Thermal Devolatilization Kinetics of Dry Distiller’s Grains with Solubles (DDGS)
Abstract
:1. Introduction
2. Materials
3. Methods
4. Results
4.1. Thermogravimetric Behavior
4.2. Kinetic Modelling
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Cheng, F.; Bayat, H.; Jena, U.; Brewer, C.E. Impact of feedstock composition on pyrolysis of low-cost, protein- and lignin-rich biomass: A review. J. Anal. Appl. Pyrolysis 2020, 147, 104780. [Google Scholar] [CrossRef]
- Branca, C.; Di Blasi, C. Thermogravimetric analysis of the combustion of dry distiller’s grains with solubles (DDGS) and pyrolysis char under kinetic control. Fuel Proc. Technol. 2015, 129, 67–74. [Google Scholar] [CrossRef]
- Giuntoli, J.; de Jong, W.; Arvelakis, S.; Spliethoff, H.; Verkooijen, A.H.M. Quantitative and kinetic TG-FTIR study of biomass residue pyrolysis: Dry Distiller’s Grains with Solubles (DDGS) and chicken manure. J. Anal. Appl. Pyrolysis 2009, 85, 301–312. [Google Scholar] [CrossRef]
- Veljković, V.B.; Biberdžić, M.O.; Banković-Ilić, I.B.; Djalović, I.G.; Tasić, M.B.; Nježić, Z.B.; Stamenković, O.S. Biodiesel production from corn oil: A review. Renew. Sustain. Energy Rev. 2018, 91, 531–548. [Google Scholar] [CrossRef]
- Qi, W.; Yang, W.; Xu, Q.; Xu, Z.; Wang, Q.; Liang, C.; Liu, S.; Ling, C.; Wang, Z.; Yuan, Z. Comprehensive research on the influence of nonlignocellulosic components on the pyrolysis behavior of Chinese distiller’s grain. ACS Sustain. Chem. Eng. 2020, 8, 3103–3113. [Google Scholar] [CrossRef]
- Chatzifragkoua, A.; Kosik, O.; Prabhakumari, P.C.; Lovegrove, A.; Frazier, R.A.; Shewry, P.R.; Charalampopoulos, D. Biorefinery strategies for upgrading Distillers’ Dried Grains with Solubles (DDGS). Process Biochem. 2015, 50, 2194–2207. [Google Scholar] [CrossRef]
- Cheng, F.; Brewer, C.E. Producing jet fuel from biomass lignin: Potential pathways to alkyl-benzenes and cycloalkanes. Renew. Sustain. Energy Rev. 2017, 72, 673–722. [Google Scholar] [CrossRef]
- Chrastina, J.; Staroňová, L.; Vitázek, I.; Pšenka, M. Analysis of residual biomass of liquid biofuels using gravimetric method and combustion heat. Res. Agric. Eng. 2015, 61, S21–S25. [Google Scholar] [CrossRef] [Green Version]
- Liaw, J.D.; Bajwa, D.S.; Shojaeiarani, J.; Bajwa, S.G. Corn distiller’s dried grains with solubles (DDGS)—A value added functional material for wood composites. Ind. Crops Prod. 2019, 139, 111525. [Google Scholar] [CrossRef]
- Zarrinbakhsh, N.; Mohanty, A.K.; Misra, M. Fundamental studies on water-washing of the corn ethanol coproduct (DDGS) and its characterization for biocomposite applications. Biomass Bioenergy 2013, 55, 251–259. [Google Scholar] [CrossRef]
- Huda, M.S.; Nahar, N.; Monono, E.; Regmi, S. Oil Recovery from fractionated Dried Distillers Grains with Solubles (DDGS) using enzymes. Processes 2021, 9, 1507. [Google Scholar] [CrossRef]
- Gudka, B.; Darvell, L.I.; Jones, J.M.; Williams, A.; Kilgallon, P.J.; Simms, N.J.; Laryea-Goldsmith, R. Fuel characteristics of wheat-based Dried Distillers Grains and Solubles (DDGS) for thermal conversion in power plants. Fuel Process. Technol. 2012, 94, 123–130. [Google Scholar] [CrossRef]
- Lv, J.; Ao, X.; Li, Q.; Cao, Y.; Chen, Q.; Xie, Y. Steam co-gasification of different ratios of spirit-based distillers’ grains and anthracite coal to produce hydrogen-rich gas. Bioresour. Technol. 2019, 283, 59–66. [Google Scholar] [CrossRef]
- Zhang, B.; Zhong, Z.; Li, T.; Xue, Z.; Wang, X.; Ruan, R. Biofuel production from distillers dried grains with solubles (DDGS) co-fed with waste agricultural plastic mulching films via microwave-assisted catalytic fast pyrolysis using microwave absorbent and hierarchical ZSM-5/MCM-41 catalyst. J. Anal. Appl. Pyrolysis 2018, 130, 1–7. [Google Scholar] [CrossRef]
