The EU Training Network for Resource Recovery through Enhanced Landfill Mining—A Review
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Innovative Landfill Exploration & Mechanical Processing
3.1.1. Landfill Exploration
3.1.2. Mechanical Processing
3.2. Thermochemical Conversion and Solar Energy Storage
3.2.1. Thermochemical Conversion
- Municipal solid waste incineration plants (MSWI plants)
- Refuse derived fuel power plants (RDF power plants)
- Cement works (co-incineration)
- Coal-fired power plants (co-incineration)
- Industrial power plants (co-incineration) [72].
3.2.2. Solar Energy Storage
3.3. Benefication of Products from Thermochemical Conversion
3.3.1. Melting and Vitrification
3.3.2. Alkali Activation
3.3.3. Sintering of Glass-Ceramics
3.4. Multi-Criteria Assessment
3.4.1. Life Cycle Assessment
3.4.2. Techno-Economic Assessment
3.4.3. Sociological Assessment
4. Discussion
4.1. Disciplinarity and Interdisciplinarity
4.2. Recycling Waste from Landfills
4.3. Waste Management Meets Mining Economics
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Krook, J.; Svensson, N.; Eklund, M. Landfill mining: A critical review of two decades of research. Waste Manag. 2012, 32, 513–520. [Google Scholar] [CrossRef] [PubMed]
- Savage, G.M.; Golueke, C.G.; von Stein, E.L. Landfill mining: Past and present. Biocycle 1993, 34, 58–61. [Google Scholar]
- Cobb, C.E.; Ruckstuhl, K. Mining and reclaiming existing sanitary landfills. In Proceedings of the National Waste Processing Conference, Detroit, MI, USA, 17–20 May 1988; pp. 145–151. [Google Scholar]
- Rettenberger, G.; Urban-Kiss, S.; Schneider, R.; Göschl, R.; Kremsl, W. Deponierückbau an der deponie burghof in vaihingen/enz-horrheim—Erfahrungen aus einem demonstrationsprojekt. Korresp. Abwasser 1995, 2, 196. [Google Scholar]
- Fricke, K.; Münnich, K.; Heußner, C.; Schulte, B.; Wanka, S. Landfill mining—Ein beitrag der abfallwirtschaft für die ressourcensicherung. In Proceedings of the Berliner Recycling—Und Rohstoffkonferenz, Berlin, Germany, 26–27 March 2012; pp. 933–944. [Google Scholar]
- Jones, P.T.; Geysen, D.; Tielemans, Y.; van Passel, S.; Pontikes, Y.; Blanpain, B.; Quaghebeur, M.; Hoekstra, N. Enhanced landfill mining in view of multiple resource recovery: A critical review. J. Clean. Prod. 2013, 55, 45–55. [Google Scholar] [CrossRef]
- Wolfsberger, T.; Aldrian, A.; Sarc, R.; Hermann, R.; Höllen, D.; Budischowsky, A.; Zöscher, A.; Ragoßnig, A.; Pomberger, R. Landfill mining: Resource potential of Austrian landfills—Evaluation and quality assessment of recovered municipal solid waste by chemical analyses. Waste Manag. Res. 2015, 33, 962–974. [Google Scholar] [CrossRef] [PubMed]
- Wolfsberger, T.; Nispel, J.; Sarc, R.; Aldrian, A.; Hermann, R.; Höllen, D.; Pomberger, A.; Ragossnig, A. Landfill mining: Development of a theoretical method for a preliminary estimate of the raw material potential of landfill sites. Waste Manag. Res. 2015, 33, 671–680. [Google Scholar] [CrossRef]
- Hermann, R.; Wolfsberger, T.; Pomberger, R.; Sarc, R. Landfill mining: Developing a comprehensive assessment method. Waste Manag. Res. 2016, 34, 1157–1163. [Google Scholar] [CrossRef]
- Wolfsberger, T.; Pinkel, M.; Polansek, S.; Sarc, R.; Pomberger, R. Landfill mining: Development of a cost simulation model. Waste Manag. Res. 2016, 34, 356–367. [Google Scholar] [CrossRef] [PubMed]
- Dumont, G.; Pilawski, T.; Dzaomuho-Lenieregue, P.; Hiligsmann, S.; Delvigne, F.; Thonart, P.; Robert, T.; Nguyen, F.; Hermans, T. Gravimetric water distribution assessment from geoelectrical methods (ERT and EMI) in municipal solid waste landfill. Waste Manag. 2016, 55, 129–140. [Google Scholar] [CrossRef]
- Wanka, S.; Münnich, K.; Fricke, K. Landfill mining—Wet mechanical treatment of fine MSW with a wet jigger. Waste Manag. 2016, 59, 316–323. [Google Scholar] [CrossRef]
- Winterstetter, A.; Laner, D.; Rechberger, H.; Fellner, J. Framework for the evolution of anthropogenic resources: A landfill mining case study—Resource or reserve? Resour. Conserv. Recycl. 2015, 96, 19–30. [Google Scholar] [CrossRef]
- Mönkäre, T.; Palmroth, M.; Rintala, J. Characterization of fine fraction mined from two Finnish landfills. Waste Manag. 2016, 47A, 34–39. [Google Scholar] [CrossRef] [PubMed]
- Brunner, P. Final Sink: Prerequisite for a cycling society. In Proceedings of the ISWA Beacon 3rd International Conference on Final Sinks, Taipei, China, 23–26 August 2015. [Google Scholar]
- Wu, H.; Zuo, J.; Zillante, G.; Wang, J.; Yuan, H. Status quo and future directions of construction and demolition waste research: A critical review. J. Clean. Prod. 2019, 240, 118163. [Google Scholar] [CrossRef]
- Silva, R.V.; de Brito, J.; Dhir, R.K. Comparative analysis of existing prediction models on the creep behavior of recycled aggregate concrete. Eng. Struct. 2015, 100, 31–42. [Google Scholar] [CrossRef]
- Makarichi, L.; Jutidamrongphan, W.; Techato, K. The evolution of waste-to-energy incineration: A review. Renew. Sustain. Energy Rev. 2018, 91, 812–821. [Google Scholar] [CrossRef]
- Sarc, R.; Lorber, K.E. Production, quality and quality assurance of Refuse Derived Fuels (RDFs). Waste Manag. 2013, 33, 1825–1834. [Google Scholar] [CrossRef] [PubMed]
- Vollprecht, D.; Riegler, C.; Ahr, F.; Stuhlpfarrer, S.; Wellacher, M. Sequential chemical extraction and mineralogical bonding of metals from Styrian soils. Int. J. Environ. Sci. Technol. 2020, 17, 3663–3676. [Google Scholar] [CrossRef] [Green Version]
- European Enhanced Landfill Mining Consortium. Available online: www.eurelco.org (accessed on 16 November 2020).
