In Silico Analysis and Experimental Evaluation of Ester Prodrugs of Ketoprofen for Oral Delivery: With a View to Reduce Toxicity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Experimental Animals
2.3. Synthesis of Ester Derivatives of Ketoprofen
2.4. Evaluation of Physicochemical Properties
2.5. In Silico Pharmacokinetic Profiling and Toxicity Analysis
2.5.1. Theoretical Prediction of Pharmacokinetic Parameters (ADME)
2.5.2. Theoretical Prediction of Toxicity
2.6. In Vitro Dissolution Study
2.7. Ex Vivo Permeation Study
2.8. Assessment of In Vitro Anti-Inflammatory Activity
2.8.1. Bovine Serum Albumin (BSA) Protein Denaturation Assay
2.8.2. Human Red Blood Cell (HRBC) Membrane Stabilization Assay
2.9. Assessment of In Vivo Antinociceptive and Anti-Inflammatory Activities
2.9.1. Acetic Acid-Induced Writhing Test
2.9.2. Hot Plate Test
2.9.3. Formalin Induced Paw Licking Test
2.10. Assessment of Gastroprotective Activity
2.11. Assessment of Hepatotoxicity
2.12. Statistical Analysis
3. Results and Discussion
3.1. Synthesis and Characterization of Ester Prodrugs of Ketoprofen
3.2. In Silico Pharmacokinetic Profiling and Toxicity Analysis
3.3. In Vitro Dissolution Study
3.4. Ex Vivo Permeation Study
3.5. In Vitro Anti-Inflammatory Activity
3.5.1. Bovine Serum Albumin (BSA) Protein Denaturation Assay
3.5.2. Human Red Blood Cell (HRBC) Membrane Stabilization Assay
3.6. In Vivo Antinociceptive Activity
3.6.1. Acetic Acid-Induced Writhing Test
3.6.2. Hot Plate Test
3.6.3. Formalin-Induced Paw Licking Test
3.7. Assessment of Gastroprotective Activity
3.8. Assessment of Hepatotoxicity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Bozimowski, G. A review of nonsteroidal anti-inflammatory drugs. AANA J. 2015, 83, 425–433. [Google Scholar] [PubMed]
- Lahita, R.G.; Shao, C. Chapter 59—Nonsteroidal anti-inflammatory drugs in systemic lupus erythematosus. In Systemic Lupus Erythematosus; Tsokos, G.C., Ed.; Academic Press: Boston, MA, USA, 2016; pp. 511–514. [Google Scholar]
- KuKanich, B.; Bidgood, T.; Knesl, O. Clinical pharmacology of nonsteroidal anti-inflammatory drugs in dogs. Vet. Anaesth. Analg. 2012, 39, 69–90. [Google Scholar] [CrossRef]
- Vane, J.R. Inhibition of prostaglandin synthesis as a mechanism of action for aspirin-like drugs. Nat. New Biol. 1971, 231, 232–235. [Google Scholar] [CrossRef] [PubMed]
- Kantor, T.G. Ketoprofen: A review of its pharmacologic and clinical properties. Pharmacotherapy 1986, 6, 93–103. [Google Scholar] [CrossRef]
- Carbone, C.; Rende, P.; Comberiati, P.; Carnovale, D.; Mammì, M.; De Sarro, G. The safety of ketoprofen in different ages. J. Pharmacol. Pharmacother. 2013, 4, S99–S103. [Google Scholar] [CrossRef] [Green Version]
- Mazières, B. Topical ketoprofen patch. Drugs 2005, 6, 337–344. [Google Scholar] [CrossRef]
- Sunshine, A.; Olson, N.Z. Analgesic efficacy of ketoprofen in postpartum, general surgery, and chronic cancer pain. J. Clin. Pharmacol. 1988, 28, S47–S54. [Google Scholar] [CrossRef]
- Hersh, E.V.; Dionne, R.A. 17—Nonopioid analgesics. In Pharmacology and Therapeutics for Dentistry, 17th ed.; Dowd, F.J., Johnson, B.S., Mariotti, A.J., Eds.; Mosby: Maryland Heights, MO, USA, 2017; pp. 257–275. [Google Scholar]
