohydrolysis and liquid hot water pretreatment of energy crop Sida hermaphrodita for enhanced methane production. Biomass Bioenergy 2019, 128, 1–10. [Google Scholar] [CrossRef]
- Zieliński, M.; Dębowski, M.; Rusanowska, P. Influence of microwave heating on biogas production from Sida hermaphrodita silage. Bioresour. Technol. 2017, 245, 1290–1293. [Google Scholar] [CrossRef]
- Zieliński, M.; Dębowski, M.; Szwarc, D.; Szwarc, K.; Rokicka, M. Impact of microwave heating on the efficiency of methane fermentation of algae biomass. Pol. J. Natur. Sc. 2017, 32, 561–571. [Google Scholar]
- Zieliński, M.; Dębowski, M.; Krzemieniewski, M.; Brudniak, A.; Kisielewska, M. Possibility of improving technological effectiveness of dairy wastewater treatment through application of active fillings and microwave radiation. J. Water Chem. Technol. 2016, 38, 342–348. [Google Scholar] [CrossRef]
- Zieliński, M.; Zielińska, M.; Dębowski, M. Application of microwave radiation to biofilm heating during wastewater treatment in trickling filters. Bioresour. Technol. 2013, 127, 223–230. [Google Scholar] [CrossRef] [PubMed]
- Zieliński, M.; Dębowski, M.; Krzemieniewski, M. Nitrogen compounds transformation in the biological filter by means of direct energy supply to the biofilm. Environ. Technol. 2006, 27, 1369–1376. [Google Scholar] [CrossRef] [PubMed]
- Kostas, E.T.; Beneroso, D.; Robinson, J.P. The application of microwave heating in bioenergy: A review on the microwave pre-treatment and upgrading technologies for biomass. Renew. Sustain. Energy Rev. 2017, 77, 12–27. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Loh, K.-C.; Zhang, J. Jointly reducing antibiotic resistance genes and improving methane yield in anaerobic digestion of chicken manure by feedstock microwave pretreatment and activated carbon supplementation. Chem. Eng. J. 2019, 372, 815–824. [Google Scholar] [CrossRef]
- Guo, C.; Wang, Y.; Luan, D. Non-thermal effects of microwave processing on inactivation of Clostridium Sporogenes inoculated in salmon fillets. LWT 2020, 133, 109861. [Google Scholar] [CrossRef]
- Bichot, A.; Lerosty, M.; Radoiu, M.; Méchin, V.; Bernet, N.; Delgenès, J.-P.; García-Bernet, D. Decoupling thermal and non-thermal effects of the microwaves for lignocellulosic biomass pretreatment. Energy Convers. Manag. 2020, 203, 11220. [Google Scholar] [CrossRef]
- Carvalho, F.; Prazeres, A.R.; Rivas, J. Cheese whey wastewater: Characterization and treatment. Sci. Total Environ. 2013, 445–446, 385–396. [Google Scholar] [CrossRef]
- Escalante-Hernández, H.; Castro-Molano, L.D.P.; Besson, V.; Jaimes-Estévez, J. Feasibility of the Anaerobic Digestion of Cheese Whey in a Plug Flow Reactor (PFR) under Local Conditions. Ingeniería, Investigación y Tecnología 2017, 18, 265–277. [Google Scholar] [CrossRef] [Green Version]
- Mainardis, M.; Flaibani, S.; Trigatti, M.; Goi, D. Techno-economic feasibility of anaerobic digestion of cheese whey in small Italian dairies and effect of ultrasound pre-treatment on methane yield. J. Environ. Manag. 2019, 246, 557–563. [Google Scholar] [CrossRef]
- Karadag, D.; Köroğlu, E.O.; Ozkaya, B.; Cakmakci, M. A review on anaerobic biofilm reactors for the treatment of dairy industry wastewater. Process Biochem. 2015, 50, 262–271. [Google Scholar] [CrossRef]
- Prazeres, A.R.; Carvalho, F.; Rivas, J. Cheese whey management: A review. J. Environ. Manag. 2012, 110, 48–68. [Google Scholar] [CrossRef]
- Omil, F.; Garrido, J.M.; Arrojo, B.; Mendez, R. Anaerobic filter reactorperformance for the treatment of complex dairy wastewater AT industrial scale. Water Res. 2003, 37, 4099–4108. [Google Scholar] [CrossRef]
- Mendez, R.; Blazquez, R.; Lorenzo, F.; Lema, J.M. Anaerobic treatment of cheese whey: Start-up and operation. Water Sci. Technol. 1989, 21, 1857–1860. [Google Scholar] [CrossRef]
