Integration of Wind Energy and Desalination Systems: A Review Study
Abstract
:1. Introduction
1.1. Wind Energy as a Viable Option for Desalination
1.2. Wind Driven Desalination
1.3. Scope and Structure of This Review
2. Desalination Technologies and Selection Criteria for Wind Energy Applications
- The water demand or desalination plant required capacity.
- The feed water quality available at the location. Some desalination technologies are more suitable for higher concentration feed waters than others. Pre-treatment requirements also vary depending on the desalination process.
- The renewable energy resources at the location.
- The availability and feasibility for connection to the electrical grid.
- The specific technical requirements that are needed to ensure a proper matching of the operational conditions between the desalination plant and the renewable energy technology.
2.1. Thermal Desalination Technologies
2.2. Membrane Desalination
3. Wind-Powered Desalination with Grid Connected Systems
3.1. Interconnection to the Electrical Grid
3.2. Desalination for Increasing Wind Energy Penetration
3.3. Desalination including Combinations of Wind with Other RES
4. Autonomous Wind-Powered Desalination: Stand Alone Systems with Backup
4.1. Diesel Generators
4.2. Energy Storage for Achieving Steady Operating Conditions for the Desalination Plants
4.3. Variable Desalination Capacity
5. Autonomous Wind-Powered Desalination: Stand Alone System without a Back-Up and Variable Operation
- the sizing and design of each component;
- the identification of the allowed operational limits and ranges for each component, in order to define a region where the system can safely operate;
- a control and operational strategy, to ensure the system can operate in the defined operational area; and
- a careful analysis of the system performance in dynamic conditions, to ensure it can handle fluctuations.
6. Direct-Driven Wind Powered Desalination: Mechanical-Hydraulic Systems
6.1. With Intermediate Energy Storage
6.2. Without Energy Storage but Direct Connection
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
BWRO | Bracksih water Reverse Osmosis |
ERD | Energy Recovery Device |
HPP | High Pressure Pump |
MED | Multi Effect Distillation |
MSF | MultiStage Flash Evapouration |
MVC | Mechanical Vapour Compression |
PV | Photovoltaic |
RES | Renewable Energy Sources |
RO | Reverse Osmsosis |
SWRO | Seawater Reverse Osmosis Desalination |
TDS | Total Dissolved Salts |
TVC | Termal Vapour Compression |
USD | US Dollar |
VC | Vapour Compression |
WT | Wind Turbine |
References
- Hofste, R.W.; Reig, P.; Schleifer, L. 17 Countries, Home to One-Quarter of the World’s Population, Face Extremely High Water Stress; World Resources Institute: Washington, DC, USA, 2019. [Google Scholar]
- Curto, D.; Franzitta, V.; Guercio, A. A review of the water desalination technologies. Appl. Sci. 2021, 11, 670. [Google Scholar] [CrossRef]
- Ali, A.; Tufa, R.A.; Macedonio, F.; Curcio, E.; Drioli, E. Membrane technology in renewable-energy-driven desalination. Renew. Sustain. Energy Rev. 2018, 81, 1–21. [Google Scholar] [CrossRef]
- IRENA. Renewable Energy Statistics 2019; IRENA: Abu Dhabi, United Arab Emirates, 2019; Volume 1, p. 348. [Google Scholar]
