Thermal Devolatilization Kinetics of Dry Distiller’s Grains with Solubles (DDGS)
Abstract
1. Introduction
2. Materials
3. Methods
4. Results
4.1. Thermogravimetric Behavior
4.2. Kinetic Modelling
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Cheng, F.; Bayat, H.; Jena, U.; Brewer, C.E. Impact of feedstock composition on pyrolysis of low-cost, protein- and lignin-rich biomass: A review. J. Anal. Appl. Pyrolysis 2020, 147, 104780. [Google Scholar] [CrossRef]
- Branca, C.; Di Blasi, C. Thermogravimetric analysis of the combustion of dry distiller’s grains with solubles (DDGS) and pyrolysis char under kinetic control. Fuel Proc. Technol. 2015, 129, 67–74. [Google Scholar] [CrossRef]
- Giuntoli, J.; de Jong, W.; Arvelakis, S.; Spliethoff, H.; Verkooijen, A.H.M. Quantitative and kinetic TG-FTIR study of biomass residue pyrolysis: Dry Distiller’s Grains with Solubles (DDGS) and chicken manure. J. Anal. Appl. Pyrolysis 2009, 85, 301–312. [Google Scholar] [CrossRef]
- Veljković, V.B.; Biberdžić, M.O.; Banković-Ilić, I.B.; Djalović, I.G.; Tasić, M.B.; Nježić, Z.B.; Stamenković, O.S. Biodiesel production from corn oil: A review. Renew. Sustain. Energy Rev. 2018, 91, 531–548. [Google Scholar] [CrossRef]
- Qi, W.; Yang, W.; Xu, Q.; Xu, Z.; Wang, Q.; Liang, C.; Liu, S.; Ling, C.; Wang, Z.; Yuan, Z. Comprehensive research on the influence of nonlignocellulosic components on the pyrolysis behavior of Chinese distiller’s grain. ACS Sustain. Chem. Eng. 2020, 8, 3103–3113. [Google Scholar] [CrossRef]
- Chatzifragkoua, A.; Kosik, O.; Prabhakumari, P.C.; Lovegrove, A.; Frazier, R.A.; Shewry, P.R.; Charalampopoulos, D. Biorefinery strategies for upgrading Distillers’ Dried Grains with Solubles (DDGS). Process Biochem. 2015, 50, 2194–2207. [Google Scholar] [CrossRef]
- Cheng, F.; Brewer, C.E. Producing jet fuel from biomass lignin: Potential pathways to alkyl-benzenes and cycloalkanes. Renew. Sustain. Energy Rev. 2017, 72, 673–722. [Google Scholar] [CrossRef]
- Chrastina, J.; Staroňová, L.; Vitázek, I.; Pšenka, M. Analysis of residual biomass of liquid biofuels using gravimetric method and combustion heat. Res. Agric. Eng. 2015, 61, S21–S25. [Google Scholar] [CrossRef]
- Liaw, J.D.; Bajwa, D.S.; Shojaeiarani, J.; Bajwa, S.G. Corn distiller’s dried grains with solubles (DDGS)—A value added functional material for wood composites. Ind. Crops Prod. 2019, 139, 111525. [Google Scholar] [CrossRef]
- Zarrinbakhsh, N.; Mohanty, A.K.; Misra, M. Fundamental studies on water-washing of the corn ethanol coproduct (DDGS) and its characterization for biocomposite applications. Biomass Bioenergy 2013, 55, 251–259. [Google Scholar] [CrossRef]
- Huda, M.S.; Nahar, N.; Monono, E.; Regmi, S. Oil Recovery from fractionated Dried Distillers Grains with Solubles (DDGS) using enzymes. Processes 2021, 9, 1507. [Google Scholar] [CrossRef]
- Gudka, B.; Darvell, L.I.; Jones, J.M.; Williams, A.; Kilgallon, P.J.; Simms, N.J.; Laryea-Goldsmith, R. Fuel characteristics of wheat-based Dried Distillers Grains and Solubles (DDGS) for thermal conversion in power plants. Fuel Process. Technol. 2012, 94, 123–130. [Google Scholar] [CrossRef]
- Lv, J.; Ao, X.; Li, Q.; Cao, Y.; Chen, Q.; Xie, Y. Steam co-gasification of different ratios of spirit-based distillers’ grains and anthracite coal to produce hydrogen-rich gas. Bioresour. Technol. 2019, 283, 59–66. [Google Scholar] [CrossRef]
- Zhang, B.; Zhong, Z.; Li, T.; Xue, Z.; Wang, X.; Ruan, R. Biofuel production from distillers dried grains with solubles (DDGS) co-fed with waste agricultural plastic mulching films via microwave-assisted catalytic fast pyrolysis using microwave absorbent and hierarchical ZSM-5/MCM-41 catalyst. J. Anal. Appl. Pyrolysis 2018, 130, 1–7. [Google Scholar] [CrossRef]