- Najafpour, G.D.; Hashemiyeh, B.A.; Asadi, M.; Ghasemi, M.B. Biological Treatment of Dairy Wastewater in an Upflow Anaerobic Sludge-Fixed Film Bioreactor American-Eurasian. J. Agric. Environ. Sci. 2008, 4, 251–257. [Google Scholar]
- Ramasamy, E.V.; Gajalakshmi, S.; Sanjeevi, R.; Jithesh, M.N.; Abbasi, S.A. Feasibility studies on the treatment of dairy wastewaters with upflow anaerobic sludge blanket reactors. Bioresour. Technol. 2004, 93, 209–212. [Google Scholar] [CrossRef]
- Banik, S.; Bandyopadhyay, S.; Ganguly, S. Bioeffects of microwave—A brief review. Bioresour. Technol. 2003, 87, 155–159. [Google Scholar] [CrossRef]
- Nizhelska, O.I.; Marynchenko, L.V.; Piasetskyi, V.I. Biological Risks of Using Non-Thermal Non-Ionizing Electromagnetic Fields. Innov. Biosyst. Bioeng. 2020, 4, 95–109. [Google Scholar] [CrossRef]
- Banik, S.; Sharma, A.; Dan, D. Effect of microwave on cell biology of Methanosarcina Barkeri. J. Mycopathol. Res. 2003, 41, 217–219. [Google Scholar]
- Parker, M.C.; Besson, T.; Lamare, S.; Legoy, M.D. Microwave radiation can increase the rate of enzyme catalysed reaction in organic media. Tetrahedron Lett. 1996, 37, 8383–8386. [Google Scholar] [CrossRef]
- Dahl, J.A.; Maddux, B.L.S.; Hutchison, J.E. Toward greener nanosynthesis. Chem. Rev. 2007, 107, 2228–2269. [Google Scholar] [CrossRef] [Green Version]
- Fang, Y.; Sun, S.-Y.; Xia, Y.-M. The weakened 1,3-specificity in the consecutive microwave assisted enzymatic synthesis of glycerides. J. Mol. Catal. B Enzym. 2008, 55, 6–11. [Google Scholar] [CrossRef]
- Fernandes, P.; de Carvalho, C.C.C.R. Multi-Enzyme Systems in Flow Chemistry. Processes 2021, 9, 225. [Google Scholar] [CrossRef]
- Cydzik-Kwiatkowska, A.; Zieliński, M.; Jaranowska, P. Microwave radiation and reactor design influence microbial communities during methane fermentation. J. Ind. Microbiol. Biotechnol. 2012, 39, 1397–1405. [Google Scholar] [CrossRef]
- Zielińska, M.; Cydzik-Kwiatkowska, A.; Zieliński, M.; Dębowski, M. Impact of temperature, microwave radiation and organic loading rate on methanogenic community and biogas production during fermentation of dairy wastewater. Bioresour. Technol. 2013, 129, 308–314. [Google Scholar] [CrossRef] [PubMed]
- Han, S.K.; Shin, H.S.; Song, Y.C.; Lee, C.Y.; Kim, S.H. Novel Anaerobic Process for the Methane and Compost from Food Waste. In Proceedings of the 9th World Congress on Anaerobic Digestion, Antwerp, Belgium, 2–6 September 2001; pp. 645–650. [Google Scholar]
- Chavarria, A.M.; Rodríguez, W.; Saborío-Viquez, C. Continuous Anaerobic Biodigestion of the liquid substrate extrated from pineapple stubble in biodigesters of 0.1 and 4.6L. Sci. Pap. Ser. Manag. Econ. Eng. Agric. Rural. Dev. 2018, 18, 261–268. [Google Scholar]
- Logan, M.; Safi, M.; Lens, P.; Visvanathan, C. Investigating the performance of internet of things based anaerobic digestion of food waste. Process. Saf. Environ. Prot. 2019, 127, 277–287. [Google Scholar] [CrossRef]
- Ren, Y.; Yu, M.; Wu, C.; Wang, Q.; Gao, M.; Huang, Q.; Liu, Y. A comprehensive review on food waste anaerobic digestion: Research updates and tendencies. Bioresour. Technol. 2018, 247, 1069–1076. [Google Scholar] [CrossRef]
- Ma, X.; Yu, M.; Song, N.; Xu, B.; Gao, M.; Wu, C.; Wang, Q. Effect of ethanol pre-fermentation on organic load rate and stability of semi-continuous anaerobic digestion of food waste. Bioresour. Technol. 2020, 299, 122587. [Google Scholar] [CrossRef]
- Kazimierowicz, J.; Dzienis, L.; Dębowski, M.; Zieliński, M. Optimisation of methane fermentation as a valorisation method for food waste products. Biomass Bioenergy 2021, 144, 105913. [Google Scholar] [CrossRef]