- Magagna, D.; Hidalgo González, I.; Bidoglio, G.; Peteves, S. Water—Energy Nexus in Europe; Technical Report; European Commission: Luxembourg, 2019. [Google Scholar] [CrossRef]
- IEA. Renewables 2020 Analysis and Forecast to 2025; Technical Report; International Energy Agency: Paris, France, 2020. [Google Scholar]
- Raluy, R.G.; Serra, L.; Uche, J. Life cycle assessment of desalination technologies integrated with renewable energies. Desalination 2005, 183, 81–93. [Google Scholar] [CrossRef]
- Tzen, E. Wind-Powered Desalination—Principles, Configurations, Design, and Implementation; Elsevier Inc.: Amsterdam, The Netherlands, 2018; pp. 91–139. [Google Scholar] [CrossRef]
- Panagopoulos, A. Water-energy nexus: Desalination technologies and renewable energy sources. Environ. Sci. Pollut. Res. 2021, 28, 21009–21022. [Google Scholar] [CrossRef]
- Koulouri, A.; Moccia, J. Saving Water with Wind Energy; Technical Report; European Wind Energy Association: Brussels, Belgium, 2014. [Google Scholar]
- García-Rodríguez, L. Renewable energy applications in desalination: State of the art. Sol. Energy 2003, 75, 381–393. [Google Scholar] [CrossRef]
- Kalogirou, S.A. Seawater desalination using renewable energy sources. Prog. Energy Combust. Sci. 2005, 31, 242–281. [Google Scholar] [CrossRef]
- Kondili, E. Hybrid Wind Energy Systems for Desalination; Woodhead Publishing Limited: Sawston, UK, 2010; pp. 506–535. [Google Scholar] [CrossRef]
- Eltawil, M.A.; Zhengming, Z.; Yuan, L. A review of renewable energy technologies integrated with desalination systems. Renew. Sustain. Energy Rev. 2009, 13, 2245–2262. [Google Scholar] [CrossRef]
- Abdelkareem, M.A.; El Haj Assad, M.; Sayed, E.T.; Soudan, B. Recent progress in the use of renewable energy sources to power water desalination plants. Desalination 2018, 435, 97–113. [Google Scholar] [CrossRef]
- Nassrullah, H.; Anis, S.F.; Hashaikeh, R.; Hilal, N. Energy for desalination: A state-of-the-art review. Desalination 2020, 491, 114569. [Google Scholar] [CrossRef]
- Okampo, E.J.; Nwulu, N. Optimisation of renewable energy powered reverse osmosis desalination systems: A state-of-the-art review. Renew. Sustain. Energy Rev. 2021, 140, 110712. [Google Scholar] [CrossRef]
- García-Rodríguez, L. Desalination by wind power. Wind Eng. 2004, 28, 453–463. [Google Scholar] [CrossRef]
- Ma, Q.; Lu, H. Wind energy technologies integrated with desalination systems: Review and state-of-the-art. Desalination 2011, 277, 274–280. [Google Scholar] [CrossRef]
- Kondili, E.; Kaldellis, J.K. Wind Energy Based Desalination Processes and Plants. Technical Report Infrastructure. 2009. Available online: http://ikaros.teipir.gr/OPS/Archimedes/WRECX_wind_desal_Kondili.pdf (accessed on 29 November 2021).
- Kiranoudis, C.; Voros, N.; Maroulis, Z. Wind energy exploitation for reverse osmosis desalination plants. Desalination 1997, 109, 195–209. [Google Scholar] [CrossRef]
- García-Rodríguez, L.; Romero-Ternero, V.; Gómez-Camacho, C. Economic analysis of wind-powered desalination. Desalination 2001, 137, 259–265. [Google Scholar] [CrossRef]