- Di Blasi, C. The state of the art of transport models for charring solid degradation. Polym. Int. 2000, 49, 1133–1146. [Google Scholar] [CrossRef]
- Di Blasi, C.; Branca, C. Modeling a stratified downdraft wood gasifier with primary and secondary air entry. Fuel 2013, 104, 847–860. [Google Scholar] [CrossRef]
- Xiong, Q.; Yang, Y.; Xu, F.; Pan, Y.; Zhang, J.; Hong, K.; Lorenzini, G.; Wang, S. Overview of computational fluid dynamics simulation of reactor-scale biomass pyrolysis. ACS Sustain. Chem. Eng. 2017, 5, 2783–2798. [Google Scholar] [CrossRef]
- Fatehi, H.; Weng, W.; Li, Z.; Bai, X.S.; Aldén, M. Recent development in numerical simulations and experimental studies of biomass thermochemical conversion. Energy Fuels 2021, 35, 6940–6963. [Google Scholar] [CrossRef]
- Xu, B.; Fang, B.; Sun, G. Kinetic study of decomposition of wheat distiller grains and steam gasification of the corresponding pyrolysis char. J. Therm. Anal. Calorim. 2011, 108, 109–117. [Google Scholar] [CrossRef]
- Zhang, Y.; Huang, G.; Yu, S.; Gu, X.; Cai, J.; Zhang, X. Physicochemical characterization and pyrolysis kinetic analysis of Moutai-flavored dried distiller’s grains towards its thermochemical conversion for potential applications. J. Anal. Appl. Pyrolysis 2021, 155, 105046. [Google Scholar] [CrossRef]
- Brostrom, M.; Nordin, A.; Pommer, L.; Branca, C.; Di Blasi, C. Influence of torrefaction on the devolatilization and oxidation kinetics of wood. J. Anal. Appl. Pyrolysis 2012, 96, 100–109. [Google Scholar] [CrossRef]
- Moreno, A.I.; Font, R.; Conesa, J.A. Combustion of furniture wood waste and solid wood: Kinetic study and evolution of pollutants. Fuel 2017, 192, 169–177. [Google Scholar] [CrossRef]
- Branca, C.; Di Blasi, C. Burning dynamics of straw chars under the conditions of thermal analysis. Energy Fuels 2021, 35, 12187–12199. [Google Scholar] [CrossRef]
- Adapaa, P.; Tabila, L.; Schoenau, G. Compaction characteristics of barley, canola, oat and wheat straw. Biosyst. Eng. 2009, 104, 335–344. [Google Scholar] [CrossRef]
- Di Blasi, C.; Branca, C.; Masotta, F.; De Biase, E. Experimental analysis of reaction heat effects during beech wood pyrolysis. Energy Fuels 2013, 27, 2665–2674. [Google Scholar] [CrossRef]
- Branca, C.; Di Blasi, C.; Galgano, A. Pyrolytic conversion of wastes from cereal, protein and oil-protein crops. J. Anal. Appl. Pyrolysis 2017, 127, 426–435. [Google Scholar] [CrossRef]
- Bakker, R.R.; Elbersen, H.W.; Poppens, R.P.; Lesschen, J.P. Rice Straw and Wheat Straw. Potential Feedstocks for the Biobased Economy; NL Agency: The Ague, The Netherlands, 2013. [Google Scholar]
- Di Blasi, C.; Galgano, A.; Branca, C. Exothermic events of nut shell and fruit stone pyrolysis. ACS Sustain. Chem. Eng. 2019, 7, 9035–9049. [Google Scholar] [CrossRef]
- Di Blasi, C.; Galgano, A.; Branca, C. Effects of potassium hydroxide impregnation on wood pyrolysis. Energy Fuels 2009, 23, 1045–1054. [Google Scholar] [CrossRef]
- Di Blasi, C.; Branca, C.; Galgano, A. Influences of potassium hydroxide on the rate and thermicity of wood pyrolysis reactions. Energy Fuels 2017, 1, 6154–6162. [Google Scholar] [CrossRef]
- Di Blasi, C.; Branca, C.; Galgano, A. Role of the potassium chemical state in the global exothermicity of wood packed-bed pyrolysis. Ind. Eng. Chem. Res. 2018, 57, 11561–11571. [Google Scholar] [CrossRef]
- Branca, C.; Di Blasi, C. A lumped kinetic model for banana peel combustion. Thermochim. Acta 2015, 614, 68–75. [Google Scholar] [CrossRef]