- Park, E.S.; Cui, Y.; Yun, B.J.; Ko, I.J.; Chi, S.C. Transdermal delivery of piroxicam using microemulsions. Arch. Pharm. Res. 2005, 28, 243–248. [Google Scholar] [CrossRef] [PubMed]
- Alkatheeri, N.A.; Wasfi, I.A.; Lambert, M. Pharmacokinetics and metabolism of ketoprofen after intravenous and intramuscular administration in camels. J. Vet. Pharmacol. Ther. 1999, 22, 127–135. [Google Scholar] [CrossRef] [PubMed]
- Tomic, Z.; Milijasevic, B.; Sabo, A.; Dusan, L.; Jakovljevic, V.; Mikov, M.; Majda, S.; Vasovic, V. Diclofenac and ketoprofen liver toxicity in rat. Eur. J. Drug Metab. Pharmacokinet. 2008, 33, 253–260. [Google Scholar] [CrossRef]
- Sav, A.; King, M.A.; Whitty, J.A.; Kendall, E.; McMillan, S.S.; Kelly, F.; Hunter, B.; Wheeler, A.J. Burden of treatment for chronic illness: A concept analysis and review of the literature. Health Expect. 2015, 18, 312–324. [Google Scholar] [CrossRef] [PubMed]
- Heyneman, C.A.; Lawless-Liday, C.; Wall, G.C. Oral versus topical NSAIDs in rheumatic diseases: A comparison. Drugs 2000, 60, 555–574. [Google Scholar] [CrossRef]
- Noize, P.; Bénard-Laribière, A.; Aulois-Griot, M.; Moore, N.; Miremont-Salamé, G.; Haramburu, F. Cutaneous adverse effects of ketoprofen for topical use: Clinical patterns and costs. Am. J. Clin. Dermatol. 2010, 11, 131–136. [Google Scholar] [CrossRef] [PubMed]
- Shohin, I.E.; Kulinich, J.I.; Ramenskaya, G.V.; Abrahamsson, B.; Kopp, S.; Langguth, P.; Polli, J.E.; Shah, V.P.; Groot, D.W.; Barends, D.M.; et al. Biowaiver monographs for immediate-release solid oral dosage forms: Ketoprofen. J. Pharm. Sci. 2012, 101, 3593–3603. [Google Scholar] [CrossRef]
- Spahn, J.D.; Szefler, S.J. Chapter 16—Pharmacology of the lung and drug therapy. In Pediatric Respiratory Medicine, 2nd ed.; Taussig, L.M., Landau, L.I., Eds.; Mosby: Philadelphia, PA, USA, 2008; pp. 219–233. [Google Scholar]
- Loh, T.Y.; Cohen, P.R. Ketoprofen-induced photoallergic dermatitis. Indian J. Med. Res. 2016, 144, 803–806. [Google Scholar] [CrossRef] [PubMed]
- Dowling, T.C.; Arjomand, M.; Lin, E.T.; Allen, L.V., Jr.; McPherson, M.L. Relative bioavailability of ketoprofen 20% in a poloxamer-lecithin organogel. Am. J. Health-Syst. Pharm. 2004, 61, 2541–2544. [Google Scholar] [CrossRef] [PubMed]
- Van der Bruggen, B. 3.06—Pervaporation membrane reactors. In Comprehensive Membrane Science and Engineering; Drioli, E., Giorno, L., Eds.; Elsevier: Oxford, UK, 2010; pp. 135–163. [Google Scholar]
- Hirakura, Y.; Nakamura, M.; Wakasawa, T.; Ban, K.; Yokota, S.; Kitamura, S. Excipient hydrolysis and ester formation increase pH in a parenteral solution over aging. Int. J. Pharm. 2006, 325, 26–38. [Google Scholar] [CrossRef]
- Akula, P.; Lakshmi, P.K. Effect of pH on weakly acidic and basic model drugs and determination of their ex vivo transdermal permeation routes. Braz. J. Pharm. Sci. 2018, 54. [Google Scholar] [CrossRef]
- He, X.; Sugawara, M.; Kobayashi, M.; Takekuma, Y.; Miyazaki, K. An in vitro system for prediction of oral absorption of relatively water-soluble drugs and ester prodrugs. Int. J. Pharm. 2003, 263, 35–44. [Google Scholar] [CrossRef]