- Mito, M.T.; Ma, X.; Albuflasa, H.; Davies, P.A. Reverse osmosis (RO) membrane desalination driven by wind and solar photovoltaic (PV) energy: State of the art and challenges for large-scale implementation. Renew. Sustain. Energy Rev. 2019, 112, 669–685. [Google Scholar] [CrossRef]
- Paulsen, K.; Hensel, F. Design of an autarkic water and energy supply driven by renewable energy using commercially available components. Desalination 2007, 203, 455–462. [Google Scholar] [CrossRef]
- Enercon. Enercon Desalination Systems-Sustainable Solutions for drinking Water Produktion; Enercon GmbH: Aurich, Germany, 2016. [Google Scholar]
- Al-Rawajfeh, A.; Jaber, S.; Etawi, H. Desalination by renewable energy: A mini review of the recent patents. Hem. Ind. 2017, 71, 451–460. [Google Scholar] [CrossRef]
- Elimelech, M.; Phillip, W.A. The Future of Seawater and the Environment: Energy, Technology, and the Environment. Science 2011, 333, 712–718. [Google Scholar] [CrossRef] [PubMed]
- Voutchkov, N. Desalination Engineering: Planning and Design; McGraw Hill Professional: New York, NY, USA, 2012. [Google Scholar]
- Alkhudhiri, A.; Darwish, N.; Hilal, N. Membrane distillation: A comprehensive review. Desalination 2012, 287, 2–18. [Google Scholar] [CrossRef]
- Qasim, M.; Badrelzaman, M.; Darwish, N.N.; Darwish, N.A.; Hilal, N. Reverse osmosis desalination: A state-of-the-art review. Desalination 2019, 459, 59–104. [Google Scholar] [CrossRef] [Green Version]
- Fritzmann, C.; Löwenberg, J.; Wintgens, T.; Melin, T. State-of-the-art of reverse osmosis desalination. Desalination 2007, 216, 1–76. [Google Scholar] [CrossRef]
- Moreno, F.; Pinilla, A. Preliminary experimental study of a small reverse osmosis wind-powered desalination plant. Desalination 2004, 171, 257–265. [Google Scholar] [CrossRef]
- Guirguis, M.J. Energy Recovery Devices in Seawater Reverse Osmosis Desalination Plants with Emphasis On Efficiency and Economical Analysis of Isobaric Versus Centrifugal Devices. Ph.D. Thesis, University of South Florida, Tampa, FL, USA, 2011. [Google Scholar]
- Rybar, A.S.; Vodnar, M.; Vartolomei, F.L.; Rybar, P.S. Experience with Renewable Energy Source and SWRO Desalination in Gran Canaria. In Proceedings of the International Desalination Association World Congress, SP05-100, Singapore, 11–16 September 2005; pp. 1–11. [Google Scholar]
- Thomson, M.; Miranda, M.S.; Infield, D. small scale SWRO system with excellent energy efficiency over a wide operating range.pdf. Desalination 2002, 153, 229–236. [Google Scholar] [CrossRef]
- Liu, N.; Liu, Z.; Li, Y.; Sang, L. Development and experimental studies on a fully-rotary valve energy recovery device for SWRO desalination system. Desalination 2016, 397, 67–74. [Google Scholar] [CrossRef]
- Carta, J.A.; González, J.; Subiela, V. The SDAWES project: An ambitious R and D prototype for wind-powered desalination. Desalination 2004, 161, 33–48. [Google Scholar] [CrossRef]
- Gude, V.G. Energy storage for desalination processes powered by renewable energy and waste heat sources. Appl. Energy 2015, 137, 877–898. [Google Scholar] [CrossRef]
- Dehmas, D.A.; Kherba, N.; Hacene, F.B.; Merzouk, N.K.; Merzouk, M.; Mahmoudi, H.; Goosen, M.F. On the use of wind energy to power reverse osmosis desalination plant: A case study from Ténès (Algeria). Renew. Sustain. Energy Rev. 2011, 15, 956–963. [Google Scholar] [CrossRef]