- Hernández Parrodi, J.C.; Lucas, H.I.; Gigantino, M.; Sauve, G.; Esguerra, J.L.; Einhäupl, P.; Vollprecht, D.; Pomberger, R.; Friedrich, B.; Van Acker, K.; et al. Integration of resource recovery into current waste management through (enhanced) landfill mining. Detritus 2019, 8, 141–156. [Google Scholar] [CrossRef]
- Orlando, L.; Marchesi, E. Georadar as a tool to identify and characterise solid waste dump deposits. J. Appl. Geophys. 2001, 48, 163–174. [Google Scholar] [CrossRef]
- Hermozilha, H.; Grangeia, C.; Senos Matias, M. An integrated 3D constant offset GPR and resistivity survey on a sealed landfill Ilhavo, NW Portugal. J. Appl. Geophys. 2010, 70, 58–71. [Google Scholar] [CrossRef]
- Porsani, J.; Filho, W.; Elis, V.; Shimeles, F.; Dourado, J.; Moura, H. The use of GPR and VES in delineating a contamination plume in a landfill site: A case study in SE Brazil. J. Appl. Geophys. 2004, 55, 199–209. [Google Scholar] [CrossRef]
- Fettweis, G.; Brandstätter, W.; Hruschka, F. Was ist Lagerstättenbonität? Mitt. Osterr. Geol. Ges. 1985, 78, 23–40. [Google Scholar]
- Vollprecht, D. Exploration, Mobilization and Fixation of Constituents of Mineral Wastes, Landfills, Contaminated Sites and Waste Waters. Habilitation Thesis, Montanuniversität Leoben, Leoben, Austria, 17 April 2020. [Google Scholar]
- Zanetti, M.; Godio, A. Recovery of foundry sands and iron fractions from an industrial waste landfill. Resour. Conserv. Recycl. 2006, 48, 396–411. [Google Scholar] [CrossRef]
- Yannah, M.; Martens, K.; van Camp, M.; Walraevens, K. Geophysical exploration of an old dumpsite in the perspective of enhanced landfill mining in Kermt area, Belgium. Bull. Eng. Geol. Environ. 2019, 78, 55–67. [Google Scholar] [CrossRef]
- Bobe, C.; Van De Vijver, E.; Van Meirvenne, M. Exploring the potential of electromagnetic surface measurements for the characterization of industrial landfills. In Proceedings of the 4th International Symposium on Enhanced Landfill Mining, Mechelen, Belgium, 5–6 February 2018; pp. 45–50. [Google Scholar]
- Wagland, S.; Coulon, F.; Canopoli, L. Developing the case for enhanced landfill mining in the UK. Detritus 2019, 5, 105–110. [Google Scholar] [CrossRef]
- Manrique, I.I.; Caterina, D.; Van De Vijver, E.; Dumont, G.; Nguyen, F. Assessment of geophysics as a characterization and monitoring tool in the dynamic landfill management (DLM) context: Opportunities and challenges. In Proceedings of the 17th International Waste Management and Landfill Symposium, Forte Village, Santa Margherita di Pula, Italy, 30 September–4 October 2019. [Google Scholar]
- Vollprecht, D.; Bobe, C.; Stiegler, R.; Van de Vijver, E.; Wolfsberger, T.; Küppers, B.; Scholger, R. Relating magnetic properties of municipal solid waste constituents to iron content—Implications for enhanced landfill mining. Detritus 2019, 8, 31–46. [Google Scholar] [CrossRef] [Green Version]
- Sandrin, A.; Keiding, J. Integrated geophysical study for landfill mining: A case study in Denmark. In Proceedings of the 82nd EAGE Annual Conference & Exhibition Workshop Programme, Amsterdam, The Netherlands, 8 December 2020; pp. 1–5. [Google Scholar] [CrossRef]
- Sandrin, A.; Maricak, A.; Heincke, B.; Clausen, R.; Nielsen, L.; Keiding, J. Geophysics for urban mining and the first surveys in Denmark: Rationale, field activity and preliminary results. GEUS Bull. 2020, 44, 5240. [Google Scholar] [CrossRef]
- Bobe, C.; Van de Vijver, E.; Keller, J.; Hanssens, D.; Van Meirvenne, M.; De Smedt, P. Probabilistic 1-D inversion of frequency-domain electromagnetic data using a kalman ensemble generator. IEEE Trans. Geosci. Remote Sens. 2020, 58, 3287–3297. [Google Scholar] [CrossRef]
- Grana, D.; Liu, M.; Ayani, M. Prediction of CO2 saturation spatial distribution using geostatistical inversion of time-lapse geophysical data. IEEE Trans. Geosci. Remote Sens. 2020. [Google Scholar] [CrossRef]
- Hanssens, D.; Waegeman, W.; Declercq, Y.; Dierckx, H.; Verschelde, H.; De Smedt, P. High-resolution surveying with small-loop requency-domain electromagnetic systems: Efficient survey design and adaptive processing. IEEE Geosci. Remote Sens. Mag. 2020. [Google Scholar] [CrossRef]
- Bobe, C.; Hanssens, D.; Hermans, T.; Van De Vijver, E. Efficient probabilistic joint inversion of direct current resistivity and small-loop electromagnetic data. Algorithms 2020, 13, 144. [Google Scholar] [CrossRef]
- Bobe, C.; Van De Vijver, E. Offset errors in probabilistic inversion of small-loop frequency-domain electromagnetic data: A synthetic study on their influence on magnetic susceptibility estimation. In Proceedings of the International Workshop on Gravity, Electrical & Magnetic Methods and Their Applications, Xi’an, China, 19–22 May 2019; Society of Exploration Geophysicists: Tulsa, OK, USA, 2019; pp. 312–315. [Google Scholar] [CrossRef] [Green Version]
- García López, C.; Küppers, B.; Clausen, A.; Pretz, T. Landfill mining: A case study regarding sampling, processing, and characterization of excavated waste from an Austrian Landfill. Detritus 2018, 2, 29–45. [Google Scholar] [CrossRef]
- García López, C.; Ni, A.; Hernández Parrodi, J.C.; Pretz, T.; Raulf, K.; Küppers, B. Characterization of landfill mining material after ballistic separation to evaluate material and energy recovery potential. Detritus 2019, 8, 5–23. [Google Scholar] [CrossRef]