- Cheng, H.; Hiro, Y.; Hojo, T.; Li, Y.-Y. Upgrading methane fermentation of food waste by using a hollow fiber type anaerobic membrane bioreactor. Bioresour. Technol. 2018, 267, 386–394. [Google Scholar] [CrossRef] [PubMed]
- Sánchez, E.; Borja, R.; Travieso, L.; Martín, A.; Colmenarejo, M.F. Effect of organic loading rate on the stability, operational parameters and performance of a secondary upflow anaerobic sludge bed reactor treating piggery waste. Bioresour. Technol. 2005, 96, 335–344. [Google Scholar] [CrossRef] [PubMed]
- Akindele, A.A.; Sartaj, M. The Toxicity Effects of Ammonia on Anaerobic Digestion of Organic Fraction of Municipal Solid Waste. Waste Manag. 2018, 71, 757–766. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Li, W.; Lee, J.; Loh, K.; Dai, Y.; Tong, Y.W. Enhancement of biogas production in anaerobic co-digestion of food waste and waste activated sludge by biological co-pretreatment. Energy 2017, 137, 479–486. [Google Scholar] [CrossRef]
Stage 1—Microwave Heating (MRH) | Stage 2—Convection Heating (WJH) | ||
---|---|---|---|
Series 1 | OLR = 5 kgCOD∙m−3∙d−1 | HRT = 10.0 days | Qd = 10 dm−3∙d−1 |
Series 2 | OLR = 10 kgCOD∙m−3∙d−1 | HRT = 5.0 days | Qd = 20 dm−3∙d−1 |
Series 3 | OLR = 15 kgCOD∙m−3∙d−1 | HRT = 3.3 days | Qd = 30 dm−3∙d−1 |
Series 4 | OLR = 20 kgCOD∙m−3∙d−1 | HRT = 2.5 days | Qd = 40 dm−3∙d−1 |
Series 5 | OLR = 25 kgCOD∙m−3∙d−1 | HRT = 2.0 days | Qd = 50 dm−3∙d−1 |
Parameter | Unit | Value |
---|---|---|
Chemical Oxygen Demand (COD) | mgO2∙dm−3 | 50,000 ± 250 |
Biological Oxygen Demand (BOD5) | mgO2∙dm−3 | 32,700 ± 190 |
Total Nitrogen (TN) | mgTN∙dm−3 | 2500 ± 112 |
Ammonium Nitrogen (AN) | mgN-NH4∙dm−3 | 52 ± 7 |
Total Phosphorus (TP) | mgTP∙dm−3 | 520 ± 48 |
pH | - | 7.12 ± 0.12 |
Parameter | Unit | Value |
---|---|---|
Hydration | % | 97.8 ± 0.30 |
Capillary suction time | s | 740 ± 24 |
Total solids | g∙dm−3 | 40.1 ± 1.2 |
Mineral solids | g∙dm−3 | 14.4 ± 0.9 |
Volatile solids | g∙dm−3 | 25.7 ± 1.1 |
Filtrate chemical oxygen demand (COD) | mgO2∙dm−3 | 830 ± 31.0 |
Orthophosphates in filtrate | mgP-PO4∙dm−3 | 99.3 ± 16.4 |
Total nitrogen (TN) in filtrate | mgTN∙dm−3 | 148 ± 13.7 |
Ammonium nitrogen (AN) in filtrate | mgN-NH4∙dm−3 | 131 ± 11.9 |
pH | - | 7.49 ± 0.13 |
Series | OLR [kgCOD∙m−3∙d−1] | Stage 1—Microwave Heating (MRH) | Stage 2—Convection Heating (WJH) | ||
---|---|---|---|---|---|
pH | FOS/TAC | pH | FOS/TAC | ||
1 | 5 | 7.29 ± 0.11 | 0.32 ± 0.03 | 7.27 ± 0.06 | 0.30 ± 0.01 |
2 | 10 | 7.21 ± 0.08 | 0.34 ± 0.02 | 7.24 ± 0.09 | 0.33 ± 0.01 |
3 | 15 | 7.02 ± 0.06 | 0.35 ± 0.04 | 6.99 ± 0.13 | 0.37 ± 0.04 |
4 | 20 | 6.82 ± 0.12 | 0.43 ± 0.05 | 6.74 ± 0.04 | 0.47 ± 0.06 |
5 | 25 | 6.57 ± 0.10 | 0.54 ± 0.03 | 6.49 ± 0.08 | 0.55 ± 0.02 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zieliński, M.; Dębowski, M.; Kazimierowicz, J. Microwave Radiation Influence on Dairy Waste Anaerobic Digestion in a Multi-Section Hybrid Anaerobic Reactor (M-SHAR). Processes 2021, 9, 1772. https://doi.org/10.3390/pr9101772
Zieliński M, Dębowski M, Kazimierowicz J. Microwave Radiation Influence on Dairy Waste Anaerobic Digestion in a Multi-Section Hybrid Anaerobic Reactor (M-SHAR). Processes. 2021; 9(10):1772. https://doi.org/10.3390/pr9101772
Chicago/Turabian StyleZieliński, Marcin, Marcin Dębowski, and Joanna Kazimierowicz. 2021. "Microwave Radiation Influence on Dairy Waste Anaerobic Digestion in a Multi-Section Hybrid Anaerobic Reactor (M-SHAR)" Processes 9, no. 10: 1772. https://doi.org/10.3390/pr9101772
APA StyleZieliński, M., Dębowski, M., & Kazimierowicz, J. (2021). Microwave Radiation Influence on Dairy Waste Anaerobic Digestion in a Multi-Section Hybrid Anaerobic Reactor (M-SHAR). Processes, 9(10), 1772. https://doi.org/10.3390/pr9101772