- Segurado, R.; Krajačić, G.; Duić, N.; Alves, L. Increasing the penetration of renewable energy resources in S. Vicente, Cape Verde. Appl. Energy 2011, 88, 466–472. [Google Scholar] [CrossRef] [Green Version]
- Segurado, R.; Costa, M.; Duić, N.; Carvalho, M.G. Integrated analysis of energy and water supply in islands. Case study of S. Vicente, Cape Verde. Energy 2015, 92, 639–648. [Google Scholar] [CrossRef]
- Segurado, R.; Madeira, J.F.; Costa, M.; Duić, N.; Carvalho, M.G. Optimization of a wind-powered desalination and pumped hydro storage system. Appl. Energy 2016, 177, 487–499. [Google Scholar] [CrossRef] [Green Version]
- Zejli, D.; Ouammi, A.; Sacile, R.; Dagdougui, H.; Elmidaoui, A. An optimization model for a mechanical vapour compression desalination plant driven by a wind/PV hybrid system. Appl. Energy 2011, 88, 4042–4054. [Google Scholar] [CrossRef]
- Kershman, S.A.; Rheinländer, J.; Gabler, H. Seawater reverse osmosis powered from renewable energy sources-Hybrid wind/photovoltaic/grid power supply for small-scale desalination in Libya. Desalination 2002, 153, 17–23. [Google Scholar] [CrossRef]
- Kershman, S.A. Hybrid wind/PV and conventional power for desalination in Libya—GECOL’s facility for medium and small scale research at Ras Ejder. Desalination 2005, 183, 1–12. [Google Scholar] [CrossRef]
- Gökçek, M.; Gökçek, Ö.B. Technical and economic evaluation of freshwater production from a wind-powered small-scale seawater reverse osmosis system (WP-SWRO). Desalination 2016, 381, 47–57. [Google Scholar] [CrossRef]
- Goosen, M.; Mahmoudi, H.; Ghaffour, N.; Sablani, S.S. Application of Renewable Energies for Water Desalination. In Desalination, Trends and Technologies; IntechOpen: London, UK, 2011. [Google Scholar] [CrossRef] [Green Version]
- Kaldellis, J.K. Parametrical investigation of the wind-hydro electricity production solution for Aegean Archipelago. Energy Convers. Manag. 2002, 43, 2097–2113. [Google Scholar] [CrossRef]
- Plantikow, U. Wind-powered MVC seawater desalination- operational results. Desalination 1999, 122, 291–299. [Google Scholar] [CrossRef]
- Koklas, P.A.; Papathanassiou, S.A. Component sizing for an autonomous wind-driven desalination plant. Renew. Energy 2006, 31, 2122–2139. [Google Scholar] [CrossRef]
- Vujčić, R.; Krneta, M. Wind-driven seawater desalination plant for agricultural development on the islands of the County of Split and Dalmatia. Renew. Energy 2000, 19, 173–183. [Google Scholar] [CrossRef]
- Henderson, C.R.; Manwell, J.F.; McGowan, J.G. A wind/diesel hybrid system with desalination for Star Island, NH: Feasibility study results. Desalination 2009, 237, 318–329. [Google Scholar] [CrossRef]
- Manolakos, D.; Papadakis, G.; Papantonis, D.; Kyritsis, S. A simulation-optimisation programme for designing hybrid energy systems for supplying electricity and fresh water through desalination to remote areas Case study: The Merssini village, Donoussa island, Aegean Sea, Greece. Energy 2001, 26, 679–704. [Google Scholar] [CrossRef]