- Datta, M.; Somani, M.; Ramana, G.V.; Sreekrishnan, T.R. Feasibility of re-using soil-like material obtained from mining of old MSW dumps as an earth-fill and as compost. Process Saf. Environ. Prot. 2021, 147, 477–487. [Google Scholar] [CrossRef]
- Mönkäre, T.; Palmroth, M.R.; Sormunen, K.; Rintala, J. Scaling up the treatment of the fine fraction from landfill mining: Mass balance and cost structure. Waste Manag. 2019, 87, 464–471. [Google Scholar] [CrossRef]
- Márquez, A.J.C.; Cassettari Filho, P.C.; Rutkowski, E.W.; de Lima Isaac, R. Landfill mining as a strategic tool towards global sustainable development. J. Clean. Prod. 2019, 226, 1102–1115. [Google Scholar] [CrossRef]
- Küppers, B.; Hernández Parrodi, J.C.; García Lopez, C.; Pomberger, R.; Vollprecht, D. Potential of sensor-based sorting in enhanced landfill mining. Detritus 2019, 8, 24–30. [Google Scholar] [CrossRef]
- Möllnitz, S.; Küppers, B.; Curtis, A.; Khodier, K.; Sarc, R. Influence of pre-screening on down-stream processing for the production of plastic enriched fractions for recycling from mixed commercial and municipal waste. Waste Manag. 2021, 119, 365–373. [Google Scholar] [CrossRef] [PubMed]
- Küppers, B.; Schlögl, S.; Oreski, G.; Pomberger, R.; Vollprecht, D. Influence of surface roughness and surface moisture of plastics on sensor-based sorting in the near infrared range. Waste Manag. Res. 2019, 8, 843–850. [Google Scholar] [CrossRef] [PubMed]
- Maier, G.; Pfaff, F.; Bittner, A.; Gruna, R.; Noack, B.; Kruggel-Emden, H.; Hanebeck, U.; Längle, T.; Beyerer, J. Characterizing material flow in sensor-based sorting systems using an instrumented particle. Automatisierungstechnik 2020, 68, 256–264. [Google Scholar] [CrossRef]
- Küppers, B.; Schlögl, S.; Friedrich, K.; Lederle, L.; Pichler, C.; Freil, J.; Pomberger, R.; Vollprecht, D. Influence of material alterations and machine impairment on throughput related sensor-based sorting performance. Waste Manag. Res. 2020, 39, 197–198. [Google Scholar] [CrossRef]
- Küppers, B.; Seidler, I.; Koinig, I.; Pomberger, R.; Vollprecht, D. Influence of throughput rate and input composition on sensor-based sorting efficiency. Detritus 2020, 9, 59–67. [Google Scholar] [CrossRef] [Green Version]
- Curtis, A.; Küppers, B.; Möllnitz, S.; Khodier, K.; Sarc, R. Real time material flow monitoring in mechanical waste processing and the relevance of fluctuations. Waste Manag. 2020, 120, 687–697. [Google Scholar] [CrossRef]
- Liebetegger, W. Landfill Mining—Charakterisierung der Fein—Und Heizwertreichen Fraktion. Master’s Thesis, Montanuniversität Leoben, Leoben, Austria, 2015. [Google Scholar]
- Parrodi, J.C.H.; Höllen, D.; Pomberger, R. Characterization of fine fractions from landfill mining: A review of previous investigations. Detritus 2018, 2, 46–62. [Google Scholar] [CrossRef]
- Parrodi, J.C.H.; Höllen, D.; Pomberger, R. Potential and main technological challenges for material and energy recovery from fine fractions of landfill mining: A critical review. Detritus 2018, 3, 19–29. [Google Scholar] [CrossRef]
- Hölzle, I. Contaminant patterns in soils from landfill mining. Waste Manag. 2019, 83, 151–160. [Google Scholar] [CrossRef]
- Hartemink, A.E. The definition of soil since the early 1800s. Adv. Agron. 2016, 137, 73–126. [Google Scholar] [CrossRef]
- Mutafela, R.N.; Marques, M.; Jani, Y.; Kriipsalu, M.; Hogland, W. Physico-chemical characteristics of fine fraction materials from an old crystal glass dumpsite in Sweden. Chem. Ecol. 2019, 35, 877–890. [Google Scholar] [CrossRef] [Green Version]
- Somani, M.; Datta, M.; Ramana, G.V.; Sreekrishnan, T.R. Leachate characteristics of aged soil-like material from MSW dumps: Sustainability of landfill mining. J. Hazard. Toxic Radioact. Waste 2019, 23, 04019014. [Google Scholar] [CrossRef]
- Mutafela, R.N.; Mantero, J.; Jani, Y.; Thomas, R.; Holm, E.; Hogland, W. Radiometrical and physico-chemical characterisation of contaminated glass waste from a glass dump in Sweden. Chemosphere 2020, 241, 124964. [Google Scholar] [CrossRef] [PubMed]
- Mutafela, R.N.; Lopez, E.G.; Dahlin, T.; Kaczala, F.; Marques, M.; Jani, Y.; Hogland, W. Geophysical investigation of glass ‘hotspots’ in glass dumps as potential secondary raw material sources. Waste Manag. 2020, 106, 213–225. [Google Scholar] [CrossRef] [PubMed]
- Pehme, K.M.; Orupõld, K.; Kuusemets, V.; Tamm, O.; Jani, Y.; Tamm, T.; Kriipsalu, M. Field study on the efficiency of a methane degradation layer composed of fine fraction soil from landfill mining. Sustainability 2020, 12, 6209. [Google Scholar] [CrossRef]
- Singh, A.; Chandel, M.K. Effect of ageing on waste characteristics excavated from an Indian dumpsite and its potential valorisation. Process Saf. Environ. Prot. 2020, 134, 24–35. [Google Scholar] [CrossRef]
- Mentes, D.; Sebe, E.; Kállay, A.A.; Póliska, C. The firing properties of the biofraction and RDF pellets. Mater. Sci. Eng. 2019, 44, 67–78. [Google Scholar]
- Singh, A.; Chandel, M.K. Physicochemical and FTIR spectroscopic analysis of fine fraction from a municipal solid waste dumpsite for potential reclamation of materials. Waste Manag. Res. 2020, 39, 374–385. [Google Scholar] [CrossRef] [PubMed]
- Gunaratne, T.; Krook, J.; Andersson, H.; Eklund, M. Guiding the future research on the valorization of shredder fine fractions: A review of four decades of research. Detritus 2020, 9, 150–164. [Google Scholar] [CrossRef]