- Isyaku, Y.; Uzairu, A.; Uba, S. Computational studies of a series of 2-substituted phenyl-2-oxo-, 2-hydroxyl- and 2-acylloxyethylsulfonamides as potent anti-fungal agents. Heliyon 2020, 6, e03724. [Google Scholar] [CrossRef]
- Banerjee, P.; Eckert, A.O.; Schrey, A.K.; Preissner, R. ProTox-II: A webserver for the prediction of toxicity of chemicals. Nucleic Acids Res. 2018, 46, W257–W263. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmed, M.; Azam, F.; Gbaj, A.; Zetrini, A.E.; Abodlal, A.S.; Rghigh, A.; Elmahdi, E.; Hamza, A.; Salama, M.; Bensaber, S.M. Ester prodrugs of ketoprofen: Synthesis, in vitro stability, in vivo biological evaluation and in silico comparative docking studies against COX-1 and COX-2. Curr. Drug Disc. Technol. 2016, 13, 41–57. [Google Scholar] [CrossRef] [PubMed]
- Kemisetti, D.; Manda, S.; Rapaka, N.K.; Jithan, A. Synthesis of nimesulide conjugates, in vitro and in vivo evaluation. Der. Pharma Chem. 2014, 6, 317–329. [Google Scholar]
- Naher, K.; Murshid, G.M.; Hossain, M.G.; Islam, M.A.; Hasan, S.S.; Uddin, S.N. Quality evaluation of ketoprofen solid dosage forms available in the pharma-market of Bangladesh. Am. J. Appl. Sci. 2010, 7, 1317. [Google Scholar]
- Sonia, T.A.; Sharma, C.P. 4—Experimental techniques involved in the development of oral insulin carriers. In Oral Delivery of Insulin; Sonia, T.A., Sharma, C.P., Eds.; Woodhead Publishing: Sawston, UK, 2014; pp. 169–217. [Google Scholar]
- Sandri, G.; Bonferoni, M.C.; Rossi, S.; Ferrari, F.; Boselli, C.; Caramella, C. Insulin-loaded nanoparticles based on N-trimethyl chitosan: In vitro (Caco-2 model) and ex vivo (excised rat jejunum, duodenum, and ileum) evaluation of penetration enhancement properties. AAPS PharmSciTech 2010, 11, 362–371. [Google Scholar] [CrossRef] [Green Version]
- Djuichou Nguemnang, S.F.; Tsafack, E.G.; Mbiantcha, M.; Gilbert, A.; Atsamo, A.D.; Yousseu Nana, W.; Matah Marthe Mba, V.; Adjouzem, C.F. In vitro anti-inflammatory and in vivo antiarthritic activities of aqueous and ethanolic extracts of Dissotis thollonii Cogn. (Melastomataceae) in rats. Evid.-Based Complement. Altern. Med. 2019, 2019, 3612481. [Google Scholar] [CrossRef] [Green Version]
- Gandhidasan, R.; Thamaraichelvan, A.; Babura, S. Anti-inflammatory action of Lannea coromandelica by HRBC membrane stabilization. Fitoterapia 1991, 62, 81–83. [Google Scholar]
- Shinde, U.; Phadke, A.; Nair, A.; Mungantiwar, A.; Dikshit, V.; Saraf, M. Membrane stabilizing activity—A possible mechanism of action for the anti-inflammatory activity of Cedrus deodara wood oil. Fitoterapia 1999, 70, 251–257. [Google Scholar] [CrossRef]
- Gawade, S.P. Acetic acid induced painful endogenous infliction in writhing test on mice. J. Pharmacol. Pharmacother. 2012, 3, 348. [Google Scholar] [CrossRef] [Green Version]
- De Fátima Arrigoni-Blank, M.; Dmitrieva, E.G.; Franzotti, E.M.; Antoniolli, A.R.; Andrade, M.R.; Marchioro, M. Anti-inflammatory and analgesic activity of Peperomia pellucida (L.) HBK (Piperaceae). J. Ethnopharmacol. 2004, 91, 215–218. [Google Scholar] [CrossRef] [PubMed]