- Infield, D. Performance analysis of a small wind-powered reverse osmosis plant. Sol. Energy 1997, 61, 415–421. [Google Scholar] [CrossRef]
- Peñate, B.; Castellano, F.; Bello, A.; García-Rodríguez, L. Assessment of a stand-alone gradual capacity reverse osmosis desalination plant to adapt to wind power availability: A case study. Energy 2011, 36, 4372–4384. [Google Scholar] [CrossRef]
- Carta, J.A.; González, J.; Subiela, V. Operational analysis of an innovative wind-powered reverse osmosis system installed in the Canary Islands. Sol. Energy 2003, 75, 153–168. [Google Scholar] [CrossRef]
- Carta, J.A.; González, J.; Cabrera, P.; Subiela, V.J. Preliminary experimental analysis of a small-scale prototype SWRO desalination plant, designed for continuous adjustment of its energy consumption to the widely varying power generated by a stand-alone wind turbine. Appl. Energy 2015, 137, 222–239. [Google Scholar] [CrossRef]
- Ben Ali, I.; Turki, M.; Belhadj, J.; Roboam, X. Systemic design and energy management of a standalone battery-less PV/Wind driven brackish water reverse osmosis desalination system. Sustain. Energy Technol. Assess. 2020, 42, 100884. [Google Scholar] [CrossRef]
- Ali, E.; Bumazza, M.; Eltamaly, A.; Mulyono, S.; Yasin, M. Optimization of wind driven ro plant for brackish water desalination during wind speed fluctuation with and without battery. Membranes 2021, 11, 77. [Google Scholar] [CrossRef] [PubMed]
- Tzen, E.; Theofilloyianakos, D.; Kologios, Z. Autonomous reverse osmosis units driven by RE sources experiences and lessons learned. Desalination 2008, 221, 29–36. [Google Scholar] [CrossRef]
- Spyrou, I.D.; Anagnostopoulos, J.S. Design study of a stand-alone desalination system powered by renewable energy sources and a pumped storage unit. Desalination 2010, 257, 137–149. [Google Scholar] [CrossRef]
- de la Nuez Pestana, I.; Latorre, F.J.G.; Espinoza, C.A.; Gotor, A.G. Optimization of RO desalination systems powered by renewable energies. Part I: Wind energy. Desalination 2004, 160, 293–299. [Google Scholar] [CrossRef]
- Miranda, M.S.; Infield, D. A wind-powered seawater reverse-osmosis system without batteries. Desalination 2002, 153, 9–16. [Google Scholar] [CrossRef]
- Neris, A.S.; Giannakopoulos, G.B.; Vovos, N.A. Autonomous wind turbine supplying a reverse osmosis desalination unit. Wind Eng. 1995, 19, 325–346. [Google Scholar]
- Habali, S.M.; Saleh, I.A. Design of stand-alone brackish water desalination wind energy system for Jordan. Sol. Energy 1994, 52, 525–532. [Google Scholar] [CrossRef]
- Petersen, G.; Fries, S.; Mohn, J.; Müller, A. Wind and solar-powered reverse osmosis desalination units—Description of two demonstration projects. Desalination 1979, 31, 501–509. [Google Scholar] [CrossRef]
- Petersen, G.; Fries, S.; Mohn, J.; Müller, A. Wind and solar-powered reverse osmosis desalination units—Design, start up, operating experience. Desalination 1981, 39, 125–135. [Google Scholar] [CrossRef]
- Veza, J.M.; Peate, B.; Castellano, F. Electrodialysis desalination designed for wind energy (on-grid tests). Desalination 2001, 141, 53–61. [Google Scholar] [CrossRef]
- Veza, J.M.; Penate, B.; Castellano, F. Electrodialysis desalination designed for off-grid wind energy. Desalination 2004, 160, 211–221. [Google Scholar] [CrossRef]