- Faitli, J.; Nagy, S.; Romenda, R.; Gombkötő, I.; Bokányi, L.; Barna, L. Assessment of a residual municipal solid waste landfill for prospective ‘landfill mining’. Waste Manag. Res. 2019, 37, 1229–1239. [Google Scholar] [CrossRef] [PubMed]
- Parrodi, J.C.H.; García Lopez, C.; Küppers, B.; Raulf, K.; Vollprecht, D.; Pretz, T.; Pomberger, R. Case study on enhanced landfill mining at Mont-Saint-Guibert landfill in Belgium: Characterization and potential of fine fractions. Detritus 2019, 8, 47–61. [Google Scholar] [CrossRef]
- Parrodi, J.C.H.; Raulf, K.; Vollprecht, D.; Pretz, T.; Pomberger, R. Case study on enhanced landfill mining at Mont-Saint-Guibert landfill in Belgium: Mechanical processing of fine fractions for material and energy recovery. Detritus 2019, 8, 62–78. [Google Scholar] [CrossRef]
- Parrodi, J.C.H.; Vollprecht, D.; Pomberger, R. Case study on enhanced landfill mining at Mont-Saint-Guibert landfill in Belgium: Physico-chemical characterization and valorization potential of combustibles and inert fractions recovered from fine fractions. Detritus 2020, 10, 44–61. [Google Scholar] [CrossRef]
- Vollprecht, D.; Parrodi, J.C.H.; Lucas, H.I.; Pomberger, R. Case study on enhanced landfill mining at Mont-Saint-Guibert landfill in Belgium: Mechanical processing, physico-chemical and mineralogical characterization of fine fractions < 4.5 mm. Detritus 2020, 10, 26–43. [Google Scholar] [CrossRef]
- Weber, K.; Quicker, P.; Hanewinkel, J.; Flamme, S. Status of waste-to-energy in Germany, Part I—Waste treatment facilities. Waste Manag. Res. 2020, 38 (Suppl. 1), 23–44. [Google Scholar] [CrossRef]
- Viczek, S.; Aldrian, A.; Pomberger, R.; Sarc, R. Determination of the material-recyclable share of SRF during co-processing in the cement industry. Resour. Conserv. Recycl. 2020, 156, 104696. [Google Scholar] [CrossRef]
- Austrian Federal Ministry for Climate Action, Environment, Energy, Mobility, Innovation and Technology. Federal Waste Managment Plan 2017. Part 1. Available online: https://www.bmk.gv.at/themen/klima_umwelt/abfall/aws/bundes_awp/bawp.html (accessed on 24 November 2020).
- Van Caneghem, J.; Verbinnen, B.; Cornelis, G.; de Wijs, J.; Mulder, R.; Billen, P.; Vandecasteele, C. Immobilization of antimony in waste-to-energy bottom ash by addition of calcium and iron containing additives. Waste Manag. 2016, 54, 162–168. [Google Scholar] [CrossRef]
- Winter, B.; Szednyj, I.; Reiseinger, H.; Böhmer, S.; Janhsen, T. Abfallvermeidung und Verwertung: Aschen, Schlacken und Stäube in Österreich. Umweltbundesamt. 2005. Available online: https://www.umweltbundesamt.at/fileadmin/site/publikationen/rep0003.pdf (accessed on 24 November 2020).
- Hans van der Sloot Consultancy; DH; ECN. HP Classification of European Incinerator Bottom Ash (IBA). Assessment of Hazardous Properties (HPs) of IBA; Executive Summary of Report Produced for CEWEP. Available online: https://www.cewep.eu/guidance-on-classification-of-iba/ (accessed on 15 December 2020).
- Laner, D. Understanding and Evaluating Long-Term Environmental Risks from Landfills. Ph.D. Thesis, Technical Univeristy Vienna, Vienna, Austria, 2011. Available online: https://repositum.tuwien.at/handle/20.500.12708/9360 (accessed on 15 December 2020).
- Quicker, P. Ein gespenst geht um in Europa. Müll Abfall 2019, 5, 221. Available online: https://muellundabfall.de/.download/_sid/MFYP-556488-cYzP/147572/mua_20190501.pdf (accessed on 2 December 2020).
- Zaini, I.N.; Yang, W.; Jönsson, P.G. Steam gasification of solid recovered fuel char derived from landfill waste: A kinetic study. Energy Procedia 2017, 142, 723–729. [Google Scholar] [CrossRef]
- Xu, F.; Wang, B.; Yang, D.; Qiao, Y.; Tian, Y. The steam gasification reactivity and kinetics of municipal solid waste chars derived from rapid pyrolysis. Waste Manag. 2018, 80, 64–72. [Google Scholar] [CrossRef] [PubMed]
- Lokahita, B.; Samudro, G.; Huboyo, H.S.; Aziz, M.; Takahashi, F. Energy recovery potential from excavating municipal solid waste dumpsite in Indonesia. Energy Procedia 2019, 158, 243–248. [Google Scholar] [CrossRef]
- Stąsiek, J.; Szkodo, M. Thermochemical conversion of biomass and municipal waste into useful energy using advanced HiTAG/HiTSG technology. Energies 2020, 13, 4218. [Google Scholar] [CrossRef]
- Zaini, I.N.; López, C.G.; Pretz, T.; Yang, W.; Jönsson, P.G. Characterization of pyrolysis products of high-ash excavated-waste and its char gasification reactivity and kinetics under a steam atmosphere. Waste Manag. 2019, 97, 149–163. [Google Scholar] [CrossRef]
- Liu, H.; Wang, Y.; Zhao, S.; Hu, H.; Cao, C.; Li, A.; Yu, Y.; Yao, H. Review on the current status of the co-combustion technology of organic solid waste (OSW) and coal in China. Energy Fuels 2020, 34, 15448–15487. [Google Scholar] [CrossRef]
- Sieradzka, M.; Rajca, P.; Zajemska, M.; Mlonka-Mędrala, A.; Magdziarz, A. Prediction of gaseous products from refuse derived fuel pyrolysis using chemical modelling software Ansys Chemkin Pro. J. Clean. Prod. 2020, 248, 119277. [Google Scholar] [CrossRef]
- Al-Salem, S.M.; Yang, Y.; Wang, J.; Leeke, G.A. Pyro-oil and wax recovery from reclaimed plastic waste in a continuous auger pyrolysis reactor. Energies 2020, 13, 2040. [Google Scholar] [CrossRef] [Green Version]
- Eke, J.; Bridgwater, A.V.; Onwudili, J.A. Energy recovery by fast pyrolysis of pre-treated trommel fines derived from a UK-based MSW material recycling facility. J. Energy Inst. 2020, 93, 2006–2016. [Google Scholar] [CrossRef]
