Influence of the Preliminary Storage on Methane Yield of Anaerobic Digestion of the Organic Fraction of Municipal Solid Waste
Abstract
:1. Introduction
2. Materials and Methods
2.1. OFMSW Preparation and Characterization
- Raw sample, (hereafter indicated as S0days, used as control)
- Sample stored for 2 days (S2days)
- Sample stored for 6 days (S6days)
- Sample stored for 10 days (S10days)
2.2. BMP Tests on Stored OFMSW
2.3. Modeling of OFMSW Methane Yield
- B0 (or P) and B (NmL∙gVS−1) are the asymptotic and t-th day cumulative methane yields, respectively.
- k (d−1) is the kinetic constant.
- Rm (NmL gVS−1∙d−1) is the maximum methane production rate.
- λ (d) is the duration of the lag phase.
- b is a numeric constant of the model (3).
- t (d) is the hydraulic retention time.
2.4. Final Digestate Analyses
- = Volume in mL of added solution until pH = 4.0
- = Volume in mL of added solution until pH = 4.3
- = Volume in mL of added solution until pH = 5.0
- = Volume in mL of sample (20 mL)
- = Normality of acid solution (0.1)
2.5. Statistical Analysis
3. Results
3.1. OFMSW Characterization
3.2. Biogas and Methane Yield of OFMSW
3.3. Estimation of OFMSW Methane Yield by Prediction Models
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Thamsiriroj, T.; Nizami, A.S.; Murphy, J.D. Use of modeling to aid design of a two-phase grass digestion system. Bioresour. Technol. 2012, 110, 379–389. [Google Scholar] [CrossRef] [PubMed]
- Ward, A.J.; Hobbs, P.J.; Holliman, P.J.; Jones, D.L. Optimisation of the anaerobic digestion of agricultural resources. Bioresour. Technol. 2008, 99, 7928–7940. [Google Scholar] [CrossRef] [PubMed]
- Zema, D.; Calabrò, P.; Folino, A.; Tamburino, V.; Zappia, G.; Zimbone, S. Valorisation of citrus processing waste: A review. Waste Manag. 2018, 80, 252–273. [Google Scholar] [CrossRef] [PubMed]
- Calabrò, P.S.; Folino, A.; Tamburino, V.; Zappia, G.; Zema, D.A. Increasing the tolerance to polyphenols of the anaerobic digestion of olive wastewater through microbial adaptation. Biosyst. Eng. 2018, 172, 19–28. [Google Scholar] [CrossRef]
- Calabrò, P.; Satira, A. Recent advancements toward resilient and sustainable municipal solid waste collection systems. Curr. Opin. Green Sustain. Chem. 2020, 26, 100375. [Google Scholar] [CrossRef]
- Calabrò, P.S.; Pangallo, D. Analysis of the Effect of Separate Collection on the Composition of Mixed Municipal Solid Waste in Italy. Open Chem. Eng. J. 2020, 14, 63–70. [Google Scholar] [CrossRef]
- Zamri, M.; Hasmady, S.; Akhiar, A.; Ideris, F.; Shamsuddin, A.; Mofijur, M.; Fattah, I.M.R.; Mahlia, T. A comprehensive review on anaerobic digestion of organic fraction of municipal solid waste. Renew. Sustain. Energy Rev. 2020, 137, 110637. [Google Scholar] [CrossRef]
- Mata-Alvarez, J.; Dosta, J.; Romero-Güiza, M.; Fonoll, X.; Peces, M.; Astals, S. A critical review on anaerobic co-digestion achievements between 2010 and 2013. Renew. Sustain. Energy Rev. 2014, 36, 412–427. [Google Scholar] [CrossRef]
- Hartmann, H.; Ahring, B.K. Strategies for the anaerobic digestion of the organic fraction of municipal solid waste: An overview. Water Sci. Technol. 2006, 53, 7–22. [Google Scholar] [CrossRef]
- Siciliano, A.; Limonti, C.; Curcio, G.M. Improvement of Biomethane Production from Organic Fraction of Municipal Solid Waste (OFMSW) through Alkaline Hydrogen Peroxide (AHP) Pretreatment. Fermentation 2021, 7, 197. [Google Scholar] [CrossRef]
- Kazimierowicz, J.; Zieliński, M.; Dębowski, M. Influence of the Heating Method on the Efficiency of Biomethane Production from Expired Food Products. Fermentation 2021, 7, 12. [Google Scholar] [CrossRef]