- Zhao, H.; Wu, Q.; Hu, S.; Xu, H.; Rasmussen, C.N. Review of energy storage system for wind power integration support. Appl. Energy 2015, 137, 545–553. [Google Scholar] [CrossRef]
- Sundararagavan, S.; Baker, E. Evaluating energy storage technologies for wind power integration. Sol. Energy 2012, 86, 2707–2717. [Google Scholar] [CrossRef]
- Subiela, V.J.; Peñate, B.; García-Rodríguez, L. Configurations of reverse osmosis plants with variable energy consumption for off-grid wind-powered seawater desalination: System modeling and water cost. Desalin. Water Treat. 2020, 180, 1–15. [Google Scholar] [CrossRef]
- Dimitriou, E.; Boutikos, P.; Mohamed, E.S.; Koziel, S.; Papadakis, G. Theoretical performance prediction of a reverse osmosis desalination membrane element under variable operating conditions. Desalination 2017, 419, 70–78. [Google Scholar] [CrossRef]
- Ruiz-García, A.; Nuez, I. Long-term intermittent operation of a full-scale BWRO desalination plant. Desalination 2020, 489, 114526. [Google Scholar] [CrossRef]
- Carta, J.A.; Cabrera, P. Optimal sizing of stand-alone wind-powered seawater reverse osmosis plants without use of massive energy storage. Appl. Energy 2021, 304, 117888. [Google Scholar] [CrossRef]
- Subiela, V.J.; Peñate, B.; García-Rodríguez, L. Design recommendations and cost assessment for off-grid wind-powered-seawater reverse osmosis desalination with medium-size capacity. Desalin. Water Treat. 2020, 180, 16–36. [Google Scholar] [CrossRef]
- Robinson, R.; Ho, G.; Mathew, K. Development of a reliable low-cost reverse osmosis desalination unit for remote communities. Desalination 1992, 86, 9–26. [Google Scholar] [CrossRef]
- Liu, C.C.K.; Park, J.W.; Migita, R.; Qin, G. Experiments of a prototype wind-driven reverse osmosis desalination system with feedback control. Desalination 2002, 150, 277–287. [Google Scholar] [CrossRef]
- Liu, C.C. Wind-Powered Reverse Osmosis Water Desalination for Pacific Islands and Remote Coastal Communities; Technical Report 128, Desalination and Water Purification Research and Development Program; US Department of the Interior, Bureau of Reclamation: Washington, DC, USA, 2009.
- Heijman, S.G.J.; Rabinovitch, E.; Bos, F.; Olthof, N.; van Dijk, J.C. Sustainable seawater desalination: Stand-alone small scale windmill and reverse osmosis system. Desalination 2009, 248, 114–117. [Google Scholar] [CrossRef]
- Cutajar, C.; Sant, T.; Buhagiar, D.; Farrugia, R.N. Modelling of a hybrid floating wind, energy storage and desalination unit. In Proceedings of the 2019 Offshore Energy and Storage Summit, OSES 2019, Brest, France, 10–12 July 2019; pp. 1–11. [Google Scholar] [CrossRef]
- Witte, T.; Siegfriedsen, S.; El-Allawy, M. WindDeSalter® Technology: Direct use of wind energy for seawater desalination by vapour compression or reverse osmosis. Desalination 2003, 156, 275–279. [Google Scholar] [CrossRef]
- Greco, F.; De Bruycker, D.; Velez-Isaza, A.; Diepeveen, N.; Jarquin-Laguna, A. Preliminary design of a hydraulic wind turbine drive train for integrated electricity production and seawater desalination. J. Phys. Conf. Ser. 2020, 1618, 032015. [Google Scholar] [CrossRef]
