Preparation and Characterization of Two Different Liposomal Formulations with Bioactive Natural Extract for Multiple Applications †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Identification, Preparation and Characterization of Stellaria Media (L.) Vill. extract
2.1.1. Total phenols content using the Folin–Ciocalteu method
2.1.2. The antioxidant capacity of the extract by the DPPH method
2.2. Preparation of Liposomes
- Phosphatidylcholine-based liposomes with (PCE) and without (PC) Stellaria media (L.) Vill. extract encapsulated.
- Phosphatidylserine-based liposomes with (PSE) and without (PS) Stellaria media (L.) Vill. extract encapsulated.
2.3. Optical Observation of the Formulations
2.4. Average Diameter and Zeta Potential Measurements by DLS
2.5. Determination of the Encapsulation Efficiency (EE %)
3. Results
3.1. Macro- and Microscopic Characterization, Total Phenols Content and Antioxidant Capacity of the Plant Stellaria Media (L.) Vill.
3.2. Liposome Preparation
3.3. Characterization of Liposomes by Optical Microscopy
3.4. Diameter and Zeta Potential Measurements by DLS Analysis
3.5. Encapsulation Efficiency of Stellaria Media (L.) Vill. Extract.
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Miere (Groza), F.; Fritea, L.; Cavalu, S.; Vicas, S.I. Formulation, characterization, and advantages of using liposomes in multiple therapies. Pharmacophore 2020, 11, 1–12. [Google Scholar]
- Bulbake, U.; Doppalapudi, S.; Kommineni, N.; Khan, W. Liposomal formulations in clinical use: An updated review. Pharmaceutics 2017, 9, 12. [Google Scholar] [CrossRef] [PubMed]
- Mezei, M.; Foldvari, M.; Gesztes, A.; Cardinal, L.; Behl, M.; Kowalczyk, L. Topical liposomal anestetichs: Design, optimization and evaluation of formulations. Drug. Dev. Ind. Pharm. 1993, 19, 2499–2517. [Google Scholar]
- Pattini, B.S.; Chupin, V.V.; Torchilin, V.P. New Developments in Liposomal Drug Delivery. Chem. Rev. 2015, 115, 10938–10966. [Google Scholar] [CrossRef]
- El-Hammadi, M.M.; Arias, J.L. An update on liposomes in drug delivery: A patent review (2014–2018). Expert Opin. Ther. Pat. 2019, 29, 891–907. [Google Scholar] [CrossRef]
- Bunker, A.; Magarkar, A.; Viitala, T. Rational design of liposomal drug delivery systems, a review: Combined experimental and computational studies of lipid membranes, liposomes and their PEGylation. Biochim. Biophys. Acta Biomembr. 2018, 1858, 2334–2352. [Google Scholar] [CrossRef]
- Akbarzadeh, A.; Rezaei-Sadabady, R.; Davaran, S.; Woo-Joo, S.; Zarghami, N.; Hanifehpour, Y.; Samiei, M.; Kouhi, M.; Nejati-Koshki, K. Liposome: Classification, preparation, and applications. Nanoscale Res. Lett. 2013, 8, 102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alavi, M.; Asare-Addo, K.; Nokhodchi, A. Lectin Protein as a Promising Component to Functionalize Micelles, Liposomes and Lipid NPs against Coronavirus. Biomedicines 2020, 8, 580. [Google Scholar] [CrossRef] [PubMed]
- Zylberberg, C.; Matosevic, S. Pharmaceutical liposomal drug delivery: A review of new delivery systems and a look at the regulatory landscape. Drug Deliv. 2016, 23, 3319–3329. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Du, C.; Guo, N.; Teng, Y.; Meng, X.; Sun, H.; Li, S.; Yu, P.; Galons, H. Composition design and medical application of liposomes. Eur. J. Med. Chem. 2019, 164, 640–653. [Google Scholar] [CrossRef] [PubMed]
- Pauli, G.; Tang, W.L.; Li, S.D. Development and characterization of the solvent-assisted active loading technology (SALT) for liposomal loading of poorly water-soluble compounds. Pharmaceutics 2019, 11, 465. [Google Scholar] [CrossRef] [Green Version]
- Dilip, K.; Manashi, D.; Nazim, F.I. Few plants and animals based folk medicines from Dibrugarh District, Assam. Indian J. Tradit. Knowl. 2005, 4, 81–85. [Google Scholar]
- Katewa, S.S.; Chaudhary, B.L.; Jain, A. Folk herbal medicines from tribal area of Rajasthan, India. J. Ethnopharmacol. 2004, 92, 41–46. [Google Scholar] [CrossRef]