- Zaini, I.N.; Gomez-Rueda, Y.; García López, C.; Ratnasari, D.K.; Helsen, L.; Pretz, T.; Jönsson, P.G.; Yang, W. Production of H2-rich syngas from excavated landfill waste through steam co-gasification with biochar. Energy 2020, 207, 118208. [Google Scholar] [CrossRef]
- Sharma, S.; Basu, S.; Shetti, N.P.; Kamali, M.; Walvekar, P.; Aminabhavi, T.M. Waste-to-energy Nexus: A sustainable development. Environ. Pollut. 2020, 267, 115501. [Google Scholar] [CrossRef]
- Turk, K. Proizvodnja Amonijaka iz Odpadnih Plinov. Ph.D.Thesis, Maribor University, Maribor, Slovenia, 2020. [Google Scholar]
- Gomez-Rueda, Y.; Helsen, L. The role of plasma in syngas tar cracking. Biomass Convers. Biorefinery 2020, 10, 857–871. [Google Scholar] [CrossRef]
- Rozzi, E.; Minuto, F.D.; Lanzini, A.; Leone, P. Green synthetic fuels: Renewable routes for the conversion of non-fossil feedstocks into gaseous fuels and their end uses. Energies 2020, 13, 420. [Google Scholar] [CrossRef] [Green Version]
- Shahabuddin, M.; Alam, M.T.; Krishna, B.B.; Bhaskar, T.; Perkins, G. A review of producing renewable aviation fuels from the gasification of biomass and residual wastes. Bioresour. Technol. 2020, 312, 123596. [Google Scholar] [CrossRef] [PubMed]
- Gomez-Rueda, Y.; Zaini, I.N.; Yang, W.; Helsen, L. Thermal tar cracking enhanced by cold plasma—A study of naphthalene as tar surrogate. Energy Convers. Manag. 2020, 208, 112540. [Google Scholar] [CrossRef]
- Du, Y.; Liu, H.; Ren, W. Numerical investigations of a fluidized bed biomass gasifier coupling detailed tar generation and conversion kinetics with particle-scale hydrodynamics. Energy Fuels 2020, 34, 8440–8451. [Google Scholar] [CrossRef]
- Lu, G.; Bai, Y.; Ren, L.; Wang, J.; Song, X.; Yu, G. Role of phosphorus (P) additive in the performance of char-supported nickel (Ni) catalyst on tar reforming. Energy Convers. Manag. 2020, 225, 113471. [Google Scholar] [CrossRef]
- Fauzi, M.A.; Setyono, P.; Pranolo, S.H. Environmental assessment of a small power plant based on palm kernel shell gasification. AIP Conf. Proc. 2020, 2296, 020038. [Google Scholar] [CrossRef]
- Gomez-Rueda, Y.; Zaini, I.N.; Yang, W.; Helsen, L. Seashell waste-derived materials for secondary catalytic tar reduction in municipal solid waste gasification. Biomass Bioenergy 2020, 143, 105828. [Google Scholar] [CrossRef]
- Jagodzińska, K.; Zaini, I.N.; Svanberg, R.; Yang, W.; Jönsson, P.G. Pyrolysis of excavated waste from landfill mining: Characterisation of the process products. J. Clean. Prod. 2020, 279, 123541. [Google Scholar] [CrossRef]
- Lucas, H.I.; García Lopez, C.; Hernández Parrodi, J.C.; Vollprecht, D.; Raulf, K.; Pomberger, R.; Pretz, T.; Friedrich, B. Quality assessment of nonferrous metals recovered by means of landfill mining: A case study in Belgium. Detritus 2019, 8, 79–90. [Google Scholar] [CrossRef] [Green Version]
- Gigantino, M.; Kiwic, D.; Steinfeld, A. Thermochemical energy storage via isothermal carbonation-calcination cycles of MgO-stabilized SrO in the range of 1000–1100 C. Sol. Energy 2019, 188, 720–729. [Google Scholar] [CrossRef]
- Pratticò, L.; Bartali, R.; Crema, L.; Sciubba, E. Analysis of radiation propagation inside a hierarchical solar volumetric absorber. Proceedings 2020, 58, 27. [Google Scholar] [CrossRef]
- Wild, M.; Steinfeld, A. Modelling of a high-temperature thermochemical storage reactor with radial flow across an annular packed bed using the CaCO3-CaO cycle as a model reaction. In Proceedings of the ISES Solar World Congress, Santiago, Chile, 4–9 November 2019. [Google Scholar] [CrossRef]
- Morabito, T.; Sau, S.; Tizzoni, A.C.; Spadoni, A.; Capocelli, M.; Corsaro, N.; D’Ottavi, C.; Licoccia, S.; Delise, T. Chemical CSP storage system based on a manganese aluminium spinel. Sol. Energy 2020, 197, 462–471. [Google Scholar] [CrossRef]
- André, L.; Abanades, S. Recent advances in thermochemical energy storage via solid-gas reversible reactions at high temperature. Energies 2020, 13, 5859. [Google Scholar] [CrossRef]
- Farulla, G.A.; Cellura, M.; Guarino, F.; Ferraro, M. A review of thermochemical energy storage systems for power grid support. Appl. Sci. 2020, 10, 3142. [Google Scholar] [CrossRef]
- Gigantino, M.; Sas Brunser, S.; Steinfeld, A. High-temperature thermochemical heat storage via the CuO/Cu2O redox cycle: From material synthesis to packed-bed reactor engineering and cyclic operation. Energy Fuels 2020, 34, 16772–16782. [Google Scholar] [CrossRef]
- Dou, X.; Ren, F.; Nguyen, M.Q.; Ahamed, A.; Yin, K.; Chan, W.P.; Chang, V.W.C. Review of MSWI bottom ash utilization from perspectives of collective characterization, treatment and existing application. Renew. Sustain. Energy Rev. 2017, 79, 24–38. [Google Scholar] [CrossRef]
- Lucas, H.; Friedrich, B. Thermodynamics of conditioning MSWI bottom ash using SAF for usage in mineral products. In Proceedings of the 6th International Slag Valorisation Symposium, Mechelen, Belgium, 2–4 April 2019; pp. 57–60. Available online: http://www.metallurgie.rwth-aachen.de/new/images/pages/publikationen/thermodynamics_id_7584.pdf (accessed on 27 November 2020).
- Lucas, H.; Maier, J.; Friedrich, B. The use of submerged arc furnace (SAF) as a robust technology for upcycling waste into standard mineral products for construction industry. Miner. Nebenprodukte Abfälle 2020, 7, 272–287. Available online: https://www.vivis.de/wp-content/uploads/2020/11/272-287_Friedrich.pdf (accessed on 27 November 2020).
