Analysis of TRIM21 Genetic Variants on the Clinicopathologic Characteristics of Patients with Hepatocellular Carcinoma
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Participants and Specimen Collection
2.2. Selection of TRIM21 Polymorphisms
2.3. TRIM21 Genotyping
2.4. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Huy, T.T.; Abe, K. Molecular epidemiology of hepatitis B and C virus infections in Asia. Pediatr. Int. 2004, 46, 223–230. [Google Scholar] [CrossRef]
- Chen, C.J.; Yang, H.I.; Su, J.; Jen, C.L.; You, S.L.; Lu, S.N.; Huang, G.T.; Iloeje, U.H.; Group, R.-H.S. Risk of hepatocellular carcinoma across a biological gradient of serum hepatitis B virus DNA level. JAMA 2006, 295, 65–73. [Google Scholar] [CrossRef] [Green Version]
- Mu, T.; Zhao, X.; Zhu, Y.; Fan, H.; Tang, H. The E3 Ubiquitin Ligase TRIM21 Promotes HBV DNA Polymerase Degradation. Viruses 2020, 12, 346. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ding, Q.; He, D.; He, K.; Zhang, Q.; Tang, M.; Dai, J.; Lv, H.; Wang, X.; Xiang, G.; Yu, H. Downregulation of TRIM21 contributes to hepatocellular carcinoma carcinogenesis and indicates poor prognosis of cancers. Tumour Biol. 2015, 36, 8761–8772. [Google Scholar] [CrossRef] [PubMed]
- Ikeda, K.; Inoue, S. TRIM proteins as RING finger E3 ubiquitin ligases. Adv. Exp. Med. Biol. 2012, 770, 27–37. [Google Scholar] [CrossRef]
- Cambiaghi, V.; Giuliani, V.; Lombardi, S.; Marinelli, C.; Toffalorio, F.; Pelicci, P.G. TRIM proteins in cancer. Adv. Exp. Med. Biol. 2012, 770, 77–91. [Google Scholar] [CrossRef] [PubMed]
- Kawai, T.; Akira, S. Regulation of innate immune signalling pathways by the tripartite motif (TRIM) family proteins. EMBO Mol. Med. 2011, 3, 513–527. [Google Scholar] [CrossRef]
- Petrera, F.; Meroni, G. TRIM proteins in development. Adv. Exp. Med. Biol. 2012, 770, 131–141. [Google Scholar] [CrossRef]
- Schwamborn, J.C.; Berezikov, E.; Knoblich, J.A. The TRIM-NHL protein TRIM32 activates microRNAs and prevents self-renewal in mouse neural progenitors. Cell 2009, 136, 913–925. [Google Scholar] [CrossRef] [Green Version]
- Uchil, P.D.; Pawliczek, T.; Reynolds, T.D.; Ding, S.; Hinz, A.; Munro, J.B.; Huang, F.; Floyd, R.W.; Yang, H.; Hamilton, W.L.; et al. TRIM15 is a focal adhesion protein that regulates focal adhesion disassembly. J. Cell Sci. 2014, 127, 3928–3942. [Google Scholar] [CrossRef] [Green Version]
- Chang, L.C.; Yu, Y.L. Dietary components as epigenetic-regulating agents against cancer. Biomedicine (Taipei) 2016, 6, 2. [Google Scholar] [CrossRef]
- Reddy, B.A.; van der Knaap, J.A.; Bot, A.G.; Mohd-Sarip, A.; Dekkers, D.H.; Timmermans, M.A.; Martens, J.W.; Demmers, J.A.; Verrijzer, C.P. Nucleotide biosynthetic enzyme GMP synthase is a TRIM21-controlled relay of p53 stabilization. Mol. Cell 2014, 53, 458–470. [Google Scholar] [CrossRef] [Green Version]
- Kyriakidis, N.C.; Kapsogeorgou, E.K.; Gourzi, V.C.; Konsta, O.D.; Baltatzis, G.E.; Tzioufas, A.G. Toll-like receptor 3 stimulation promotes Ro52/TRIM21 synthesis and nuclear redistribution in salivary gland epithelial cells, partially via type I interferon pathway. Clin. Exp. Immunol. 2014, 178, 548–560. [Google Scholar] [CrossRef] [Green Version]