- Giuntoli, J. Characterization of 2nd Generation Biomass Under Thermal Conversion and the Fate of Nitrogen. Ph.D. Thesis, Delft University of Technology, Delft, The Netherlands, 2010. [Google Scholar]
- Branca, C.; Di Blasi, C. Global intrinsic kinetics of wood oxidation. Fuel 2004, 83, 81–87. [Google Scholar] [CrossRef]
- Branca, C.; Di Blasi, C. A unified mechanism of the combustion reactions of lignocellulosic fuels. Thermochim. Acta 2013, 565, 58–64. [Google Scholar] [CrossRef]
- Branca, C.; Di Blasi, C. A summative model for the pyrolysis reaction heats of beech wood. Thermochim. Acta 2016, 638, 10–16. [Google Scholar] [CrossRef]
- Branca, C.; Di Blasi, C. Thermal degradation behavior and kinetics of industrial hemp stalks and shives. Thermochim. Acta 2021, 697, 178878. [Google Scholar] [CrossRef]
- Varhegyi, G. Aims and methods in non-isothermal reaction kinetics. J. Anal. Appl. Pyrolysis 2007, 79, 278–288. [Google Scholar] [CrossRef][Green Version]
- Branca, C.; Di Blasi, C.; Horacek, H. Analysis of the combustion kinetics and the thermal behavior of an intumescent system. Ind. Eng. Chem. Res. 2002, 41, 2104–2114. [Google Scholar] [CrossRef]
DDGS | Beech Wood | Barley Straw | ||
---|---|---|---|---|
Chemical composition | ||||
(wt%, db) | cellulose | 15.0 (12) | 45 (25) | 33.2 (24) |
hemicellulose | 5.4 (12) | 33 (25) | 20.4 (24) | |
lignin | 29.8 (12) | 20 (25) | 17.3 (24) | |
extractives | - | 2 (25) | 3.5 (24) | |
protein + amino acid | 38.2 (12) | - | 3.6 (24) | |
Elemental composition | ||||
(wt%, db) | C | 49.0 (3) | 48.3 (2) | 48 (27) |
H | 6.3 (3) | 6.02 (2) | 5.9 (27) | |
N | 4.5 (3) | 0.30 (2) | 0.80 (27) | |
S | 0.4 (3) | <0.05 (2) | 0.15 (27) | |
O | 33.6 (3) | 45.3 (2) | 44.0 (27) | |
Proximate analysis | ||||
(wt%, db) | VM | 78.2 (3) | 86.8 (28) | 75.0 (26) |
FC | 14.7 (3) | 13.1 (28) | 15.9 (26) | |
ASH | 7.1 (3) | 0.14 (28) | 9.1 (26) |
Biomass | DDGS | Wood | Straw | ||
---|---|---|---|---|---|
h (K/min) | 5 | 10 | 20 | 5 | 5 |
Ti(K) | 464 | 470 | 475 | 501 | 481 |
Tp1(K) | 538 | 544 | 550 | 560 sh | - |
Tp2(K) | 589 | 596 | 601 | 613 | 581 |
Tp3(K) | 664 | 673 | 681 | - | - |
Tf(K) | 735 | 755 | 750 | 639 | 656 |
FW(K) | 271 | 285 | 285 | 129 | 166 |
−(dY/dt)p1 × 103(s−1) | 0.34 | 0.71 | 1.46 | 0.44 sh | - |
−(dY/dt)p2 × 103(s−1) | 0.45 | 0.88 | 1.72 | 0.91 | 0.69 |
− (dY/dt)p3 × 103(s−1) | 0.14 | 0.29 | 0.57 | - | - |
Yp1 | 0.82 | 0.81 | 0.81 | 0.80 sh | - |
Yp2 | 0.61 | 0.60 | 0.60 | 0.41 | 0.63 |
Yp3 | 0.41 | 0.40 | 0.40 | - | - |
Y773 | 0.31 | 0.29 | 0.28 | 0.19 | 0.32 |
Parameters | |
---|---|
E1 (kJ/mol) | 88.7 |
A1 (s−1) | 1.36 × 107 |
ν1 | 0.05 |
E2 (kJ/mol) | 120.5 |
A2 (s−1) | 3.68 × 109 |
ν2 | 0.19 |
E3 (kJ/mol) | 158.0 |
A3 (s−1) | 7.34 × 1011 |
ν3 | 0.23 |
E4 (kJ/mol) | 102.2 |
A4 (s−1) | 8.30 × 105 |
ν4 | 0.15 |
E5 (kJ/mol) | 112.9 |
A5 (s−1) | 8.1 05 |
ν5 | 0.092 |
devTG (%) | 0.49 |
devDTG (%) | 3.54 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Branca, C.; Di Blasi, C. Thermal Devolatilization Kinetics of Dry Distiller’s Grains with Solubles (DDGS). Processes 2021, 9, 1907. https://doi.org/10.3390/pr9111907
Branca C, Di Blasi C. Thermal Devolatilization Kinetics of Dry Distiller’s Grains with Solubles (DDGS). Processes. 2021; 9(11):1907. https://doi.org/10.3390/pr9111907
Chicago/Turabian StyleBranca, Carmen, and Colomba Di Blasi. 2021. "Thermal Devolatilization Kinetics of Dry Distiller’s Grains with Solubles (DDGS)" Processes 9, no. 11: 1907. https://doi.org/10.3390/pr9111907
APA StyleBranca, C., & Di Blasi, C. (2021). Thermal Devolatilization Kinetics of Dry Distiller’s Grains with Solubles (DDGS). Processes, 9(11), 1907. https://doi.org/10.3390/pr9111907