- Chen, W.; Wang, X.; Zhang, F.; Liu, H.; Lin, Y. Review of the application of hydraulic technology in wind turbine. Wind Energy 2020, 23, 1495–1522. [Google Scholar] [CrossRef]
- Diepeveen, N.F.B. On the Application of Fluid Power Transmission in Offshore Wind Turbines. Ph.D. Thesis, Technische Universiteit Delft, Delft, The Netherlands, 2013. [Google Scholar]
- Jarquin Laguna, A. Centralised Electricity Generation in Offshore Wind Farms Using Hydraulic Networks. Ph.D. Thesis, Delft University of Technology, Delft, The Netherlands, 2017. [Google Scholar]
- Cheboxarov, V.V. Proceedings of ISES World Congress 2007 (Vol. I–Vol. V); Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar] [CrossRef]
- Cheboxarov, V.V.; Yakimovich, B.A.; Abd Ali, L.M.; Al-Rufee, F.M. An Offshore Wind-Power-Based Water Desalination Complex as a Response to an Emergency in Water Supply to Northern Crimea. Appl. Sol. Energy English Transl. Geliotekhnika 2019, 55, 260–264. [Google Scholar] [CrossRef]
Desal. Tech. | Energy Source | Capacity Range [m3/Day] | Temp. Range [°C] | Recovery Rate [%] | Feed Concentration [ppm] |
---|---|---|---|---|---|
MED | Thermal | 2000–20,000 | 90–120 | 30–50 | 20,000–100,000 |
MSF | Thermal | 40,000–75,000 | 90–110 | 20–30 | 20,000–100,000 |
TVC | Thermal | 10,000–35,000 | 40–100 | 25–40 | 20,000–100,000 |
MVC | Mechanical | 100–3000 | 40–100 | 25–40 | 20,000–100,000 |
SWRO | Mechanical | <1000–320,000 | ambient | 40–50 | 10,000–46,000 |
BWRO | Mechanical | <1000–320,000 | ambient | 85–90 | 50–10,000 |
ED | Electricity | up to 14,500 | ambient | up to 95 | 200–3000 |
Desal. Tech. | Electrical kWh/m3 | Thermal kJ/kg | Thermal Equivalent to Electrical kWh/m3 | Total Electricity kWh/m3 | Water Cost $/m3 |
---|---|---|---|---|---|
MED | 1.5–2.5 | 230–390 | 19.1–32.5 | 20.6–35 | 0.52–1.5 |
MSF | 4–6 | 190–390 | 15.8–32.5 | 19.8–38.5 | 0.56–1.75 |
TVC | 1.5–2.5 | 145–390 | 12.1–32.5 | 13.6–35 | 0.87–0.95 |
MVC | 6–12 | - | - | 6–12 | 2.0–2.6 |
SWRO | 3–6 | - | - | 3–6 | 0.45–1.72 |
BWRO | 1.5–2.5 | - | - | 1.5–2.5 | 0.26–1.33 |
ED | 2.64–5.5 | - | - | 2.64–5.5 | 0.6–1.05 |
Ref. | Energy Source | Size | Desalination Technology | Desalination Capacity | ERD | Energy Storage | Commiss. Year | Notes |
---|---|---|---|---|---|---|---|---|
[39] | WT + grid | 10 MW | SWRO | 5000 m/d | - | - | - | Economical analysis |
[34] | WT + grid | 2.64 MW | SWRO | 5000 m/d | ERI | - | 2002 | Prototype |
[40,41,42] | WT + grid | SWRO | - | Hydraulic storage | - | Optimization analysis | ||
[43] | WT + solar PV + grid | 50 kW + 60 m | MVC | - | Yes | - | Optimization analysis | |
[44,45] | WT + solar PV + grid | 275 kW + 50 kW | SWRO | 300 m/d | - | - | Prototype | |
[46] | WT + grid | 6–30 kW | SWRO | 24 m/d | - | - | - | On and off-grid comparison |
Ref. | Energy Source | Size | Desalination Technology | Desalination Capacity | ERD | Energy Storage | Size | Commiss. Year | Notes |
---|---|---|---|---|---|---|---|---|---|
[24,25] | WT (+grid/diesel gen.) | 600–2000 kW | SWRO | 180–1400 m/d | Enercon 3-pistons ERD | Flywheel + several options | - | 2007 | Commercial system |
[51] | WT | 100 kW | SWRO | 100 m/d | - | - | Pilot plant | ||