- Langford, D.J.; Mogil, J.S. Chapter 23—Pain testing in the laboratory mouse. In Anesthesia and Analgesia in Laboratory Animals, 2nd ed.; Fish, R.E., Brown, M.J., Danneman, P.J., Karas, A.Z., Eds.; Academic Press: San Diego, CA, USA, 2008; pp. 549–560. [Google Scholar]
- Eddy, N.B.; Leimbach, D. Synthetic analgesics. II. Dithienylbutenyl-and dithienylbutylamines. J. Pharmacol. Exp. Ther. 1953, 107, 385–393. [Google Scholar] [PubMed]
- Shibate, M.; Ohkubo, T.; Takashi, H.; Inoki, R. Modified formalin test. Pain 1989, 38, 345–352. [Google Scholar]
- Hunskaar, S.; Hole, K. The formalin test in mice: Dissociation between inflammatory and non-inflammatory pain. Pain 1987, 30, 103–114. [Google Scholar] [CrossRef]
- Jain, N.K.; Patil, C.S.; Kartasasmita, R.; Decker, M.; Lehmann, J.; Kulkarni, S.K. Pharmacological studies on nitro-naproxen (naproxen-2-nitrooxyethylester). Drug Dev. Res. 2004, 61, 66–78. [Google Scholar] [CrossRef]
- Mazumder, K.; Hossain, M.; Aktar, A.; Dash, R.; Farahnaky, A. Biofunctionalities of unprocessed and processed flours of Australian lupin cultivars: Antidiabetic and organ protective potential studies. Food Res. Int. 2021, 147, 110536. [Google Scholar] [CrossRef]
- Feng, S. Research Progress in the Synthesis of Esters. IOP Conf. Ser. Earth Environ. Sci. 2020, 440, 022019. [Google Scholar] [CrossRef]
- Kevin, B.; Robert, W.; Iain, G.; Kevin, D. Design of ester prodrugs to enhance oral absorption of poorly permeable compounds: Challenges to the discovery scientist. Curr. Drug Metab. 2003, 4, 461–485. [Google Scholar] [CrossRef]
- Mishra, S.; Dahima, R. In vitro adme studies of TUG-891, a GPR-120 inhibitor using Swiss adme predictor. J. Drug Deliv. Ther. 2019, 9, 366–369. [Google Scholar]
- Singh, D.B.; Gupta, M.K.; Singh, D.V.; Singh, S.K.; Misra, K. Docking and in silico ADMET studies of noraristeromycin, curcumin and its derivatives with Plasmodium falciparum SAH hydrolase: A molecular drug target against malaria. Interdiscipl. Sci. Comput. Life Sci. 2013, 5, 1–12. [Google Scholar] [CrossRef]
- Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 1997, 23, 3–25. [Google Scholar] [CrossRef]
- Bickerton, G.R.; Paolini, G.V.; Besnard, J.; Muresan, S.; Hopkins, A.L. Quantifying the chemical beauty of drugs. Nat. Chem. 2012, 4, 90–98. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 2017, 7, 42717. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martin, Y.C. A bioavailability score. J. Med. Chem. 2005, 48, 3164–3170. [Google Scholar] [CrossRef] [PubMed]
- Montanari, F.; Ecker, G.F. Prediction of drug-ABC-transporter interaction—Recent advances and future challenges. Adv. Drug Deliv. Rev. 2015, 86, 17–26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Szakács, G.; Váradi, A.; Ozvegy-Laczka, C.; Sarkadi, B. The role of ABC transporters in drug absorption, distribution, metabolism, excretion and toxicity (ADME-Tox). Drug Discov. Today 2008, 13, 379–393. [Google Scholar] [CrossRef]