- Di Blasi, C. The state of the art of transport models for charring solid degradation. Polym. Int. 2000, 49, 1133–1146. [Google Scholar] [CrossRef]
- Di Blasi, C.; Branca, C. Modeling a stratified downdraft wood gasifier with primary and secondary air entry. Fuel 2013, 104, 847–860. [Google Scholar] [CrossRef]
- Xiong, Q.; Yang, Y.; Xu, F.; Pan, Y.; Zhang, J.; Hong, K.; Lorenzini, G.; Wang, S. Overview of computational fluid dynamics simulation of reactor-scale biomass pyrolysis. ACS Sustain. Chem. Eng. 2017, 5, 2783–2798. [Google Scholar] [CrossRef]
- Fatehi, H.; Weng, W.; Li, Z.; Bai, X.S.; Aldén, M. Recent development in numerical simulations and experimental studies of biomass thermochemical conversion. Energy Fuels 2021, 35, 6940–6963. [Google Scholar] [CrossRef]
- Xu, B.; Fang, B.; Sun, G. Kinetic study of decomposition of wheat distiller grains and steam gasification of the corresponding pyrolysis char. J. Therm. Anal. Calorim. 2011, 108, 109–117. [Google Scholar] [CrossRef]
- Zhang, Y.; Huang, G.; Yu, S.; Gu, X.; Cai, J.; Zhang, X. Physicochemical characterization and pyrolysis kinetic analysis of Moutai-flavored dried distiller’s grains towards its thermochemical conversion for potential applications. J. Anal. Appl. Pyrolysis 2021, 155, 105046. [Google Scholar] [CrossRef]
- Brostrom, M.; Nordin, A.; Pommer, L.; Branca, C.; Di Blasi, C. Influence of torrefaction on the devolatilization and oxidation kinetics of wood. J. Anal. Appl. Pyrolysis 2012, 96, 100–109. [Google Scholar] [CrossRef]
- Moreno, A.I.; Font, R.; Conesa, J.A. Combustion of furniture wood waste and solid wood: Kinetic study and evolution of pollutants. Fuel 2017, 192, 169–177. [Google Scholar] [CrossRef] [Green Version]
- Branca, C.; Di Blasi, C. Burning dynamics of straw chars under the conditions of thermal analysis. Energy Fuels 2021, 35, 12187–12199. [Google Scholar] [CrossRef]
- Adapaa, P.; Tabila, L.; Schoenau, G. Compaction characteristics of barley, canola, oat and wheat straw. Biosyst. Eng. 2009, 104, 335–344. [Google Scholar] [CrossRef]
- Di Blasi, C.; Branca, C.; Masotta, F.; De Biase, E. Experimental analysis of reaction heat effects during beech wood pyrolysis. Energy Fuels 2013, 27, 2665–2674. [Google Scholar] [CrossRef] [Green Version]
- Branca, C.; Di Blasi, C.; Galgano, A. Pyrolytic conversion of wastes from cereal, protein and oil-protein crops. J. Anal. Appl. Pyrolysis 2017, 127, 426–435. [Google Scholar] [CrossRef]
- Bakker, R.R.; Elbersen, H.W.; Poppens, R.P.; Lesschen, J.P. Rice Straw and Wheat Straw. Potential Feedstocks for the Biobased Economy; NL Agency: The Ague, The Netherlands, 2013. [Google Scholar]
- Di Blasi, C.; Galgano, A.; Branca, C. Exothermic events of nut shell and fruit stone pyrolysis. ACS Sustain. Chem. Eng. 2019, 7, 9035–9049. [Google Scholar] [CrossRef]
- Di Blasi, C.; Galgano, A.; Branca, C. Effects of potassium hydroxide impregnation on wood pyrolysis. Energy Fuels 2009, 23, 1045–1054. [Google Scholar] [CrossRef]
- Di Blasi, C.; Branca, C.; Galgano, A. Influences of potassium hydroxide on the rate and thermicity of wood pyrolysis reactions. Energy Fuels 2017, 1, 6154–6162. [Google Scholar] [CrossRef]
- Di Blasi, C.; Branca, C.; Galgano, A. Role of the potassium chemical state in the global exothermicity of wood packed-bed pyrolysis. Ind. Eng. Chem. Res. 2018, 57, 11561–11571. [Google Scholar] [CrossRef]
- Branca, C.; Di Blasi, C. A lumped kinetic model for banana peel combustion. Thermochim. Acta 2015, 614, 68–75. [Google Scholar] [CrossRef]