- Flesoura, G.; Garcia-Banos, B.; Catala-Civera, J.M.; Vleugels, J.; Pontikes, Y. In-situ measurements of high-temperature dielectric properties of municipal solid waste incinerator bottom ash. Ceram. Int. 2019, 45, 18751–18759. [Google Scholar] [CrossRef]
- Singh, B.; Zafar, S. Understanding time-temperature characteristics in microwave cladding. Manuf. Lett. 2020, 25, 75–80. [Google Scholar] [CrossRef]
- Flesoura, G.; Dilissen, N.; Dimitrakis, G.; Vleugels, J.; Pontikes, Y. A new approach for the vitrification of municipal solid waste incinerator bottom ash by microwave irradiation. J. Clean. Prod. 2020, 284, 124787. [Google Scholar] [CrossRef]
- Flesoura, G.; Rabelo Monich, P.; Alarcón, R.M.; Desideri, D.; Bernardo, E.; Vleugels, J.; Pontikes, Y. Porous glass-ceramics made from microwave vitrified municipal solid waste incinerator bottom ash. Constr. Build. Mater. 2020, 270, 121452. [Google Scholar] [CrossRef]
- Ascensão, G.; Marchi, M.; Segata, M.; Faleschini, F.; Pontikes, Y. Reaction kinetics and structural analysis of alkali activated Fe–Si–Ca rich materials. J. Clean. Prod. 2020, 246, 119065. [Google Scholar] [CrossRef]
- Kurda, R.; Silva, R.V.; de Brito, J. Incorporation of alkali-activated municipal solid waste incinerator bottom ash in mortar and concrete: A critical review. Materials 2020, 13, 3428. [Google Scholar] [CrossRef] [PubMed]
- Ascensão, G.; Beersaerts, G.; Marchi, M.; Segata, M.; Faleschini, F.; Pontikes, Y. Shrinkage and mitigation strategies to improve the dimensional stability of CaO-FeOx-Al2O3-SiO2 inorganic polymers. Materials 2019, 12, 3679. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mast, B.; Cambriani, A.; Douvalis, A.P.; Pontikes, Y.; Schroeyers, W.; Vandoren, B.; Schreurs, S. The effect of high dose rate gamma irradiation on the curing of CaO-FeOx-SiO2 slag based inorganic polymers: Mechanical and microstructural analysis. J. Nucl. Mater. 2020, 539, 152237. [Google Scholar] [CrossRef]
- Ascensão, G.; Marchi, M.; Segata, M.; Faleschini, F.; Pontikes, Y. Increasing the dimensional stability of CaO-FeOx-Al2O3-SiO2 alkali-activated materials: On the swelling potential of calcium oxide-rich admixtures. Detritus 2019, 8, 91–100. [Google Scholar] [CrossRef] [Green Version]
- Monich, P.R.; Romero, A.R.; Höllen, D.; Bernardo, E. Porous glass-ceramics from alkali activation and sinter-crystallization of mixtures of waste glass and residues from plasma processing of municipal solid waste. J. Clean. Prod. 2018, 188, 871–878. [Google Scholar] [CrossRef]
- Bai, C.; Li, H.; Bernardo, E.; Colombo, P. Waste-to-resource preparation of glass-containing foams from geopolymers. Ceram. Int. 2019, 45, 7196–7202. [Google Scholar] [CrossRef]
- Romero, A.R.; Salvo, M.; Bernardo, E. Up-cycling of vitrified bottom ash from MSWI into glass-ceramic foams by means of ‘inorganic gel casting’ and sinter-crystallization. Constr. Build. Mater. 2018, 192, 133–140. [Google Scholar] [CrossRef]
- Yatsenko, E.A.; Goltsman, B.M.; Smoliy, V.A.; Yatsenko, L.A. Perspective and experience of use of glass fraction of solid municipal waste in the production of silicate heat-insulating materials. In Proceedings of the 2018 IEEE International Conference of Management of Municipal Waste as an Important Factor of Sustainable Urban Development (WASTE), St. Petersburg, Russia, 4–6 October 2018; pp. 46–48. [Google Scholar] [CrossRef]
- Yatsenko, E.A.; Goltsman, B.M.; Ryabova, A.V. Complex protection of pipelines using silicate materials based on local raw materials of the Far East. Mater. Sci. Forum 2019, 945, 46–52. [Google Scholar] [CrossRef]
- Yatsenko, E.A.; Goltsman, B.M.; Ryabova, A.V.; Smoliy, V.A. Peculiarities of the use of siliceous raw materials of the Russian Far East in the integrated pipeline protection. In Proceedings of the International Conference on Advanced Functional Materials and Composites (ICAFMC 2018), Barcelona, Spain, 5–7 September 2018; EDP Sciences: Barcelona, Spain, 2018. [Google Scholar] [CrossRef]
- Yatsenko, E.A.; Goltsman, B.M.; Smolii, V.A.; Goltsman, N.S.; Yatsenko, L.A. Study on the possibility of applying organic compounds as pore-forming agents for the synthesis of foam glass. Glass Phys. Chem. 2019, 45, 138–142. [Google Scholar] [CrossRef]
- Ramteke, D.D.; Hujova, M.; Kraxner, J.; Galusek, D.; Romero, A.R.; Falcone, R.; Bernardo, E. Up-cycling of ‘unrecyclable’ glasses in glass-based foams by weak alkali-activation, gel casting and low-temperature sintering. J. Clean. Prod. 2021, 278, 123985. [Google Scholar] [CrossRef]
- Yatsenko, L.A.; Yatsenko, E.A.; Goltsman, B.M. Development of a mathematical model of the interrelation between the technological parameters of the synthesis and properties of foamed glass materials. Mater. Sci. Forum 2020, 992, 922–928. [Google Scholar] [CrossRef]
- Petrella, A.; Spasiano, D.; Race, M.; Rizzi, V.; Cosma, P.; Liuzzi, S.; De Vietro, N. Porous waste glass for lead removal in packed bed columns and reuse in cement conglomerates. Materials 2019, 12, 94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abdel-Gawwad, H.A.; Mohammed, M.S.; Heikal, M. Ultra-lightweight porous materials fabrication and hazardous lead-stabilization through alkali-activation/sintering of different industrial solid wastes. J. Clean. Prod. 2020, 244, 118742. [Google Scholar] [CrossRef]
- Bisht, K.; Kabeer, K.S.A.; Ramana, P.V. Gainful utilization of waste glass for production of sulphuric acid resistance concrete. Constr. Build. Mater. 2020, 235, 117486. [Google Scholar] [CrossRef]