- Sharom, F.J. ABC multidrug transporters: Structure, function and role in chemoresistance. Pharmacogenomics 2008, 9, 105–127. [Google Scholar] [CrossRef]
- Di, L. The role of drug metabolizing enzymes in clearance. Expert Opin. Drug Metab. Toxicol. 2014, 10, 379–393. [Google Scholar] [CrossRef]
- Sjöberg, Å.; Lutz, M.; Tannergren, C.; Wingolf, C.; Borde, A.; Ungell, A.L. Comprehensive study on regional human intestinal permeability and prediction of fraction absorbed of drugs using the Ussing chamber technique. Eur. J. Pharm. Sci. 2013, 48, 166–180. [Google Scholar] [CrossRef]
- Dahlgren, D.; Lennernäs, H. Intestinal permeability and drug absorption: Predictive experimental, computational and in vivo approaches. Pharmaceutics 2019, 11, 411. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shawahna, R.; Rahman, N. Evaluation of the use of partition coefficients and molecular surface properties as predictors of drug absorption: A provisional biopharmaceutical classification of the list of national essential medicines of Pakistan. Daru 2011, 19, 83–99. [Google Scholar]
- Wang, J.; Hou, T. Recent advances on aqueous solubility prediction. Combinat. Chem. High Throughput Screen. 2011, 14, 328–338. [Google Scholar] [CrossRef]
- Charifson, P.S.; Walters, W.P. Acidic and basic drugs in medicinal chemistry: A perspective. J. Med. Chem. 2014, 57, 9701–9717. [Google Scholar] [CrossRef]
- Saso, L.; Valentini, G.; Casini, M.; Grippa, E.; Gatto, M.; Leone, M.; Silvestrini, B. Inhibition of Heat-induced Denaturation of Albumin by Nonsteroidal Antiinflammatory Drugs (NSAIDs): Pharmacological Implications. Arch. Pharm. Res. 2001, 24, 150–158. [Google Scholar] [CrossRef]
- Arya, D.; Meena, M.; Grover, N.; Patni, V. In vitro anti-inflammatory and anti-arthritic activity in methanolic extract of Cocculus hirsutus (L.) Diels. In vivo and in vitro. Int. J. Pharm. Sci. Res. 2014, 5, 1957. [Google Scholar]
- Chowdhury, A.; Azam, S.; Jainul, M.A.; Faruq, K.O.; Islam, A. Antibacterial activities and in vitro anti-inflammatory (membrane stability) properties of methanolic extracts of Gardenia coronaria Leaves. Int. J. Microbiol. 2014, 2014, 410935. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Varadarasu, M.; Mounisamy, S.; Kavimani, V.; Balu, S.; Quine, D. Evaluation of anti-inflammatory and membrane stabilizing properties of ethanol extract of Cansjera rheedii J. Gmelin (Opiliaceae). J. Pharmacol. Ther. 2007, 6, 235–237. [Google Scholar]
- Dzoyem, J.P.; McGaw, L.J.; Kuete, V.; Bakowsky, U. Chapter 9—Anti-inflammatory and anti-nociceptive activities of African medicinal spices and vegetables. In Medicinal Spices and Vegetables from Africa; Kuete, V., Ed.; Academic Press: Cambridge, MA, USA, 2017; pp. 239–270. [Google Scholar]
- Duarte, I.D.; Nakamura, M.; Ferreira, S.H. Participation of the sympathetic system in acetic acid-induced writhing in mice. Braz. J. Med. Biol. Res. 1988, 21, 341–343. [Google Scholar] [PubMed]
- Gyires, K.; Torma, Z. The use of the writhing test in mice for screening different types of analgesics. Arch. Int. Pharm. Ther. 1984, 267, 131–140. [Google Scholar]