- Giuntoli, J. Characterization of 2nd Generation Biomass Under Thermal Conversion and the Fate of Nitrogen. Ph.D. Thesis, Delft University of Technology, Delft, The Netherlands, 2010. [Google Scholar]
- Branca, C.; Di Blasi, C. Global intrinsic kinetics of wood oxidation. Fuel 2004, 83, 81–87. [Google Scholar] [CrossRef]
- Branca, C.; Di Blasi, C. A unified mechanism of the combustion reactions of lignocellulosic fuels. Thermochim. Acta 2013, 565, 58–64. [Google Scholar] [CrossRef]
- Branca, C.; Di Blasi, C. A summative model for the pyrolysis reaction heats of beech wood. Thermochim. Acta 2016, 638, 10–16. [Google Scholar] [CrossRef]
- Branca, C.; Di Blasi, C. Thermal degradation behavior and kinetics of industrial hemp stalks and shives. Thermochim. Acta 2021, 697, 178878. [Google Scholar] [CrossRef]
- Varhegyi, G. Aims and methods in non-isothermal reaction kinetics. J. Anal. Appl. Pyrolysis 2007, 79, 278–288. [Google Scholar] [CrossRef] [Green Version]
- Branca, C.; Di Blasi, C.; Horacek, H. Analysis of the combustion kinetics and the thermal behavior of an intumescent system. Ind. Eng. Chem. Res. 2002, 41, 2104–2114. [Google Scholar] [CrossRef]
DDGS | Beech Wood | Barley Straw | ||
---|---|---|---|---|
Chemical composition | ||||
(wt%, db) | cellulose | 15.0 (12) | 45 (25) | 33.2 (24) |
hemicellulose | 5.4 (12) | 33 (25) | 20.4 (24) | |
lignin | 29.8 (12) | 20 (25) | 17.3 (24) | |
extractives | - | 2 (25) | 3.5 (24) | |
protein + amino acid | 38.2 (12) | - | 3.6 (24) | |
Elemental composition | ||||
(wt%, db) | C | 49.0 (3) | 48.3 (2) | 48 (27) |
H | 6.3 (3) | 6.02 (2) | 5.9 (27) | |
N | 4.5 (3) | 0.30 (2) | 0.80 (27) | |
S | 0.4 (3) | <0.05 (2) | 0.15 (27) | |
O | 33.6 (3) | 45.3 (2) | 44.0 (27) | |
Proximate analysis | ||||
(wt%, db) | VM | 78.2 (3) | 86.8 (28) | 75.0 (26) |
FC | 14.7 (3) | 13.1 (28) | 15.9 (26) | |
ASH | 7.1 (3) | 0.14 (28) | 9.1 (26) |
Biomass | DDGS | Wood | Straw | ||
---|---|---|---|---|---|
h (K/min) | 5 | 10 | 20 | 5 | 5 |
Ti(K) | 464 | 470 | 475 | 501 | 481 |
Tp1(K) | 538 | 544 | 550 | 560 sh | - |
Tp2(K) | 589 | 596 | 601 | 613 | 581 |
Tp3(K) | 664 | 673 | 681 | - | - |
Tf(K) | 735 | 755 | 750 | 639 | 656 |
FW(K) | 271 | 285 | 285 | 129 | 166 |
−(dY/dt)p1 × 103(s−1) | 0.34 | 0.71 | 1.46 | 0.44 sh | - |
−(dY/dt)p2 × 103(s−1) | 0.45 | 0.88 | 1.72 | 0.91 | 0.69 |
− (dY/dt)p3 × 103(s−1) | 0.14 | 0.29 | 0.57 | - | - |
Yp1 | 0.82 | 0.81 | 0.81 | 0.80 sh | - |
Yp2 | 0.61 | 0.60 | 0.60 | 0.41 | 0.63 |
Yp3 | 0.41 | 0.40 | 0.40 | - | - |
Y773 | 0.31 | 0.29 | 0.28 | 0.19 | 0.32 |
Parameters | |
---|---|
E1 (kJ/mol) | 88.7 |
A1 (s−1) | 1.36 × 107 |
ν1 | 0.05 |
E2 (kJ/mol) | 120.5 |
A2 (s−1) | 3.68 × 109 |
ν2 | 0.19 |
E3 (kJ/mol) | 158.0 |
A3 (s−1) | 7.34 × 1011 |
ν3 | 0.23 |
E4 (kJ/mol) | 102.2 |
A4 (s−1) | 8.30 × 105 |
ν4 | 0.15 |
E5 (kJ/mol) | 112.9 |
A5 (s−1) | 8.1 05 |
ν5 | 0.092 |
devTG (%) | 0.49 |
devDTG (%) | 3.54 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Branca, C.; Di Blasi, C. Thermal Devolatilization Kinetics of Dry Distiller’s Grains with Solubles (DDGS). Processes 2021, 9, 1907. https://doi.org/10.3390/pr9111907
Branca C, Di Blasi C. Thermal Devolatilization Kinetics of Dry Distiller’s Grains with Solubles (DDGS). Processes. 2021; 9(11):1907. https://doi.org/10.3390/pr9111907
Chicago/Turabian StyleBranca, Carmen, and Colomba Di Blasi. 2021. "Thermal Devolatilization Kinetics of Dry Distiller’s Grains with Solubles (DDGS)" Processes 9, no. 11: 1907. https://doi.org/10.3390/pr9111907
APA StyleBranca, C., & Di Blasi, C. (2021). Thermal Devolatilization Kinetics of Dry Distiller’s Grains with Solubles (DDGS). Processes, 9(11), 1907. https://doi.org/10.3390/pr9111907