- McEwan, W.A.; James, L.C. TRIM21-dependent intracellular antibody neutralization of virus infection. Prog. Mol. Biol. Transl. Sci. 2015, 129, 167–187. [Google Scholar] [CrossRef] [PubMed]
- Young, J.A.; Sermwittayawong, D.; Kim, H.J.; Nandu, S.; An, N.; Erdjument-Bromage, H.; Tempst, P.; Coscoy, L.; Winoto, A. Fas-associated death domain (FADD) and the E3 ubiquitin-protein ligase TRIM21 interact to negatively regulate virus-induced interferon production. J. Biol. Chem. 2011, 286, 6521–6531. [Google Scholar] [CrossRef] [Green Version]
- McEwan, W.A.; Tam, J.C.; Watkinson, R.E.; Bidgood, S.R.; Mallery, D.L.; James, L.C. Intracellular antibody-bound pathogens stimulate immune signaling via the Fc receptor TRIM21. Nat. Immunol. 2013, 14, 327–336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, Y.S.; Yang, M.C.; Wang, B.; Weissler, J.C. Autoantigen Ro52 directly interacts with human IgG heavy chain in vivo in mammalian cells. Mol. Immunol. 2000, 37, 591–602. [Google Scholar] [CrossRef]
- Jin, Y.; Zhang, Y.; Li, B.; Zhang, J.; Dong, Z.; Hu, X.; Wan, Y. TRIM21 mediates ubiquitination of Snail and modulates epithelial to mesenchymal transition in breast cancer cells. Int. J. Biol. Macromol. 2019, 124, 846–853. [Google Scholar] [CrossRef] [PubMed]
- Shastry, B.S. SNP alleles in human disease and evolution. J. Hum. Genet. 2002, 47, 561–566. [Google Scholar] [CrossRef] [Green Version]
- Yu, Y.L.; Su, K.J.; Hsieh, Y.H.; Lee, H.L.; Chen, T.Y.; Hsiao, P.C.; Yang, S.F. Effects of EZH2 polymorphisms on susceptibility to and pathological development of hepatocellular carcinoma. PLoS ONE 2013, 8, e74870. [Google Scholar] [CrossRef] [Green Version]
- Frank, M.B.; Itoh, K.; Fujisaku, A.; Pontarotti, P.; Mattei, M.G.; Neas, B.R. The mapping of the human 52-kD Ro/SSA autoantigen gene to human chromosome 11, and its polymorphisms. Am. J. Hum. Genet. 1993, 52, 183–191. [Google Scholar] [PubMed]
- Tsugu, H.; Horowitz, R.; Gibson, N.; Frank, M.B. The location of a disease-associated polymorphism and genomic structure of the human 52-kDa Ro/SSA locus (SSA1). Genomics 1994, 24, 541–548. [Google Scholar] [CrossRef] [PubMed]
- Nakken, B.; Jonsson, R.; Bolstad, A.I. Polymorphisms of the Ro52 gene associated with anti-Ro 52-kd autoantibodies in patients with primary Sjogren’s syndrome. Arthritis Rheum. 2001, 44, 638–646. [Google Scholar] [CrossRef]
- Wu, E.R.; Hsieh, M.J.; Chiang, W.L.; Hsueh, K.C.; Yang, S.F.; Su, S.C. Association of lncRNA CCAT2 and CASC8 Gene Polymorphisms with Hepatocellular Carcinoma. Int. J. Environ. Res. Public Health 2019, 16, 2833. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dong, L.M.; Potter, J.D.; White, E.; Ulrich, C.M.; Cardon, L.R.; Peters, U. Genetic susceptibility to cancer: The role of polymorphisms in candidate genes. JAMA 2008, 299, 2423–2436. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nahon, P.; Zucman-Rossi, J. Single nucleotide polymorphisms and risk of hepatocellular carcinoma in cirrhosis. J. Hepatol. 2012, 57, 663–674. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Imanishi, T.; Morinobu, A.; Hayashi, N.; Kanagawa, S.; Koshiba, M.; Kondo, S.; Kumagai, S. A novel polymorphism of the SSA1 gene is associated with anti-SS-A/Ro52 autoantibody in Japanese patients with primary Sjogren’s syndrome. Clin. Exp. Rheumatol. 2005, 23, 521–524. [Google Scholar] [PubMed]