- Gao, Y.; Kong, X.; Xing, T.; Sun, Y.; Zhang, Y.; Luo, X.; Sun, Y. Digestion Performance and Microbial Metabolic Mechanism in Thermophilic and Mesophilic Anaerobic Digesters Exposed to Elevated Loadings of Organic Fraction of Municipal Solid Waste. Energies 2018, 11, 952. [Google Scholar] [CrossRef] [Green Version]
- Lavagnolo, M.C.; Girotto, F.; Rafieenia, R.; Danieli, L.; Alibardi, L. Two-stage anaerobic digestion of the organic fraction of municipal solid waste—Effects of process conditions during batch tests. Renew. Energy 2018, 126, 14–20. [Google Scholar] [CrossRef]
- Le Pera, A.; Sellaro, M.; Migliori, M.; Bianco, M.; Zanardi, G. Dry Mesophilic Anaerobic Digestion of Separately Collected Organic Fraction of Municipal Solid Waste: Two-Year Experience in an Industrial-Scale Plant. Processes 2021, 9, 213. [Google Scholar] [CrossRef]
- Kazimierowicz, J.; Dzienis, L.; Dębowski, M.; Zieliński, M. Optimisation of methane fermentation as a valorisation method for food waste products. Biomass. Bioenergy 2020, 144, 105913. [Google Scholar] [CrossRef]
- Calabrò, P.S.; Gori, M.; Lubello, C. European trends in greenhouse gases emissions from integrated solid waste management. Environ. Technol. 2015, 36, 2125–2137. [Google Scholar] [CrossRef]
- ISPRA. Rapporto Rifiuti Urbani—Edizione 2020; ISPRA: Rome, Italy, 2020.
- EEA. Bio-Waste in Europe—Turning Challenges into Opportunities—European Environment Agency; Publications Office of the European Union: Luxembourg, 2020; ISBN 978-92-9480-223. [Google Scholar]
- Ministero Dell’ambiente e Della Tutela del Territorio e del Mare Decreto 8 April 2008. On the Centers for the Separate Collection of Municipal Solid Waste; Serie Generale, n. 99; Ministero Dell’ambiente e Della Tutela Del Territorio e Del Mare: Roma, Italy, 2008; (In Italian).
- Calabrò, P.S.; Orsi, S.; Gentili, E.; Carlo, M. Modelling of biogas extraction at an Italian landfill accepting mechanically and biologically treated municipal solid waste. Waste Manag. Res. 2011, 29, 1277–1285. [Google Scholar] [CrossRef]
- Sindhu, R.; Gnansounou, E.; Rebello, S.; Binod, P.; Varjani, S.; Thakur, I.S.; Nair, R.B.; Pandey, A. Conversion of food and kitchen waste to value-added products. J. Environ. Manag. 2019, 241, 619–630. [Google Scholar] [CrossRef]
- Rafieenia, R.; Girotto, F.; Peng, W.; Cossu, R.; Pivato, A.; Raga, R.; Lavagnolo, M.C. Effect of aerobic pre-treatment on hydrogen and methane production in a two-stage anaerobic digestion process using food waste with different compositions. Waste Manag. 2017, 59, 194–199. [Google Scholar] [CrossRef]
- Cheng, F.; Brewer, C. Conversion of protein-rich lignocellulosic wastes to bio-energy: Review and recommendations for hydrolysis + fermentation and anaerobic digestion. Renew. Sustain. Energy Rev. 2021, 146, 111167. [Google Scholar] [CrossRef]
- Carrere, H.; Antonopoulou, G.; Affes, R.; Passos, F.; Battimelli, A.; Lyberatos, G.; Ferrer, I. Review of feedstock pretreatment strategies for improved anaerobic digestion: From lab-scale research to full-scale application. Bioresour. Technol. 2016, 199, 386–397. [Google Scholar] [CrossRef] [PubMed]
- Antonopoulou, G.; Dimitrellos, G.; Vayenas, D.; Lyberatos, G. Different Physicochemical Pretreatment Methods on Lignocellulosic Biomass: The Efeect on Biochemical Methane Potential. In Proceedings of the 14th International Conference on Environmental Science and Technology, Rhodes, Greece, 3–5 September 2015. [Google Scholar]