- Cristelo, N.; Segadães, L.; Coelho, J.; Chaves, B.; Sousa, N.R.; de Lurdes Lopes, M. Recycling municipal solid waste incineration slag and fly ash as precursors in low-range alkaline cements. Waste Manag. 2020, 104, 60–73. [Google Scholar] [CrossRef]
- Liu, B.; Yang, Q.W.; Zhang, S.G. Integrated utilization of municipal solid waste incineration fly ash and bottom ash for preparation of foam glass-ceramics. Rare Met. 2019, 38, 914–921. [Google Scholar] [CrossRef]
- Romero, A.R.; Tamburini, S.; Taveri, G.; Toušek, J.; Dlouhy, I.; Bernardo, E. Extension of the ‘inorganic gel casting’ process to the manufacturing of boro-alumino-silicate glass foams. Materials 2018, 11, 2545. [Google Scholar] [CrossRef] [Green Version]
- Chen, F.; Zhang, W.; Liu, S. Porous glass-ceramics derived from MgO-CuO-TiO2-P2O5 glasses with different additions of Fe2O3. Ceram. Int. 2020, 46, 6560–6566. [Google Scholar] [CrossRef]
- Korat, L.; Ducman, V. Characterization of fly ash alkali activated foams obtained using sodium perborate monohydrate as a foaming agent at room and elevated temperatures. Front. Mater. 2020, 7, 308. [Google Scholar] [CrossRef]
- Teoh, F.; Veksha, A.; Chia, V.W.; Udayanga, W.C.; Mohamed, D.K.B.; Giannis, A.; Lim, T.-T.; Lisak, G. Nickel-based catalysts for steam reforming of naphthalene utilizing gasification slag from municipal solid waste as a support. Fuel 2019, 254, 115561. [Google Scholar] [CrossRef]
- Xi, C.; Zhou, J.; Zheng, F.; Gao, J.M.; Hu, P.; Li, Y.; Liu, J.L. Conversion of extracted titanium tailing and waste glass to value-added porous glass ceramic with improved performances. J. Environ. Manag. 2020, 261, 110197. [Google Scholar] [CrossRef]
- Kraxner, J.; Michalek, M.; Romero, A.R.; Elsayed, H.; Bernardo, E.; Boccaccini, A.R.; Galusek, D. Porous bioactive glass microspheres prepared by flame synthesis process. Mater. Lett. 2019, 256, 126625. [Google Scholar] [CrossRef]
- Kumaravel, S.; Alagumurthi, N. Material removal characteristics of Al-SiO2 composite in WEDM. Epitoanyag J. Silic. Based Compos. Mater. 2020, 72, 20–24. [Google Scholar] [CrossRef]
- Hujova, M.; Rabelo Monich, P.; Sedlacek, J.; Hnatko, M.; Kraxner, J.; Galusek, D.; Bernardo, E. Glass-ceramic foams from alkali-activated vitrified bottom ash and waste glasses. Appl. Sci. 2020, 10, 5714. [Google Scholar] [CrossRef]
- Rabelo Monich, P.; Dogrul, F.; Lucas, H.; Friedrich, B.; Bernardo, E. Strong porous glass-ceramics from alkali activation and sinter crystallization of vitrified MSWI bottom ash. Detritus 2019, 8, 101–108. [Google Scholar] [CrossRef] [Green Version]
- Rabelo Monich, P.; Vollprecht, D.; Bernardo, E. Dense glass-ceramics by fast sinter-crystallization of mixtures of waste-derived glasses. Int. J. Appl. Ceram. Technol. 2020, 17, 55–63. [Google Scholar] [CrossRef] [Green Version]
- Li, B.; Guo, Y.; Fang, J. Effect of crystallization temperature on glass-ceramics derived from tailings waste. J. Alloy. Compd. 2020, 838, 155503. [Google Scholar] [CrossRef]
- Rabelo Monich, P.; Desideri, D.; Bernardo, E. Low temperature upcycling of vitreous byproduct of the MSW plasma processing into multifunctional porous glass-ceramics. Adv. Appl. Ceram. 2019, 118, 366–371. [Google Scholar] [CrossRef]
- Salman, M.M.; Nhabih, H.T. Assessment of the partial and total replacement of feldspar by waste glass on porcelain properties. J. Ceram. Process. Res. 2020, 21, 371–377. [Google Scholar] [CrossRef]
- Salman, M.M.; Radhi, N.S.; Sabr, O.H.; Nhabih, H.T. Utilization of diverse cheap materials as pore generating agent to manufacture low-cost porous ceramic. Cerâmica 2020, 66, 179–185. [Google Scholar] [CrossRef]
- Rabelo Monich, P.; Romero, A.R.; Desideri, D.; Bernardo, E. Waste-derived glass-ceramics fired in nitrogen: Stabilization and functionalization. Constr. Build. Mater. 2020, 232, 117265. [Google Scholar] [CrossRef]
- Rincón Romero, A.; Desideri, D.; Boccaccini, A.R.; Bernardo, E. Up-cycling of iron-rich inorganic waste in functional glass-ceramics. Minerals 2020, 10, 959. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, J.; Liu, L.; Ma, J.; Shen, B. Preparation of additive-free glass-ceramics from MSW incineration bottom ash and coal fly ash. Constr. Build. Mater. 2020, 254, 119345. [Google Scholar] [CrossRef]
- Sauve, G.; Van Acker, K. The environmental impacts of municipal solid waste landfills in Europe: A life cycle assessment of proper reference cases to support decision making. J. Environ. Manag. 2020, 261, 110216. [Google Scholar] [CrossRef]
- Chabok, M.; Asakereh, A.; Bahrami, H.; Jaafarzadeh, N.O. Selection of MSW landfill site by fuzzy-AHP approach combined with GIS: Case study in Ahvaz, Iran. Environ. Monit. Assess. 2020, 192, 1–15. [Google Scholar] [CrossRef]
- Manyoma-Velásquez, P.C.; Vidal-Holguín, C.J.; Torres-Lozada, P. Methodology for locating regional landfills using multi-criteria decision analysis techniques. Cogent Eng. 2020, 7, 1776451. [Google Scholar] [CrossRef]
- Pokhrel, P.; Lin, S.L.; Tsai, C.T. Environmental and economic performance analysis of recycling waste printed circuit boards using life cycle assessment. J. Environ. Manag. 2020, 276, 111276. [Google Scholar] [CrossRef]
- Cho, H.H.; Strezov, V. A comparative review on the environmental impacts of combustion-based electricity generation technologies. Energy Fuels 2020, 34, 10486–10502. [Google Scholar] [CrossRef]
- Vaverková, M.D.; Adamcová, D.; Winkler, J.; Koda, E.; Petrželová, L.; Maxianová, A. Alternative method of composting on a reclaimed municipal waste landfill in accordance with the circular economy: Benefits and risks. Sci. Total Environ. 2020, 723, 137971. [Google Scholar] [CrossRef] [PubMed]