- Yun, J.W. Possible anti-obesity therapeutics from nature—A review. Phytochemistry 2010, 71, 1625–1641. [Google Scholar] [CrossRef]
- Chidrawar, V.R.; Patel, K.N.; Shruti, N.R.; Shiromwar, S.; Trivedi, P. Antiobesity effect of Stellaria media against drug induced obesity in Swiss albino mice. Ayu 2011, 32, 576–584. [Google Scholar] [CrossRef] [PubMed]
- Sârbu, I.; Stefan, N.; Oprea, A. Plante Vasculare din România Determinator Ilustrat de Teren; Editura Victor, B. Victor: Iasi, Romania, 2015; pp. 120–121. [Google Scholar]
- Miere (Groza), F.; Teusdea, A.C.; Laslo, V.; Fritea, L.; Moldovan, L.; Costea, T.; Uivarosan, D.; Vicas, S.I.; Pallag, A. Natural Polymeric Beads for Encapsulation of Stellaria media Extract with Antioxidant Properties. Mater. Plast. 2019, 56, 671–679. [Google Scholar] [CrossRef]
- Marian, E.; Vicas, L.G.; Jurca, T.; Muresan, M.; Stan, R.L.; Sevastre, B.; Diaconeasa, Z.; Ionescu, C.; Hangan, A.C. A comparative study on the biologic activity of Centaurea cyanus versus Calendula officinalis. Farmacia 2017, 65, 940–946. [Google Scholar]
- Jurca, T.; Vicas, L.; Toth, I.; Braun, M.; Marian, E.; Teusdea, A.; Vicas, S.; Muresan, M. Mineral element profile, bioactive compoundsand antioxidant capacity of wild blueberryand of pharmaceutical preparations from blueberry (Vaccinium myrtillus). Farmacia 2016, 64, 581–587. [Google Scholar]
- Arsene, A.L.; Rodina, S.; Butu, A.; Petrache, P.; Iordache, O.; Butu, M. Study on antimicrobian and antioxidant activity and phenolic content of ethanolic extrct of Humulus Lupulus. Farmacia 2015, 63, 851–857. [Google Scholar]
- Asprea, M.; Tatini, F.; Piazzini, V.; Rossi, F.; Bergonzi, M.C.; Bilia, A.R. Stable, monodisperse, and highly cell-permeating nanocochleates from natural soy lecithin liposomes. Pharmaceutics 2019, 11, 34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fritea, L.; Pasca, P.M.; Vlase, L.; Gheldiu, A.-M.; Moldovan, L.; Banica, F.; Dobjanschi, L.; Cavalu, S. Electrochemical methods for evaluation of antioxidant properties of propolis extract incorporated in chitosan nanoparticles. Mater. Plast. 2020, 57, 96–108. [Google Scholar] [CrossRef]
- Cavalu, S.; Kamel, E.; Laslo, V.; Fritea, L.; Costea, T.; Antoniac, I.V.; Vasile, E.; Antoniac, A.; Semenescu, A.; Mohan, A.; et al. Eco-friendly, Facile and Rapid Way for Synthesis of Selenium Nanoparticles Production, structural and morphological characterization. Revista Chimie 2017, 68, 2963–2966. [Google Scholar] [CrossRef]
- Gibis, M.; Ruedt, C.; Weiss, J. In Vitro release of grape-seed polyphenols encapsulated from uncoated and chitosan-coated liposomes. Int. Food Res. J. 2016, 88, 105–113. [Google Scholar] [CrossRef] [PubMed]
- Ming, Z.; Ai-Juan, W.; Jun-Ming, L.; Na, S.; Yang, S.; Rui, H. Factors influencing the stability and type of hydroxyapatite stabilized Pickering emulsion. Mater. Sci. Eng. 2017, 70, 396–404. [Google Scholar]
- Chandra, S.; Rawat, D.S. Medicinal plants of the family Caryophyllaceae: A review of ethno-medicinal uses and pharmacological properties. Integr. Med. Res. 2015, 4, 123–131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rogowska, M.; Lenart, M.; Srecec, S.; Ziaja, M.; Parzonko, A.; Bazylko, A. Chemical composition, antioxidative and enzyme inhibition activities of chickweed herb (Stelaria media L., Vill.) ethanolic and aqueous. Ind. Crops Prod. 2017, 97, 448–454. [Google Scholar] [CrossRef]
- Mozafari, M.R.; Khosravi-Darani, K.; Borazan, G.G.; Cui, J.; Pardakhty, A.; Yurdugul, S. Encapsulation of food ingredients using nanoliposometechnology. Int. J. Food Prop. 2008, 11, 833–844. [Google Scholar] [CrossRef]
- Zaka-Ud-Din, T.C.; Higuchi, W. Model transport studies utilizing lecithin spherules IV: Transport of D-glucose in spherules prepared from lecithin, dicetyl phosphate, and cholesterol. J. Pharm. Sci. 1974, 63, 1429. [Google Scholar]
- Kazakov, S. Liposome-nanogel structures for future pharmaceutical applications: An updated review. Curr. Pharm. Des. 2016, 22, 1391–1413. [Google Scholar] [CrossRef] [PubMed]