[52] | WT + diesel gen. | 15–22.5 kW | SWRO/MVC | 30 m/d/ | - | - | - | Feasibility study | |
[53] | WT + solar PV | 10–400 kW | SWRO | 8.4 m/d | Batteries + micro hydraulic plant | 100 Ah + reservoir | - | simulation tool | |
[54] | WT | 5 kW | SWRO | 6.2 m/d | - | Batteries | 125–1000 Ah | Pilot plant | |
[55] | WT | 100–300 kW | SWRO | 1000 m/d | Flywheel/batteries | 1200 Ah | Pilot plant | ||
[56] | WT | 460 kW | SWRO | 72–192 m/d | Flywheel + batteries | 125–1000 Ah | Pilot plant | ||
[37] | WT | 460 kW | SWRO/MVC/EDR | 200/50/72–192 m/d | Flywheel | 1999 | Pilot plant | ||
[57] | WT | 15 kW | SWRO | 18 m3/d | Batteries + supercapacitor | Experimental test | |||
[58] | WT + solar PV | 2 kW + 2 kWp | BWRO | 7.2 m/d | Hydraulic storage | 2.18–4.36 m | Experimental test | ||
[59] | WT | 5.4 MW | BWRO | 62,208 m/d | Batteries | Optimization analysis | |||
[60] | WT + solar PV | 0.9 kW + 3.96 kWp | SWRO | 3.12 m/d | Batteries | 1800 Ah | 2001 | Pilot plant | |
[50] | WT | 15–50 kW | SWRO | 18–96 m/d | Batteries | - | Simulation and sizing | ||
[61] | WT + solar PV | 800 kW + 200 kWp | SWRO | 4320 m/d | Hydraulic storage | 40,000 m (480 kW) | |||
[49] | WT | 300 kW | MVC | 360 m/d | - | - | - | 1993 | |
[62] | WT | 26.43 kW | SWRO | <96 m/d | - | - | - | 2001 | Experimental test |
[63] | WT | 2.2 kW | SWRO | Clark pump | - | - | 2002 | Simulation | |
[64] | WT | 30 kW | SWRO | 5–20 m/d | - | - | |||
[65] | WT | 14–20 kW | BWRO | 22–33 m/d | - | - | Conceptual design and economic analysis | ||
[66,67] | WT/solar PV | 6 kW/2.5 kW | BWRO | 9 m/d 1.5 m/d | - | - | Pilot plant | ||
[68,69] | WT | 4–19 kW | EDR | 92.4 m/d | - | - | Pilot plant |
Ref. | Energy Source | Size | Desalination Technology | Desalination Capacity | ERD | Energy Storage | Size | Commiss. Year | Notes |
---|---|---|---|---|---|---|---|---|---|
[77] | WT | BWRO | 0.151–0.291 m/d | - | 2 Accumulators | 36 l @ 1100 kPa | 1990 | Pilot | |
[81] | Floating WT | 5 MW | SWRO | 33,000 m/d | PX | Hydro-pneumatic | 6.5 MWh | Conceptual | |
[78,79] | WT | 1.2 kW | BWRO | 4 m/d | Hydro-pneumatic | 0.3 m | 2005 | Pilot | |
[82] | WT | 600 kW | SWRO/MVC | 2730/1400 m3/d | - | Accumulator | - | 2004 | Pilot |
[80] | WT | 60 kW | SWRO | 5–10 m/d | PX | - | - | 2008 | Pilot |
[87,88] | FLoating WT | 400 MW | SWRO/MSF | 864,000 m/d | - | - | - | Conceptual | |
[83] | WT | 500 kW | SWRO | 600 m/d | iSave | - | - | - | Pilot |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Greco, F.; Heijman, S.G.J.; Jarquin-Laguna, A. Integration of Wind Energy and Desalination Systems: A Review Study. Processes 2021, 9, 2181. https://doi.org/10.3390/pr9122181
Greco F, Heijman SGJ, Jarquin-Laguna A. Integration of Wind Energy and Desalination Systems: A Review Study. Processes. 2021; 9(12):2181. https://doi.org/10.3390/pr9122181
Chicago/Turabian StyleGreco, Francesca, Sebastiaan G. J. Heijman, and Antonio Jarquin-Laguna. 2021. "Integration of Wind Energy and Desalination Systems: A Review Study" Processes 9, no. 12: 2181. https://doi.org/10.3390/pr9122181
APA StyleGreco, F., Heijman, S. G. J., & Jarquin-Laguna, A. (2021). Integration of Wind Energy and Desalination Systems: A Review Study. Processes, 9(12), 2181. https://doi.org/10.3390/pr9122181