- Tan, W.; Wang, S.; Liu, N.; Xi, B. Tracing bacterial and fungal necromass dynamics of municipal sludge in landfill bioreactors using biomarker amino sugars. Sci. Total Environ. 2020, 741, 140513. [Google Scholar] [CrossRef]
- Efremenko, E.; Senko, O.; Stepanov, N.; Mareev, N.; Volikov, A.; Perminova, I. Suppression of methane generation during methanogenesis by chemically modified humic compounds. Antioxidants 2020, 9, 1140. [Google Scholar] [CrossRef]
- Manasaki, V.; Palogos, I.; Chourdakis, I.; Tsafantakis, K.; Gikas, P. Techno-economic assessment of landfill gas (LFG) to electric energy: Selection of the optimal technology through field-study and model simulation. Chemosphere 2020, 41, 128688. [Google Scholar] [CrossRef] [PubMed]
- Raksasat, R.; Lim, J.W.; Kiatkittipong, W.; Kiatkittipong, K.; Ho, Y.C.; Lam, M.K.; Font-Palma, C.; Zaid, H.F.M.; Cheng, C.K. A review of organic waste enrichment for inducing palatability of black soldier fly larvae: Wastes to valuable resources. Environ. Pollut. 2020, 267, 115488. [Google Scholar] [CrossRef] [PubMed]
- Sauve, G.; Van Acker, K. To mine or not to mine: A review of the effects of waste composition, time and long-term impacts of landfills in the decision making for ELFM. In Proceedings of the 4th International Symposium on Enhanced Landfill Mining, Mechelen, Belgium, 5–6 February 2018; pp. 379–385. [Google Scholar]
- Esguerra, J.L.; Krook, J.; Svensson, N.; Van Passel, S. Assessing the economic potential of landfill mining: Review and recommendations. Detritus 2019, 8, 125–140. [Google Scholar] [CrossRef]
- Esguerra, J.L.; Svensson, N.; Krook, J.; Van Passel, S.; Van Acker, K. The economic and environmental performance of a landfill mining project from the viewpoint of an industrial landfill owner. In Proceedings of the 4th International Symposium on Enhanced Landfill Mining, Mechelen, Belgium, 5–6 February 2018; pp. 389–395. [Google Scholar]
- Laner, D.; Esguerra, J.L.; Krook, J.; Horttanainen, M.; Kriipsalu, M.; Rosendal, R.M.; Stanisavljević, N. Systematic assessment of critical factors for the economic performance of landfill mining in Europe: What drives the economy of landfill mining? Waste Manag. 2019, 95, 674–686. [Google Scholar] [CrossRef]
- Vaverková, M.D. Landfill impacts on the environment. Geosciences 2019, 9, 431. [Google Scholar] [CrossRef] [Green Version]
- Sabour, M.R.; Alam, E.; Hatami, A.M. Environmental and economic assessment of enhanced landfill mining in Tehran. Environ. Sci. Pollut. Res. 2020, 27, 34469–34483. [Google Scholar] [CrossRef] [PubMed]
- Martinovsky, J. Repräsentative Demokratie in Österreich am Beispiel der Volksabstimmung über das Kernkraftwerk Zwentendorf. Diploma Thesis, Vienna University, Wien, Austria, 2012. [Google Scholar] [CrossRef]
- Einhäupl, P.; Krook, J.; Svensson, N.; Van Acker, K.; Van Passel, S. Enhanced landfill mining at the Remo Site: Assessing stakeholders’ perspectives for implementation. In Proceedings of the 4th International Symposium on Enhanced Landfill Mining, Mechelen, Belgium, 5–6 February 2018; pp. 367–377. [Google Scholar]
- Einhäupl, P.; Krook, J.; Svensson, N.; Van Acker, K.; Van Passel, S. Eliciting stakeholder needs—An anticipatory approach assessing enhanced landfill mining. Waste Manag. 2019, 98, 113–125. [Google Scholar] [CrossRef]
- Pecorini, I.; Iannelli, R. Characterization of excavated waste of different ages in view of multiple resource recovery in landfill mining. Sustainability 2020, 12, 1780. [Google Scholar] [CrossRef] [Green Version]
- Einhäupl, P.; Van Acker, K.; Svensson, N.; Van Passel, S. Developing stakeholder archetypes for enhanced landfill mining. Detritus 2019, 8, 109–124. [Google Scholar] [CrossRef] [Green Version]
- Müller, A. Baustoffrecycling; Springer: Wiesbaden, Germany, 2018. [Google Scholar] [CrossRef]
- Directive 2008/98/EC of the European Parliament and of the Council of 19 November 2008 on Waste and Repealing Certain Directives. Available online: http://data.europa.eu/eli/dir/2008/98/oj (accessed on 24 November 2020).
- Cambridge Dictionary: Residue; Cambridge University Press: Cambridge, UK; Available online: https://dictionary.cambridge.org/de/worterbuch/englisch/residue (accessed on 15 March 2020).
- Prochorow, A. (Ed.) The Great Soviet Encyclopedia. 1970–1979; Available online: https://encyclopedia2.thefreedictionary.com/Secondary+Raw+Material (accessed on 17 November 2020).
Total Content | Concentrations | Limit Values |
Cd | 1–177 | 0.2–10 |
Cu | 738–17620 | 40–500 |
Cr | 115–852 | 40–500 |
Ni | 38–850 | 35–500 |
Pb | 197–6441 | 20–1250 |
Zn | 1142–9370 | 120–1250 |
Leachable Content | Concentrations | Limit Values |
Cl | 259–416 | 80–5000 |
Cr | 0.01 | 0.006–0.5 |
Ni | <0.05 | 0.01–0.35 |
Sb | 0.016–0.023 | 0.006–0.2 |
SO4 | 15–106 | 70–6500 |
Pb | 1.8–6 | 0.02–0.82 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vollprecht, D.; Machiels, L.; Jones, P.T. The EU Training Network for Resource Recovery through Enhanced Landfill Mining—A Review. Processes 2021, 9, 394. https://doi.org/10.3390/pr9020394
Vollprecht D, Machiels L, Jones PT. The EU Training Network for Resource Recovery through Enhanced Landfill Mining—A Review. Processes. 2021; 9(2):394. https://doi.org/10.3390/pr9020394
Chicago/Turabian StyleVollprecht, Daniel, Lieven Machiels, and Peter Tom Jones. 2021. "The EU Training Network for Resource Recovery through Enhanced Landfill Mining—A Review" Processes 9, no. 2: 394. https://doi.org/10.3390/pr9020394