- Mayer, F.; Bhandari, R.; Gäth, S.A.; Himanshu, H.; Stobernack, N. Economic and environmental life cycle assessment of organic waste treatment by means of incineration and biogasification. Is source segregation of biowaste justified in Germany? Sci. Total Environ. 2020, 721, 137731. [Google Scholar] [CrossRef] [PubMed]
- Jensen, M.B.; Møller, J.; Scheutz, C. Comparison of the organic waste management systems in the Danish–German border region using life cycle assessment (LCA). Waste Manag. 2016, 49, 491–504. [Google Scholar] [CrossRef]
- Thomsen, M.; Romeo, D.; Caro, D.; Seghetta, M.; Cong, R.-G. Environmental-Economic Analysis of Integrated Organic Waste and Wastewater Management Systems: A Case Study from Aarhus City (Denmark). Sustainability 2018, 10, 3742. [Google Scholar] [CrossRef] [Green Version]
- Lü, F.; Xu, X.; Shao, L.; He, P. Importance of storage time in mesophilic anaerobic digestion of food waste. J. Environ. Sci. 2016, 45, 76–83. [Google Scholar] [CrossRef]
- Degueurce, A.; Picard, S.; Peu, P.; Tremier, A. Storage of Food Waste: Variations of Physical–Chemical Characteristics and Consequences on Biomethane Potential. Waste Biomass. Valorization 2019, 11, 2441–2454. [Google Scholar] [CrossRef] [Green Version]
- Feng, K.; Li, H.; Deng, Z.; Wang, Q.; Zhang, Y.; Zheng, C. Effect of pre-fermentation types on the potential of methane production and energy recovery from food waste. Renew. Energy 2019, 146, 1588–1595. [Google Scholar] [CrossRef]
- Påledal, S.N.; Hellman, E.; Moestedt, J. The effect of temperature, storage time and collection method on biomethane potential of source separated household food waste. Waste Manag. 2018, 71, 636–643. [Google Scholar] [CrossRef]
- Calabrò, P.S.; Fazzino, F.; Pangallo, D. How does separate collection efficiency influence biological stability of commingled Italian municipal solid waste? Sustain. Chem. Pharm. 2020, 19, 100355. [Google Scholar] [CrossRef]
- Calabro’, P.; Folino, A.; Fazzino, F.; Komilis, D. Preliminary evaluation of the anaerobic biodegradability of three biobased materials used for the production of disposable plastics. J. Hazard. Mater. 2019, 390, 121653. [Google Scholar] [CrossRef]
- Dolci, G.; Catenacci, A.; Malpei, F.; Grosso, M. Effect of Paper vs. Bioplastic Bags on Food Waste Collection and Processing. Waste Biomass. Valorization 2021, 12, 6293–6307. [Google Scholar] [CrossRef]
- APHA. Standard Method for Examination of Water and Wastewater, 22nd ed.; American Public Health Association: Washington, DC, USA, 2012; ISBN 9780875530130. [Google Scholar]
- Calabrò, P.; Paone, E.; Komilis, D. Strategies for the sustainable management of orange peel waste through anaerobic digestion. J. Environ. Manag. 2018, 212, 462–468. [Google Scholar] [CrossRef] [PubMed]
- Calabrò, P.; Panzera, M. Biomethane production tests on ensiled orange peel waste. Int. J. Heat Technol. 2017, 35, S130–S136. [Google Scholar] [CrossRef]
- Holliger, C.; Alves, M.; Andrade, D.; Angelidaki, I.; Astals, S.; Baier, U.; Bougrier, C.; Buffière, P.; Carballa, M.; De Wilde, V.; et al. Towards a standardization of biomethane potential tests. Water Sci. Technol. 2016, 74, 2515–2522. [Google Scholar] [CrossRef]
- Schievano, A.; Scaglia, B.; D’Imporzano, G.; Malagutti, L.; Gozzi, A.; Adani, F. Prediction of biogas potentials using quick laboratory analyses: Upgrading previous models for application to heterogeneous organic matrices. Bioresour. Technol. 2009, 100, 5777–5782. [Google Scholar] [CrossRef]
- Raposo, F.; Banks, C.; Siegert, I.; Heaven, S.; Borja, R. Influence of inoculum to substrate ratio on the biochemical methane potential of maize in batch tests. Process. Biochem. 2006, 41, 1444–1450. [Google Scholar] [CrossRef]