- Seyfoddin, A.; Al-Kassas, R. Developmentof solid lipid nanoparticles and nanostructured lipid carriers for improving ocular delivery of acyclovir. Drug Dev. Ind. Pharm. 2013, 39, 508–519. [Google Scholar] [CrossRef]
- Siepmann, J.; Siepmann, F. Modeling of diffusion controlled drug delivery. J. Control. Release 2012, 161, 351–362. [Google Scholar] [CrossRef]
- Kumar, B.; Kavimani, S.; Jaykar, B. Development of formulation and in vitro evaluation of sterically stabilized (Stealth) liposome containing Cytarabine. J. Pharm. Sci. 2010, 1, 283–293. [Google Scholar]
- Kavya, J.; Amsaveni, G.; Yasmin, H.; Murugesan, R.; Grigoswami, A. Gene expression profile induced by liposomal nanoformulation of anticancer agents: Insight into cell death mechanism. Adv. Sci. Eng. Med. 2014, 6, 159–165. [Google Scholar] [CrossRef]
- Shailendra, M.D.; Johann, R.N.; Cooke, M.S.; Darren, K.W.; Chan, M.S.; Jason, A.; Ellis, M.D.; Shaolie, S.; Hossain, P.D.; Rajinder, P.; et al. Liposome size and charge optimization for intraarterial delivery to gliomas. Drug Deliv. Trans. Res. 2016, 6, 225–233. [Google Scholar]
- Simon, V.; Cavalu, S.; Simon, S.; Mocuta, H.; Vanea, E.; Prinz, M.; Neumann, M. Surface functionalisation of sol-gel derived aluminosilicates in simulated body fluids. Solid State Ion. 2009, 180, 764–769. [Google Scholar] [CrossRef]
- Cavalu, S.; Prokisch, J.; Laslo, V.; Vicas, S. Preparation, structural characterisation and release study of novel hybrid microspheres entrapping nanoselenium, produced by green synthesis. IET Nanobiotechnol. 2017, 11, 426–432. [Google Scholar] [CrossRef]
- Sameer, J.; Roderica, W.; Rajnish, S.; Vida, A.D.; Shree, R.S. Comprehensive Screening of Drug Encapsulation and Co-Encapsulation into Niosomes Produced Using a Microfluidic Device. Processes 2020, 8, 535. [Google Scholar]
- Matouskova, P.; Marova, I.; Bokrova, J.; Benesova, P. Effect of Encapsulation on Antimicrobial Activity of Herbal Extracts with Lysozyme. Food Technol. Biotechnol. 2016, 54, 304–316. [Google Scholar] [CrossRef]
Composition | PC | PCE | PS | PSE |
---|---|---|---|---|
Phosphatidylcholine: Cholesterol | 3:1 | 3:1 | - | - |
Phosphatidylserine: Cholesterol | - | - | 3:1 | 3:1 |
Phosphate buffer pH = 7.6 | 10 mL | 10 mL | 10 mL | 10 mL |
Stellaria media (L.) Vill. extract | - | 1 mg/mL | - | 1 mg/mL |
Organic solvents | Dichloromethane: Methanol (3:2 v/v) | Dichloromethane: Methanol (3:2 v/v) | Chloroform: Methanol (3:2 v/v) | Chloroform: Methanol (3:2 v/v) |
Total Phenols Content mgGAE/g d.w. | % RSA |
---|---|
17.23 ± 2.31 | 69.19 ± 5.44 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miere, F.; Vicas, S.I.; Timar, A.V.; Ganea, M.; Zdrinca, M.; Cavalu, S.; Fritea, L.; Vicas, L.; Muresan, M.; Pallag, A.; et al. Preparation and Characterization of Two Different Liposomal Formulations with Bioactive Natural Extract for Multiple Applications. Processes 2021, 9, 432. https://doi.org/10.3390/pr9030432
Miere F, Vicas SI, Timar AV, Ganea M, Zdrinca M, Cavalu S, Fritea L, Vicas L, Muresan M, Pallag A, et al. Preparation and Characterization of Two Different Liposomal Formulations with Bioactive Natural Extract for Multiple Applications. Processes. 2021; 9(3):432. https://doi.org/10.3390/pr9030432
Chicago/Turabian StyleMiere (Groza), Florina, Simona Ioana Vicas, Adrian Vasile Timar, Mariana Ganea, Mihaela Zdrinca, Simona Cavalu, Luminita Fritea, Laura Vicas, Mariana Muresan, Annamaria Pallag, and et al. 2021. "Preparation and Characterization of Two Different Liposomal Formulations with Bioactive Natural Extract for Multiple Applications" Processes 9, no. 3: 432. https://doi.org/10.3390/pr9030432
APA StyleMiere, F., Vicas, S. I., Timar, A. V., Ganea, M., Zdrinca, M., Cavalu, S., Fritea, L., Vicas, L., Muresan, M., Pallag, A., & Dobjanschi, L. (2021). Preparation and Characterization of Two Different Liposomal Formulations with Bioactive Natural Extract for Multiple Applications. Processes, 9(3), 432. https://doi.org/10.3390/pr9030432