- Migne, J.; Vedrine, Y.; Bourat, G.; Fournel, J.; Heusse, D. Action of ketoprofen on hepatic lysosome in the rat. Rheumatol. Rehab. 1976, 15 (Suppl. S1), 15–19. [Google Scholar] [CrossRef] [PubMed]
- Chapman, V.; Dickenson, A.H. The spinal and peripheral roles of bradykinin and prostaglandins in nociceptive processing in the rat. Eur. J. Pharmacol. 1992, 219, 427–433. [Google Scholar] [CrossRef]
- Ullah, H.M.A.; Zaman, S.; Juhara, F.; Akter, L.; Tareq, S.M.; Masum, E.H.; Bhattacharjee, R. Evaluation of antinociceptive, in-vivo & in-vitro anti-inflammatory activity of ethanolic extract of Curcuma zedoaria rhizome. BMC Complement. Altern. Med. 2014, 14, 346. [Google Scholar] [CrossRef] [Green Version]
- Rygh, L.; Svendsen, F.; Fiskå, A.; Haugan, F.; Hole, K.; Tjølsen, A. Long-term potentiation in spinal nociceptive systems—How acute pain may become chronic. Psychoneuroendocrinology 2005, 30, 959–964. [Google Scholar] [CrossRef] [PubMed]
- Wheeler-Aceto, H.; Cowan, A. Neurogenic and tissue-mediated components of formalin-induced edema: Evidence for supraspinal regulation. Agents Actions 1991, 34, 264–269. [Google Scholar] [CrossRef] [PubMed]
- Sehajpal, S.; Prasad, D.; Singh, R. Synthesis and evaluation of prodrugs of ketoprofen with antioxidants as gastroprotective NSAIDs. Asian J. Chem. 2018, 30, 2145–2150. [Google Scholar] [CrossRef]
Drugs | Drug Likeness | DL Score | SA Score | ||||||
---|---|---|---|---|---|---|---|---|---|
MW g/mol | XLOGP3 | TPSA Å2 | ESOL LogS | Fraction Csp3 | RB | BA Score | |||
Ketoprofen | 254.28 | 3.12 | 54.37 | −3.59 | 0.12 | 4 | 0.56 | 0.57 | 2.57 |
ME | 268.31 | 3.45 | 43.37 | −3.79 | 0.18 | 5 | 0.55 | 0.06 | 2.73 |
EE | 282.33 | 3.81 | 43.37 | −4.02 | 0.22 | 6 | 0.55 | 0.13 | 2.94 |
PE | 296.36 | 4.34 | 43.37 | −4.35 | 0.26 | 7 | 0.55 | 0.70 | 3.09 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mazumder, K.; Hossain, M.E.; Aktar, A.; Mohiuddin, M.; Sarkar, K.K.; Biswas, B.; Aziz, M.A.; Abid, M.A.; Fukase, K. In Silico Analysis and Experimental Evaluation of Ester Prodrugs of Ketoprofen for Oral Delivery: With a View to Reduce Toxicity. Processes 2021, 9, 2221. https://doi.org/10.3390/pr9122221
Mazumder K, Hossain ME, Aktar A, Mohiuddin M, Sarkar KK, Biswas B, Aziz MA, Abid MA, Fukase K. In Silico Analysis and Experimental Evaluation of Ester Prodrugs of Ketoprofen for Oral Delivery: With a View to Reduce Toxicity. Processes. 2021; 9(12):2221. https://doi.org/10.3390/pr9122221
Chicago/Turabian StyleMazumder, Kishor, Md. Emran Hossain, Asma Aktar, Mohammad Mohiuddin, Kishore Kumar Sarkar, Biswajit Biswas, Md. Abdullah Aziz, Md. Ahsan Abid, and Koichi Fukase. 2021. "In Silico Analysis and Experimental Evaluation of Ester Prodrugs of Ketoprofen for Oral Delivery: With a View to Reduce Toxicity" Processes 9, no. 12: 2221. https://doi.org/10.3390/pr9122221
APA StyleMazumder, K., Hossain, M. E., Aktar, A., Mohiuddin, M., Sarkar, K. K., Biswas, B., Aziz, M. A., Abid, M. A., & Fukase, K. (2021). In Silico Analysis and Experimental Evaluation of Ester Prodrugs of Ketoprofen for Oral Delivery: With a View to Reduce Toxicity. Processes, 9(12), 2221. https://doi.org/10.3390/pr9122221