- Donoso-Bravo, A.; Pérez-Elvira, S.I.; Fdz-Polanco, F. Application of simplified models for anaerobic biodegradability tests. Evaluation of pre-treatment processes. Chem. Eng. J. 2010, 160, 607–614. [Google Scholar] [CrossRef]
- Liebetrau, J.; Pfeiffer, D.; Thrän, D. Collection of Methods for Biogas; DBFZ Deutsches Biomasseforschungszentrum Gemeinnützige GmbH: Leipzig, Germany, 2016. [Google Scholar]
- Mézes, L.; Tamas, J.; Borbely, J. Novel approach of the basis of FOS/TAC method. An. Univ. Ii Din Oradea Fasc. Protecţia Mediu. 2011, 17, 713–718. [Google Scholar]
- Fisgativa, H.; Tremier, A.; Dabert, P. Characterizing the variability of food waste quality: A need for efficient valorisation through anaerobic digestion. Waste Manag. 2016, 50, 264–274. [Google Scholar] [CrossRef]
Fraction | % | Weight [g] |
---|---|---|
Vegetable waste (lettuce) | 30 | 210 |
Fruit waste(fig peels) | 20 | 140 |
Potato waste | 10 | 70 |
Meat waste (bovine meat) | 12 | 84 |
Fish waste (stockfish skin) | 5 | 35 |
Dairy waste (cheese crust) | 3 | 21 |
Dry bread | 8 | 56 |
Cooked rice | 6 | 42 |
Cooked pasta (spaghetti) | 6 | 42 |
Substrate | Substrate (g) | TS (%) | S/I | pH |
---|---|---|---|---|
S2days | 6.0 | 1.8 | 0.3 | 7.23 ± 0.06 |
S6days | 4.4 | 1.8 | 0.3 | 7.23 ± 0.06 |
S10days | 5.3 | 1.8 | 0.3 | 7.30 ± 0.00 |
Substrate | Weight Loss [%] | pH | TS [%] | VS [%TS] |
---|---|---|---|---|
Inoculum | - | 7.6 ± 0.05 | 1.90 ± 0.03 | 62.7 ± 1.48 |
S0days | - | 5.9 ± 0.12 a | 26.7 ± 0.34 ab | 96.1 ± 0.14 a |
S2days | 0.07 a | 5.4 ± 0.12 b | 25.0 ± 1.43 a | 95.5 ± 0.20 ab |
S6days | 7.55 b | 4.9 ± 0.04 c | 33.9 ± 0.82 c | 95.1 ± 1.01 ab |
S10days | 24.9 c | 5.4 ± 0.03 b | 28.3 ± 0.97 b | 94.7 ± 0.17 b |
Substrate | Sample | Biogas Yield (NmL·gVS−1) | Methane Yield (NmL·gVS−1) | Methane Content (%) |
---|---|---|---|---|
S2days | 1 | 683 ± 18.3 a | 495 ± 14.0 a | 48.0 ± 7.0 a |
2 | ||||
3 | ||||
S6days | 4 | 874 ± 5.8 b | 644 ± 7.8 b | 52.0 ± 3.5 b |
5 | ||||
6 | ||||
S10days | 7 | 804 ± 45.4 b | 594 ± 34.3 b | 53.0 ± 7.1 b |
8 | ||||
9 |
Prediction Model | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Substrate | First Order | Gompertz | Logistic | ||||||||
B0 (NmL∙gVS−1) | k (d−1) | R2 | P (NmL∙gVS−1) | λ (d) | Rm (NmL∙gVS−1∙d−1) | R2 | B0 (NmL∙gVS−1) | k (d−1) | B | R2 | |
S2days | 0.501 | 0.191 | 0.991 | 0.488 | 0.000 | 0.060 | 0.998 | 0.489 | 0.363 | 4.272 | 0.999 |
S6days | 0.638 | 0.223 | 0.999 | 0.625 | 0.000 | 0.090 | 0.998 | 0.621 | 0.514 | 6.330 | 0.997 |
S10days | 0.636 | 0.129 | 0.997 | 0.597 | 0.574 | 0.060 | 0.996 | 0.587 | 0.404 | 10.164 | 0.998 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pangallo, D.; Pedullà, A.; Zema, D.A.; Calabrò, P.S. Influence of the Preliminary Storage on Methane Yield of Anaerobic Digestion of the Organic Fraction of Municipal Solid Waste. Processes 2021, 9, 2017. https://doi.org/10.3390/pr9112017
Pangallo D, Pedullà A, Zema DA, Calabrò PS. Influence of the Preliminary Storage on Methane Yield of Anaerobic Digestion of the Organic Fraction of Municipal Solid Waste. Processes. 2021; 9(11):2017. https://doi.org/10.3390/pr9112017
Chicago/Turabian StylePangallo, Domenica, Altea Pedullà, Demetrio Antonio Zema, and Paolo S. Calabrò. 2021. "Influence of the Preliminary Storage on Methane Yield of Anaerobic Digestion of the Organic Fraction of Municipal Solid Waste" Processes 9, no. 11: 2017. https://doi.org/10.3390/pr9112017
APA StylePangallo, D., Pedullà, A., Zema, D. A., & Calabrò, P. S. (2021). Influence of the Preliminary Storage on Methane Yield of Anaerobic Digestion of the Organic Fraction of Municipal Solid Waste. Processes, 9(11), 2017. https://doi.org/10.3390/pr9112017