- Bishayee, A. The role of inflammation and liver cancer. Adv. Exp. Med. Biol. 2014, 816, 401–435. [Google Scholar] [CrossRef]
Variable | Controls (n = 1196) | Patients (n = 394) | p-Value |
---|---|---|---|
Age (yrs) | p < 0.001 * | ||
<65 | 857 (71.7%) | 210 (53.3%) | |
≧65 | 339 (28.3%) | 184 (46.7%) | |
Mean ± S.D. | 59.4 ± 7.1 | 63.1 ± 11.2 | p < 0.001 * |
Variable | Controls (n = 1196) n (%) | Patients (n = 394) n (%) | OR (95% CI) | AOR (95% CI) a |
---|---|---|---|---|
rs4144331 | ||||
GG | 702 (58.7%) | 231 (58.6%) | 1.000 (reference) | 1.000 (reference) |
GT | 431 (36%) | 133 (33.8%) | 0.938 (0.734–1.198) | 0.966 (0.746–1.250) |
TT | 63 (5.3%) | 30 (7.6%) | 1.447 (0.914–2.291) | 1.479 (0.914–2.395) |
GT + TT | 494 (41.3%) | 163 (41.4%) | 1.003 (0.796–1.264) | 1.033 (0.809–1.318) |
rs915956 | ||||
GG | 803 (67.1%) | 273 (69.3%) | 1.000 (reference) | 1.000 (reference) |
GA | 366 (30.6%) | 109 (27.7%) | 0.876 (0.679–1.129) | 0.854 (0.653–1.116) |
AA | 27 (2.3%) | 12 (3%) | 1.307 (0.653–2.616) | 1.456 (0.697–3.044) |
GA + AA | 393 (32.9%) | 121 (30.7%) | 0.906 (0.708–1.158) | 0.892 (0.688-1.155) |
Variable | Controls (n = 857) n (%) | Patients (n = 210) n (%) | OR (95% CI) | AOR (95% CI) a |
---|---|---|---|---|
rs4144331 | ||||
GG | 504 (58.8%) | 120 (57.1%) | 1.000 (reference) | 1.000 (reference) |
GT | 308 (35.9%) | 75 (35.7%) | 1.023 (0.742–1.410) | 0.961 (0.686–1.345) |
TT | 45 (5.3%) | 15 (7.1%) | 1.400 (0.755–2.596) | 1.147 (0.596–2.208) |
GT + TT | 353 (41.2%) | 90 (42.9%) | 1.071 (0.789–1.453) | 0.986 (0.716–1.358) |
rs915956 | ||||
GG | 576 (67.2%) | 139 (66.2%) | 1.000 (reference) | 1.000 (reference) |
GA | 265 (30.9%) | 62 (29.5%) | 0.970 (0.695–1.352) | 0.997 (0.702–1.415) |
AA | 16 (1.9%) | 9 (4.3%) | 2.331 (1.009–5.385) p = 0.048 | 3.153 (1.315–7.561) p = 0.010 |
GA + AA | 281 (32.8%) | 71 (33.8%) | 1.047 (0.761–1.441) | 1.101 (0.786–1.541) |
Variable | Controls (n = 470) n (%) | Patients (n = 155) n (%) | OR (95% CI) | AOR (95% CI) a |
---|---|---|---|---|
rs4144331 | ||||
GG | 292 (62.1%) | 92 (59.4%) | 1.000 (reference) | 1.000 (reference) |
GT | 158 (33.6%) | 48 (31%) | 0.964 (0.647–1.437) | 0.927 (0.596–1.444) |
TT | 20 (4.3%) | 15 (9.7%) | 2.380 (1.171–4.838) p = 0.017 | 2.940 (1.331–6.491) p = 0.008 |
GT + TT | 178 (37.9%) | 63 (40.6%) | 1.123 (0.775–1.628) | 1.127 (0.747–1.699) |
rs915956 | ||||
GG | 306 (65.1%) | 106 (68.4%) | 1.000 (reference) | 1.000 (reference) |
GA | 153 (32.6%) | 43 (27.7%) | 0.811 (0.542–1.215) | 0.805 (0.516–1.254) |
AA | 11 (2.3%) | 6 (3.9%) | 1.575 (0.568–4.362) | 2.076 (0.653–6.604) |
GA + AA | 164 (34.9%) | 49 (31.6%) | 0.863 (0.585–1.271) | 0.873 (0.570–1.338) |
Genotypic Frequencies | ||||
---|---|---|---|---|
Variable | GG (%) (n = 231) | GT + TT (%) (n = 163) | OR (95% CI) | p Value |
Clinical Stage | ||||
Stage I/II | 165 (71.4%) | 110 (67.5%) | 1.000 (reference) | |
Stage III/IV | 66 (28.6%) | 53 (32.5%) | 1.205 (0.780–1.860) | p = 0.401 |
Tumor size | ||||
≦T2 | 168 (72.7%) | 112 (68.7%) | 1.000 (reference) | |
>T2 | 63 (27.3%) | 51 (31.3%) | 1.214 (0.782–1.885) | p = 0.387 |
Lymph node metastasis | ||||
No | 224 (97%) | 158 (96.9%) | 1.000 (reference) | |
Yes | 7 (3%) | 5 (3.1%) | 1.013 (0.316–3.248) | p = 0.983 |
Distant metastasis | ||||
No | 224 (97%) | 150 (92%) | 1.000 (reference) | |
Yes | 7 (3%) | 13 (8%) | 2.773 (1.081–7.113) | p = 0.034 * |
Vascular invasion | ||||
No | 200 (86.6%) | 130 (79.8%) | 1.000 (reference) | |
Yes | 31 (13.4%) | 33 (20.2%) | 1.638 (0.957–2.804) | p = 0.072 |
Child–Pugh grade | ||||
A | 195 (84.4%) | 126 (77.3%) | 1.000 (reference) | |
B or C | 36 (15.6%) | 37 (22.7%) | 1.591 (0.955–2.650) | p = 0.075 |
HBsAg | ||||
Negative | 138 (59.7%) | 88 (54%) | 1.000 (reference) | |
Positive | 93 (40.3%) | 75 (46%) | 1.265 (0.844–1.896) | p = 0.256 |
Anti–HCV | ||||
Negative | 117 (50.6%) | 99 (60.7%) | 1.000 (reference) | |
Positive | 114 (49.4%) | 64 (39.3%) | 0.663 (0.442–0.996) | p = 0.048 * |
Liver cirrhosis | ||||
Negative | 38 (16.5%) | 30 (18.4%) | 1.000 (reference) | |
Positive | 193 (83.5%) | 133 (81.6%) | 0.873 (0.515–1.479) | p = 0.613 |
Characteristic | α-Fetoprotein a (ng/mL) | AST a (IU/L) | ALT a (IU/L) | AST/ALT a Ratio |
---|---|---|---|---|
rs4144331 | ||||
GG | 2601.3 ± 843.8 | 106.4 ± 16.3 | 98.9 ± 15.0 | 1.4 ± 0.1 |
GT + TT | 3834.6 ± 1416.9 | 126.7 ± 22.3 | 325.6 ± 224.8 | 1.4 ± 0.1 |
p value | 0.422 | 0.979 | 0.968 | 0.123 |
rs915956 | ||||
GG | 2830.0 ± 864.6 | 126.3 ± 18.1 | 109.0 ± 14.2 | 1.5 ± 0.1 |
GA + AA | 3746.6 ± 1561.6 | 88.9 ± 14.0 | 381.4 ± 302.6 | 1.4 ± 0.1 |
p value | 0.332 | 0.467 | 0.707 | 0.973 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, H.-L.; Chien, Y.-C.; Chiang, W.-L.; Wang, H.-L.; Hsueh, K.-C.; Chen, C.-H.; Chen, S.-C.; Wu, T.-K.; Pan, Y.-R.; Bai, L.-Y.; et al. Analysis of TRIM21 Genetic Variants on the Clinicopathologic Characteristics of Patients with Hepatocellular Carcinoma. Processes 2021, 9, 495. https://doi.org/10.3390/pr9030495
Lee H-L, Chien Y-C, Chiang W-L, Wang H-L, Hsueh K-C, Chen C-H, Chen S-C, Wu T-K, Pan Y-R, Bai L-Y, et al. Analysis of TRIM21 Genetic Variants on the Clinicopathologic Characteristics of Patients with Hepatocellular Carcinoma. Processes. 2021; 9(3):495. https://doi.org/10.3390/pr9030495
Chicago/Turabian StyleLee, Hsiang-Lin, Yi-Chung Chien, Whei-Ling Chiang, Hsiang-Ling Wang, Kuan-Chun Hsueh, Chao-Hsuan Chen, Shuo-Chueh Chen, Tsai-Kun Wu, Ying-Ru Pan, Li-Yuan Bai, and et al. 2021. "Analysis of TRIM21 Genetic Variants on the Clinicopathologic Characteristics of Patients with Hepatocellular Carcinoma" Processes 9, no. 3: 495. https://doi.org/10.3390/pr9030495
APA StyleLee, H. -L., Chien, Y. -C., Chiang, W. -L., Wang, H. -L., Hsueh, K. -C., Chen, C. -H., Chen, S. -C., Wu, T. -K., Pan, Y. -R., Bai, L. -Y., Yang, S. -F., & Yu, Y. -L. (2021). Analysis of TRIM21 Genetic Variants on the Clinicopathologic Characteristics of Patients with Hepatocellular Carcinoma. Processes, 9(3), 495. https://doi.org/10.3390/pr9030495